

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Not For New Designs
Core Processor	R8C
Core Size	16-Bit
Speed	20MHz
Connectivity	CANbus, I ² C, LINbus, SIO, SSU, UART/USART
Peripherals	POR, Voltage Detect, WDT
Number of I/O	41
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	3K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f21228jfp-u1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

RENESAS

R8C/22 Group, R8C/23 Group RENESAS MCU

1. Overview

This MCU is built using the high-performance silicon gate CMOS process using the R8C CPU core and is packaged in a 48-pin plastic molded LQFP. This MCU operates using sophisticated instructions featuring a high level of instruction efficiency. With 1 Mbyte of address space, it is capable of executing instructions at high speed. This MCU is equipped with one CAN module and suited to in-vehicle or FA networking.

Furthermore, the data flash (1 KB x 2 blocks) is embedded in the R8C/23 Group.

The difference between R8C/22 and R8C/23 Groups is only the existence of the data flash. Their peripheral functions are the same.

1.1 Applications

Automotive, etc.

1.3 Block Diagram

Figure 1.1 shows a Block Diagram.

2. Central Processing Unit (CPU)

Figure 2.1 shows the CPU Registers. The CPU contains 13 registers. Of these, R0, R1, R2, R3, A0, A1, and FB comprise a register bank. Two sets of register banks are provided.

2.1 Data Registers (R0, R1, R2 and R3)

R0 is a 16-bit register for transfer, arithmetic, and logic operations. The same applies to R1 to R3. R0 can be split into high-order bit (R0H) and low-order bit (R0L) to be used separately as 8-bit data registers. The same applies to R1H and R1L as R0H and R0L. R2 can be combined with R0 to be used as a 32-bit data register (R2R0). The same applies R3R1 as R2R0.

2.2 Address Registers (A0 and A1)

A0 is a 16-bit register for address register indirect addressing and address register relative addressing. They also are used for transfer, arithmetic and logic operations. The same applies to A1 as A0. A1 can be combined with A0 to be used a 32-bit address register (A1A0).

2.3 Frame Base Register (FB)

FB is a 16-bit register for FB relative addressing.

2.4 Interrupt Table Register (INTB)

INTB, a 20-bit register, indicates the start address of an interrupt vector table.

2.5 Program Counter (PC)

PC, 20 bits wide, indicates the address of an instruction to be executed.

2.6 User Stack Pointer (USP) and Interrupt Stack Pointer (ISP)

The stack pointer (SP), USP and ISP, are 16 bits wide each. The U flag of FLG is used to switch between USP and ISP.

2.7 Static Base Register (SB)

SB is a 16-bit register for SB relative addressing.

2.8 Flag Register (FLG)

FLG is a 11-bit register indicating the CPU status.

2.8.1 Carry Flag (C)

The C flag retains a carry, borrow, or shift-out bit that has occurred in the arithmetic and logic unit.

2.8.2 Debug Flag (D)

The D flag is for debug only. Set to 0.

2.8.3 Zero Flag (Z)

The Z flag is set to 1 when an arithmetic operation resulted in 0; otherwise, 0.

2.8.4 Sign Flag (S)

The S flag is set to 1 when an arithmetic operation resulted in a negative value; otherwise, 0.

2.8.5 Register Bank Select Flag (B)

The register bank 0 is selected when the B flag is 0. The register bank 1 is selected when this flag is set to 1.

2.8.6 Overflow Flag (O)

The O flag is set to 1 when the operation resulted in an overflow; otherwise, 0.

3. Memory

3.1 R8C/22 Group

Figure 3.1 shows a Memory Map of R8C/22 Group. The R8C/22 Group has 1 Mbyte of address space from address 00000h to FFFFFh.

The internal ROM is allocated lower addresses, beginning with address 0FFFFh. For example, a 48-Kbyte internal ROM is allocated addresses 04000h to 0FFFFh.

The fixed interrupt vector table is allocated addresses 0FFDCh to 0FFFFh. They store the starting address of each interrupt routine.

The internal RAM is allocated higher addresses, beginning with address 00400h. For example, a 2.5-Kbyte internal RAM is allocated addresses 00400h to 00DFFh. The internal RAM is used not only for storing data but also for calling subroutines and as stacks when interrupt requests are acknowledged.

Special function registers (SFR) are allocated addresses 00000h to 002FFh and 01300h to 0147Fh (SFR area for CAN). The peripheral function control registers are allocated here. All addresses within the SFR, which have nothing allocated are reserved for future user and cannot be accessed by users.

Address	Register	Symbol	After reset
00C0h	A/D Register	AD	XXh
00C1h			XXh
00C2h			
00C3h			
00C4h			
00C5h			
00C6h			
00C7h			
00C8h			
00C9h			
00CAh			
00CBh			
00CCh			
00CDh			
00CEh			
00CFh			
00D0h			
00D1h			
00D2h			
00D3h			
00D4h	A/D Control Register 2	ADCON2	00h
00D5h			
00D6h	A/D Control Register 0	ADCON0	00h
00D7h	A/D Control Register 1	ADCON1	00h
00D8h			
00D9h			
00DAh			
00DBh			
00DCh			
00DDh			
00DEh			
00DFh		-	
00E0h	Port P0 Register	P0	XXh
00E1h	Port P1 Register	P1	XXh
00E2h	Port P0 Direction Register	PD0	00h
00E3h	Port P1 Direction Register	PD1	00h
00E4h	Port P2 Register	P2	XXh
00E5h	Port P3 Register	P3	XXh
00E6h	Port P2 Direction Register	PD2	00h
00E7h	Port P3 Direction Register	PD3	00h
00E8h	Port P4 Register	P4	XXn
00E9h	Dest D4 Direction Destinted		0.01
00EAn	Port P4 Direction Register	PD4	UUN
OUEBN	Port D6 Register	De	V V h
OUECH	Poil Po Register	P0	××11
00ED1	Port P6 Direction Productor	PD6	00b
ODEEN	Port Po Direction Register	PD6	oon
00F1b			
00F2h			
00F3h			
00F4b			
00F5h	LIART1 Function Select Register	LIISR	XXh
00F6h		0.000	77711
00F7h			
00F8h	Port Mode Register	PMR	00h
00F9h	External Input Enable Register	INTEN	00h
00FAh	INT Input Filter Select Register	INTE	00h
00FBh	Key Input Enable Register	KIEN	00h
00FCh	Pull-Up Control Register 0	PUR0	00h
00FDh	Pull-Up Control Register 1	PUR1	XX00XX00b
00FEh			
00FFh			

Table 4.4SFR Information (4)(1)

X: Undefined

NOTE:

Table 4.6	SFR Information (6)(1)
-----------	--------------------	------

Address	Register	Symbol	After reset
0140h	Timer RD Control Register 0	TRDCR0	00h
0141h	Timer RD I/O Control Register A0	TRDIORA0	10001000b
0142h	Timer RD I/O Control Register C0	TRDIORC0	10001000b
0143h	Timer RD Status Register 0	TRDSR0	11100000b
0144h	Timer RD Interrupt Enable Register 0	TRDIER0	11100000b
0145h	Timer RD PWM Mode Output Level Control Register 0	TRDPOCR0	11111000b
0146h	Timer RD Counter 0	TRD0	00h
0147h			00h
0148h	Timer RD General Register A0	TRDGRA0	FFh
0149h	······································		FFh
014Ah	Timer RD General Register B0	TRDGRB0	FEh
014Bh			FFh
014Ch	Timer RD General Register C0	TRDGRC0	FFh
014Dh		mbonoo	FEb
014Eh	Timer RD General Register D0		FEb
014Eh		INDONDO	FFb
0150b	Timor PD Control Pagistor 1		00h
01500	Timer RD I/O Control Register A1		10001000b
0152h	Timer RD I/O Control Register C1		10001000b
015211	Timer DD Status Donistor 1		1100000b
015311	Timer DD Interrupt Enable Degister 1		11100000b
015411	Timer RD RWM Mode Output Lovel Control Devictor 4		1111100000
01550		TRDPUCKI	11111000b
0156h	limer KD Counter 1	IKU1	
0157h			00h
0158h	Timer RD General Register A1	TRDGRA1	FFh
0159h			FFh
015Ah	Timer RD General Register B1	TRDGRB1	FFh
015Bh			FFh
015Ch	Timer RD General Register C1	TRDGRC1	FFh
015Dh			FFh
015Eh	Timer RD General Register D1	TRDGRD1	FFh
015Fh			FFh
0160h			
0161h			
0162h			
0163h			
0164h			
0165h			
0166h			
0167h			
0168h			
0169h			
016Ah			
016Bh			
016Ch			
016Dh			
016Eh			<u> </u>
01706			
01746			
01705			
01725			
01730			
01740			
01750			
01760			
01//h			
0178h			
0179h			
017Ah			
017Bh			
017Ch			
017Dh			
017Eh			
017Fh			

X: Undefined

NOTE:

Table 4.8	SFR Information	(8) ⁽¹)	
-----------	-----------------	--------------------------	---	--

Address	Register	Symbol	After reset
1300h	CAN0 Message Control Register 0	COMCTL0	00h
1301h	CAN0 Message Control Register 1	C0MCTL1	00h
1302h	CAN0 Message Control Register 2	C0MCTL2	00h
1303h	CAN0 Message Control Register 3	C0MCTL3	00h
1304h	CANO Message Control Register 4	COMCTL4	00h
1305h	CANO Message Control Register 5	COMCTL5	00h
1306h	CAN0 Message Control Register 6	COMCTL6	00h
1307h	CANO Message Control Register 7	COMCTL7	00h
1308h	CANO Message Control Register 8	COMCTL8	00h
1309h	CANO Message Control Register 9	COMCTL9	00h
1304h	CANO Message Control Register 10	COMCTL 10	00h
130Rh	CANO Message Control Register 10	COMCTL 11	00h
130Ch	CANO Message Control Register 12	COMCTL 12	00b
1300h	CANO Message Control Register 12	COMCTL 12	00b
130Dh	CANO Message Control Register 14	COMCTL14	00h
130Eh	CANO Message Control Register 14	COMOTE 14	00h
1301 H	CANO Message Control Register 13	CONTLE	20000001h
1310h	CAND CONTO REGISTER	COUTER	XX0X0000b
1312h	CAN0 Status Register	COSTR	00h
1313h			X000001b
1314h	CAN0 Slot Status Register	COSSTR	00h
1315h			00h
1316h	CAN0 Interrupt Control Register	COICR	00h
1317h			00h
1318h	CAN0 Extended ID Register	COIDR	00h
1319h	·		00h
131Ah	CAN0 Configuration Register	COCONR	XXh
131Bh			XXh
131Ch	CANO Receive Error Count Register	CORECR	00h
131Dh	CANO Transmit Error Count Register	COTECR	00h
131Fh		0012011	
131Eh			
1320h			
13201			
1327h			
1322h			
132311			
132411			
13200			
132011			
13270			
1328h			
1329h			
132Ah			
132Bh			
132Ch			
132Dh			
132Eh			
132Fh			
1330h			
1331h			
1332h			
1333h			
1334h			
1335h			
1336h			
1337h			
1338h			
1339h			
133Ah			
133Bh			
133Ch			
133Dh			
133Eh			
133Fh			
100111			

X: Undefined

NOTE:

Address	Register	Symbol	After reset
1340h			
1341h			
1342h	CAN0 Acceptance Filter Support Register	COAFS	XXh
1343h			XXh
1344h			
1345h			
1346h			
1347h			
1348h			
1349h			
134Ah			
134Bh			
134Ch			
134Dh			
134Eh			
134Fh			
1350h			
1351h			
1352h			
1353h			
1354h			
1355h			
1356h			
1357h			
1358h			
1359h			
135Ah			
135Bh			
135Ch			
135Dh			
135Eh			
135Fh	CAN0 Clock Select Register	CCLKR	00h
1360h	CAN0 Slot 0: Identifier/DLC		XXh
1361h			XXh
1362h			XXh
1363h			XXh
1364h			XXh
1365h			XXh
1366h	CAN0 Slot 0: Data Field		XXh
1367h			XXh
1368h			XXh
1369h			XXh
136Ah			XXh
136Bh			XXh
136Ch			XXh
136Dh			XXh
136Eh	CANU Slot 0: Time Stamp		XXh
136Fh			XXN
1370h	CANU Slot 1: Identifier/DLC		XXN
1371h			XXN
1372h			XXN
13/3h			
13/4h			
13/50	CANO Slot 1: Data Field		
13/00	CAINU SIUL T. Data FIEIU		
13//1			
13/011			
137911 1274b			XYh
137Ph			YYh
1370h			XXh
137Dh			XXh
137Eh	CANO Slot 1: Time Stamp	L	XXh
137Eh	onino olor 1. Time olamp		XXh
10/111			77711

Table 4.9SFR Information (9)⁽¹⁾

X: Undefined

NOTE:

Symbol	Parameter	Condition	Standard		Unit	
			Min.	Тур.	Max.	
Vpor1	Power-on reset valid voltage ⁽⁴⁾		-	-	0.1	V
Vpor2	Power-on reset or voltage monitor 1 valid voltage		0	_	Vdet1	V
trth	External power Vcc rise gradient	$Vcc \leq 3.6 \ V$	20(2)	-	-	mV/msec
		Vcc > 3.6 V	20(2)	_	2,000	mV/msec

Table 5.8 Power-on Reset Circuit, Voltage Monitor 1 Reset Circuit Electrical Characteristics⁽³⁾

NOTES:

- 1. Topr = -40°C to 85°C (D, J version) / -40°C to 125°C (K version), unless otherwise specified.
- 2. This condition (the minimum value of external power Vcc rise gradient) does not apply if $V_{Por2} \ge 1.0$ V.
- 3. To use the power-on reset function, enable voltage monitor 1 reset by setting the LVD1ON bit in the OFS register to 0, the VW1C0 and VW1C6 bits in the VW1C register to 1 respectively, and the VCA26 bit in the VCA2 register to 1.
- 4. tw(por1) indicates the duration the external power Vcc must be held below the effective voltage (Vpor1) to enable a power on reset. When turning on the power for the first time, maintain tw(por1) for 30s or more if -20°C ≤ Topr ≤ 125°C, maintain tw(por1) for 3,000s or more if -40°C ≤ Topr < -20°C.</p>

Figure 5.3 Power-on Reset Circuit Electrical Characteristics

Cumhal	Parameter		Conditions		L locit		
Symbol			Conditions	Min.	Тур.	Max.	Unit
tsucyc	SSCK clock cycle time			4	-	-	tCYC ⁽²⁾
tнı	SSCK clock "H" width			0.4	-	0.6	tsucyc
tlo	SSCK clock "L" width			0.4	_	0.6	tsucyc
trise	SSCK clock rising time	Master		-	-	1	tCYC ⁽²⁾
		Slave		-	-	1	μs
TFALL	SSCK clock falling time Master			-	-	1	tCYC ⁽²⁾
		Slave		-	-	1	μs
tsu	SSO, SSI data input setup time			100	-	-	ns
tн	SSO, SSI data input hold time			1	-	-	tCYC ⁽²⁾
t LEAD	SCS setup time	Slave		1tcyc + 50	-	-	ns
tlag	SCS hold time	Slave		1tcyc + 50	_	-	ns
top	SSO, SSI data output delay tim	e		-	-	1	tCYC ⁽²⁾
tSA	SSI slave access time			-	-	1tcyc + 100	ns
tOR	SSI slave out open time			_	_	1tcyc + 100	ns

Table 5.12 Timing Requirements of Clock Synchronous Serial I/O with Chip Select⁽¹⁾

NOTES:

1. Vcc = 2.7 to 5.5 V, Vss = 0 V at Topr = -40 to 85°C (D, J version) / -40 to 125°C (K version), unless otherwise specified. 2. 1tcyc = 1/f1(s)

Currents al	Devenueter	Canditiana		Linit			
Symbol	Parameter	Conditions	Min.	lin. Typ. Max.		Unit	
tsc∟	SCL input cycle time		12tcyc + 600 ⁽²⁾	-	-	ns	
tsclh	SCL input "H" width		3tcyc + 300 ⁽²⁾	-	-	ns	
tSCLL	SCL input "L" width		5tcyc + 500 ⁽²⁾	-	-	ns	
tsf	SCL, SDA input falling time		-	-	300	ns	
tSP	SCL, SDA input spike pulse rejection time		-	-	1tcyc ⁽²⁾	ns	
t BUF	SDA input bus-free time		5tcyc(2)	-	-	ns	
t STAH	Start condition input hole time		3tcyc ⁽²⁾	-	-	ns	
t STAS	Retransmit start condition input setup time		3tcyc ⁽²⁾	-	-	ns	
t STOP	Stop condition input setup time		3tcyc ⁽²⁾	-	-	ns	
tsoas	Data input setup time		1tcyc + 20 ⁽²⁾	_	-	ns	
t SDAH	Data input hold time		0	-	-	ns	

Table 5.13 Timing Requirements of I²C Bus Interface⁽¹⁾

NOTES:

1. Vcc = 2.7 to 5.5 V, Vss = 0V at Topr = -40 to 85° C (D, J version) / -40 to 125° C (K version), unless otherwise specified. 2. 1tcvc = 1/f1(s)

Symbol	Parameter		Condition		Standard			Lloit
Symbol	Falai	netei	Condition		Min.	Тур.	Max.	Onit
Vон	Output "H" Voltage	Except XOUT	Іон = -5 mA		Vcc - 2.0	-	Vcc	V
			Іон = -200 μА		Vcc - 0.3	-	Vcc	V
		XOUT	Drive capacity HIGH	Іон = -1 mA	Vcc - 2.0	_	Vcc	V
			Drive capacity LOW	Іон = -500 μА	Vcc - 2.0	-	Vcc	V
Vol	Output "L" Voltage	Except XOUT	IOL = 5 mA		-	1	2.0	V
			Ιοι = 200 μΑ		-	-	0.45	V
		XOUT	Drive capacity HIGH	IOL = 1 mA	-	-	2.0	V
			Drive capacity LOW	IOL = 500 μA	-	-	2.0	V
VT+-VT-	Hysteresis	INT0, INT1, INT2, INT3, KI0, KI1, KI2, KI3, TRAIO, RXD0, RXD1, CLK0, SSI, SCL, SDA, SSO			0.1	0.5	-	V
		RESET			0.1	1.0	-	V
Ін	Input "H" current		VI = 5 V, Vcc = 5 V		-	-	5.0	μA
lı∟	Input "L" current		VI = 0 V, Vcc = 5 V		-	-	-5.0	μA
RPULLUP	Pull-Up Resistance	Up Resistance VI = 0 V, Vcc =			30	50	167	kΩ
Rfxin	Feedback Resistance	XIN			-	1.0	-	MΩ
VRAM	RAM Hold Voltage		During stop mode		2.0	_	_	V

Table 5.14 Electrical Characteristics (1) [Vcc = 5 V]

NOTE:

1. Vcc = 4.2 to 5.5 V at Topr = -40 to 85°C (D, J version) / -40 to 125°C (K version), f(XIN) = 20 MHz, unless otherwise specified.

Table 5.15Electrical Characteristics (2) [Vcc = 5 V]
(Topr = -40 to 85°C (D, J version) / -40 to 125°C (K version), Unless Otherwise Specified.)

Symbol	Parameter	Condition		Standard			Unit
Cymbol				Min.	Тур.	Max.	onic
Icc	Power supply current (Vcc = 3.3 to 5.5 V) In single-chip mode, the output pins are	High-clock mode	XIN = 20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	_	12.5	25.0	mA
	are Vss		XIN = 16 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	-	10.0	20.0	mA
			XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	-	6.5	-	mA
			XIN = 20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	-	6.5	-	mA
			XIN = 16MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	5.0	_	mA
			XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8		3.5	-	mA
		High-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator on fOCO = 10 MHz Low-speed on-chip oscillator on = 125 kHz No division		6.5	13.0	mA
			XIN clock off High-speed on-chip oscillator on fOCO= 10 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	1	3.2	_	mA
		Low-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8 FMR47 = 1	_	150	300	μΑ
		Wait mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock operation VCA20 = 0 VCA26 = VCA27 = 0	_	60	120	μA
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock off VCA20 = 0 VCA26 = VCA27 = 0	_	38	76	μΑ
		Stop mode Topr = 25°C	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA26 = VCA27 = 0	_	0.8	3.0	μA
		Stop mode Topr = 85°C	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA26 = VCA27 = 0	_	1.2	_	μA
		Stop mode Topr = 125°C	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA26 = VCA27 = 0	_	4.0	_	μA

Table 5.18	Serial Interface
------------	------------------

Symbol	Deromotor		Standard		
	Falameter	Min.	Max.	Unit	
tc(CK)	CLK0 input cycle time	200	-	ns	
tw(ckh)	CLK0 input "H" width	100	-	ns	
tW(CKL)	CLK0 input "L" width	100	-	ns	
td(C-Q)	TXDi output delay time	50	ns		
th(C-Q)	TXDi hold time 0 -				
tsu(D-C)	RXDi input setup time	50	-	ns	
th(C-D)	RXDi input hold time	90	-	ns	

i = 0 or 1

Figure 5.10 Serial Interface Timing Diagram when Vcc = 5 V

Table 5.19 External Interrupt INTi (i = 0 to 3) Input

Symbol	Parameter		Standard		
			Max.	Offic	
tw(INH)	INTi input "H" width	250(1)	-	ns	
tw(INL)	INTi input "L" width	250 ⁽²⁾	-	ns	

NOTES:

1. When selecting the digital filter by the INTi input filter select bit, use the INTi input HIGH width to the greater value, either (1/digital filter clock frequency x 3) or the minimum value of standard.

2. When selecting the digital filter by the INTi input filter select bit, use the INTi input LOW width to the greater value, either (1/digital filter clock frequency x 3) or the minimum value of standard.

Figure 5.11 External Interrupt INTi Input Timing Diagram when Vcc = 5 V (i = 0 to 3)

Table 5.21Electrical Characteristics (4) [Vcc = 3 V]
(Topr = -40 to 85°C (D, J version) / -40 to 125°C (K version), Unless Otherwise Specified.)

Symbol	Parameter	Condition	Standard			Unit	
				Min.	Тур.	Max.	Onic
Icc	Power supply current (Vcc = 2.7 to 3.3 V) In single-chip mode, the output pins are	High-clock mode	XIN = 20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	_	11.5	23.0	mA
open and other pins are Vss		XIN = 16 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	_	9.5	19.0	mA	
			XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	_	6.0	12.0	mA
			XIN = 20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	-	5.5	-	mA
			XIN = 16 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	4.5	1	mA
			XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8		3.0	1	mA
	High-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator on fOCO = 10 MHz Low-speed on-chip oscillator on = 125 kHz No division		6.3	12.6	mA	
		XIN clock off High-speed on-chip oscillator on fOCO = 10 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8		3.1	1	mA	
	Low-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8 FMR47 = 1	-	145	290	μΑ	
	Wait mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock operation VCA20 = 0 VCA26 = VCA27 = 0	_	56	112	μA	
		XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock off VCA20 = 0 VCA26 = VCA27 = 0	_	35	70	μΑ	
	Stop mode Topr = 25°C	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA26 = VCA27 = 0	_	0.7	3.0	μΑ	
		Stop mode Topr = 85°C	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA26 = VCA27 = 0	_	1.1	_	μA
		Stop mode Topr = 125°C	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA26 = VCA27 = 0	_	3.8	_	μA

Package Dimensions

Diagrams showing the latest package dimensions and mounting information are available in the "Packages" section of the Renesas Technology website.

REVISION HISTORY

R8C/22 Group, R8C/23 Group Datasheet

Rev. Date			Description
		Page	Summary
0.10	Mar 08, 2005		First Edition issued
0.20	Sep 29, 2005	_	 Words standardized Clock synchronous serial interface → Clock synchronous serial I/O Chip-select clock synchronous interface(SSU) → Clock synchronous serial I/O with chip select I²C bus interface(IIC) → I²C bus interface
		2, 3	 Table1.1 R8C/22 Group Performance, Table1.2 R8C/23 Group Performance Serial Interface revised: Clock Synchronous Serial Interface: 1 channel I²C bus Interface (3), Clock synchronous serial I/O with chip select Power-On Reset Circuit added Power Consumption value determined
		5, 6	Table 1.3 Product Information of R8C/22 Group, Table 1.4 Product Information of R8C/23 Group Date revised.
		7	Figure 1.4 Pin Assignment Pin name revised: - P3_5/SSCK(/SCL) \rightarrow P3_5/ SCL/SSCK - P3_4/SCS(/SDA) \rightarrow P3_4/ SDA /SCS - VSS \rightarrow VSS/AVSS - VCC \rightarrow VCC/AVCC - P1_5/RXD0/(TRAIO/INT1) \rightarrow P1_5/RXD0/(TRAIO)/(INT1) - P6_6/INT2/(TXD1) \rightarrow P6_6/INT2/TXD1 - P6_7/INT3/(RXD1) \rightarrow P6_7/INT3/RXD1 - NOTE2 added
		8	Table 1.5 Pin Description - Analog Power Supply Input: line added - I ² C Bus Interface (IIC) \rightarrow I ² C Bus Interface - SSU \rightarrow Clock Synchronous Serial I/O with Chip Select
		9	Table 1.6 Pin Name Information by Pin Number revised - Pin Number 1: (SCL) \rightarrow SCL - Pin Number 2: (SDA) \rightarrow SDA - Pin Number 9: VSS \rightarrow VSS/AVSS - Pin Number 11: VCC \rightarrow VCC/AVCC - Pin Number 26: (TXD1) \rightarrow TXD1 - Pin Number 27: (RXD1) \rightarrow RXD1
		15	Table 4.1 SFR Information (1) revised - 0013h: XXXXXX00b \rightarrow 00h
		17	Table 4.3 SFR Information (3) revised - 00BCh: 0000X000b → 00h/0000X000b
		18	Table 4.4 SFR Information (4) revised - 00D6h: 00000XXXb → 00h - 00F5h: UART1 Function Select Register added
		19	Table 4.5 SFR Information (5) revised - 0104h: TRATR \rightarrow TRA