

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

⊡XFI

Product Status	Not For New Designs
Core Processor	R8C
Core Size	16-Bit
Speed	16MHz
Connectivity	CANbus, I ² C, LINbus, SIO, SSU, UART/USART
Peripherals	POR, Voltage Detect, WDT
Number of I/O	41
Program Memory Size	48KB (48K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	2.5K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f21237kfp-u1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

RENESAS

R8C/22 Group, R8C/23 Group RENESAS MCU

1. Overview

This MCU is built using the high-performance silicon gate CMOS process using the R8C CPU core and is packaged in a 48-pin plastic molded LQFP. This MCU operates using sophisticated instructions featuring a high level of instruction efficiency. With 1 Mbyte of address space, it is capable of executing instructions at high speed. This MCU is equipped with one CAN module and suited to in-vehicle or FA networking.

Furthermore, the data flash (1 KB x 2 blocks) is embedded in the R8C/23 Group.

The difference between R8C/22 and R8C/23 Groups is only the existence of the data flash. Their peripheral functions are the same.

1.1 Applications

Automotive, etc.

1.2 Performance Overview

Table 1.1 outlines the Functions and Specifications for R8C/22 Group and Table 1.2 outlines the Functions and Specifications for R8C/23 Group.

	Item	Specification
CPU	Number of fundamental instructions	89 instructions
	Minimum instruction execution time	50 ns (f(XIN) = 20 MHz, VCC = 3.0 to 5.5 V)
		100 ns (f(XIN) = 10 MHz, VCC = 2.7 to 5.5 V)
	Operating mode	Single-chip
	Address space	1 Mbyte
	Memory capacity	Refer to Table 1.3 Product Information for R8C/22 Group
Peripheral	Ports	I/O ports: 41 pins, Input port: 3 pins
Function	Timers	Timer RA: 8 bits x 1 channel,
		Timer RB: 8 bits x 1 channel
		(Each timer equipped with 8-bit prescaler)
		Timer RD: 16 bits x 2 channel
		(Circuits of input capture and output compare)
		Timer RE: With compare match function
	Serial interface	1 channel (UART0)
		Clock synchronous I/O, UART
		1 channel (UART1)
		UART
	Clock synchronous serial interface	1 channel
		I ² C bus interface ⁽²⁾ , Clock synchronous serial I/O with chip
		select
	LIN module	Hardware LIN: 1 channel
		(timer RA, UART0)
	CAN module	1 channel with 2.0B specification: 16 slots
	A/D converter	10-bit A/D converter: 1 circuit, 12 channels
	Watchdog timer	15 bits x 1 channel (with prescaler)
		Reset start selectable
	Interrupt	Internal: 14 sources, External: 6 sources, Software: 4 sources,
		Priority level: 7 levels
	Clock generation circuits	2 circuits
		XIN clock generation circuit (with on-chip feedback resistor)
		On-chip oscillator (high speed, low speed)
		High-speed on-chip oscillator has frequency adjustment
	Oscillation stop detection	Stop detection of XIN clock oscillation
		On this
	Voltage detection circuit	On-chip On chin
Ele etcie	Power-on reset circuit include	
Electric	Supply voltage	VCC = 3.0 to 5.5 V (f(XIN) = 20 MHZ)(D, J Version)
Characteristics		VCC = 3.0 to 5.5 V (I(XIN) = 16 IVHZ)(K Version)
	Current concurrentian	VCC = 2.7 to 5.5 V (I(XIN) = 10 IVHZ)
	Current consumption	Typ. 12.5 mA (VCC = 5 V, $I(XIN) = 20$ MHz, High-speed on-
		chip oscillator stopping) Two $6.0 \text{ mA} (VCC = 5.V f(X N)) = 10 \text{ MHz}$ High speed on ship
		Typ. 6.0 mA (VCC = 5 V, $I(XIN) = 10$ MHz, High-speed on-chip
Floch Momony	Brogramming and areaute voltage	$V_{CC} = 2.7 \text{ to } 5.5 \text{ V}$
Fiash wemory	Programming and erasure voltage	VOC = 2.7 10 0.0 V
	endurance	
Operating Archi		40 to 95%
		-40 (0 00 U
Package		48-pin mold-plastic LQFP

Table 1.1Functions and Specifications for R8C/22 Group

NOTES:

1. When using options, be sure to inquire about the specification.

2. I²C bus is a registered trademark of Koninklijke Philips Electronics N.V.

RENESAS

1.6 **Pin Functions**

Table 1.5 lists the Pin Functions and Table 1.6 lists the Pin Name Information by Pin Number.

Туре	Symbol	I/O Type	
Power Supply Input	VCC	Ι	Α
	VSS		٧
Analog Power Supply	AVCC, AVSS	Ι	A
Input			а
Reset Input	RESET	Ι	Ir
MODE	MODE		~

Table 1.5 Pin Functions

Туре	Symbol	I/O Type	Description
Power Supply Input	VCC VSS	I	Apply 2.7 V to 5.5 V to the VCC pin. Apply 0 V to the VSS pin.
Analog Power Supply Input	AVCC, AVSS	I	Applies the power supply for the A/D converter. Connect a capacitor between AVCC and AVSS.
Reset Input	RESET	I	Input "L" on this pin resets the MCU.
MODE	MODE	I	Connect this pin to VCC via a resistor.
XIN Clock Input	XIN	I	These pins are provided for the XIN clock generation
XIN Clock Output	XOUT	0	circuit I/O. Connect a ceramic resonator or a crystal oscillator between the XIN and XOUT pins. To use an externally derived clock, input it to the XIN pin and leave the XOUT pin open.
INT Interrupt Input	INTO to INT3	I	INT interrupt input pins. INT0 Timer RD input pins. INT1 Timer RA input pins.
Key Input Interrupt	KI0 to KI3	I	Key input interrupt input pins.
Timer RA	TRAIO	I/O	Timer RA I/O pin.
	TRAO	0	Timer RA output pin.
Timer RB	TRBO	0	Timer RB output pin.
Timer RD	TRDIOA0, TRDIOA1, TRDIOB0, TRDIOB1, TRDIOC0, TRDIOC1, TRDIOD0, TRDIOD1	I/O	Timer RD I/O ports.
	TRDCLK	I	External clock input pin.
Timer RE	TREO	0	Divided clock output pin.
Serial Interface	CLK0	I/O	Transfer clock I/O pin.
	RXD0, RXD1	I	Serial data input pins.
	TXD0, TXD1	0	Serial data output pins.
I ² C Bus Interface	SCL	I/O	Clock I/O pin.
	SDA	I/O	Data I/O pin.
Clock Synchronous	SSI	I/O	Data I/O pin.
Serial I/O with Chip	SCS	I/O	Chip-select signal I/O pin.
Select	SSCK	I/O	Clock I/O pin.
	SSO	I/O	Data I/O pin.
CAN Module	CRX0	I	CAN data input pin.
	CTX0	0	CAN data output pin.
Reference Voltage Input	VREF	I	Reference voltage input pin to A/D converter.
A/D Converter	AN0 to AN11	I	Analog input pins to A/D converter.
I/O Port	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0, P3_1, P3_3 to P3_5, P3_7, P4_3 to P4_5, P6_0 to P6_7	I/O	CMOS I/O ports. Each port contains an input/output select direction register, allowing each pin in that port to be directed for input or output individually. Any port set to input can select whether to use a pull-up resistor or not by a program.
Input Port	P4_2, P4_6, P4_7		Input only ports.
I: Input O: Output	I/O: Input and (output	

O: Output I/O: Input and output

2.8.7 Interrupt Enable Flag (I)

The I flag enables a maskable interrupt.

An interrupt is disabled when the I flag is set to 0, and are enabled when the I flag is set to 1. The I flag is set to 0 when an interrupt request is acknowledged.

2.8.8 Stack Pointer Select Flag (U)

ISP is selected when the U flag is set to 0; USP is selected when the U flag is set to 1. The U flag is set to 0 when a hardware interrupt request is acknowledged or the INT instruction of software interrupt numbers. 0 to 31 is executed.

2.8.9 Processor Interrupt Priority Level (IPL)

IPL, 3 bits wide, assigns processor interrupt priority levels from level 0 to level 7. If a requested interrupt has greater priority than IPL, the interrupt is enabled.

2.8.10 Reserved Bit

If necessary, set to 0. When read, the content is undefined.

3. Memory

3.1 R8C/22 Group

Figure 3.1 shows a Memory Map of R8C/22 Group. The R8C/22 Group has 1 Mbyte of address space from address 00000h to FFFFFh.

The internal ROM is allocated lower addresses, beginning with address 0FFFFh. For example, a 48-Kbyte internal ROM is allocated addresses 04000h to 0FFFFh.

The fixed interrupt vector table is allocated addresses 0FFDCh to 0FFFFh. They store the starting address of each interrupt routine.

The internal RAM is allocated higher addresses, beginning with address 00400h. For example, a 2.5-Kbyte internal RAM is allocated addresses 00400h to 00DFFh. The internal RAM is used not only for storing data but also for calling subroutines and as stacks when interrupt requests are acknowledged.

Special function registers (SFR) are allocated addresses 00000h to 002FFh and 01300h to 0147Fh (SFR area for CAN). The peripheral function control registers are allocated here. All addresses within the SFR, which have nothing allocated are reserved for future user and cannot be accessed by users.

3.2 R8C/23 Group

Figure 3.2 shows a Memory Map of R8C/23 Group. The R8C/23 Group has 1 Mbyte of address space from address 00000h to FFFFh.

The internal ROM (program ROM) is allocated lower addresses, beginning with address 0FFFFh. For example, a 48-Kbyte internal ROM is allocated addresses 04000h to 0FFFFh.

The fixed interrupt vector table is allocated addresses 0FFDCh to 0FFFFh. They store the starting address of each interrupt routine.

The internal ROM (data flash) is allocated addresses 02400h to 02BFFh.

The internal RAM is allocated higher addresses, beginning with address 00400h. For example, a 2.5-Kbyte internal RAM is allocated addresses 00400h to 00DFFh. The internal RAM is used not only for storing data but also for calling subroutines and as stacks when interrupt requests are acknowledged.

Special function registers (SFR) are allocated addresses 00000h to 002FFh and 01300h to 0147Fh (SFR area for CAN). The peripheral function control registers are allocated them. All addresses within the SFR, which have nothing allocated are reserved for future use and cannot be accessed by users.

Figure 3.2 M

Memory Map of R8C/23 Group

Address	Register	Symbol	After reset
00C0h	A/D Register	AD	XXh
00C1h			XXh
00C2h			
00C3h			
00C4h			
00C5h			
00C6h			
00C7h			
00C8h			
00C9h			
00CAh			
00CBh			
00CCh			
00CDh			
00CEh			
00CFh			
00D0h			
00D1h			
00D2h			
00D3h			
00D4h	A/D Control Register 2	ADCON2	00h
00D5h			
00D6h	A/D Control Register 0	ADCON0	00h
00D7h	A/D Control Register 1	ADCON1	00h
00D8h			
00D9h			
00DAh			
00DBh			
00DCh			
00DDh			
00DEh			
00DFh		-	
00E0h	Port P0 Register	P0	XXh
00E1h	Port P1 Register	P1	XXh
00E2h	Port P0 Direction Register	PD0	00h
00E3h	Port P1 Direction Register	PD1	00h
00E4h	Port P2 Register	P2	XXh
00E5h	Port P3 Register	P3	XXh
00E6h	Port P2 Direction Register	PD2	00h
00E7h	Port P3 Direction Register	PD3	00h
00E8h	Port P4 Register	P4	XXn
00E9h	Dest D4 Direction Destinted		0.01
00EAn	Port P4 Direction Register	PD4	UUN
OUEBN	Port D6 Register	De	V V h
OUECH	Poil Po Register	P0	××11
00ED1	Port P6 Direction Productor	PD6	00b
ODEEN	Port Po Direction Register	PD6	oon
00F1b			
00F2h			
00F3h			
00F4b			
00F5h	LIART1 Function Select Register	LIISR	XXh
00F6h		0.000	77711
00F7h			
00F8h	Port Mode Register	PMR	00h
00F9h	External Input Enable Register	INTEN	00h
00FAh	INT Input Filter Select Register	INTE	00h
00FBh	Key Input Enable Register	KIEN	00h
00FCh	Pull-Up Control Register 0	PUR0	00h
00FDh	Pull-Up Control Register 1	PUR1	XX00XX00b
00FEh			
00FFh			

Table 4.4SFR Information (4)(1)

X: Undefined

NOTE:

Table 4.8	SFR Information	(8) ⁽¹)	
-----------	-----------------	--------------------------	---	--

Address	Register	Symbol	After reset
1300h	CAN0 Message Control Register 0	COMCTL0	00h
1301h	CAN0 Message Control Register 1	C0MCTL1	00h
1302h	CAN0 Message Control Register 2	C0MCTL2	00h
1303h	CAN0 Message Control Register 3	C0MCTL3	00h
1304h	CANO Message Control Register 4	COMCTL4	00h
1305h	CANO Message Control Register 5	COMCTL5	00h
1306h	CAN0 Message Control Register 6	COMCTL6	00h
1307h	CANO Message Control Register 7	COMCTL7	00h
1308h	CANO Message Control Register 8	COMCTL8	00h
1309h	CANO Message Control Register 9	COMCTL9	00h
1304h	CANO Message Control Register 10	COMCTL 10	00h
130Rh	CANO Message Control Register 10	COMCTL 11	00h
130Ch	CANO Message Control Register 12	COMCTL 12	00b
1300h	CANO Message Control Register 12	COMCTL 12	00b
130Dh	CANO Message Control Register 14	COMCTL14	00h
130Eh	CANO Message Control Register 14	COMOTE 14	00h
1301 H	CANO Message Control Register 13	CONTLE	20000001h
1310h	CAND CONTO REGISTER	COUTER	XX0X0000b
1312h	CAN0 Status Register	COSTR	00h
1313h			X000001b
1314h	CAN0 Slot Status Register	COSSTR	00h
1315h			00h
1316h	CAN0 Interrupt Control Register	COICR	00h
1317h			00h
1318h	CAN0 Extended ID Register	COIDR	00h
1319h	·		00h
131Ah	CAN0 Configuration Register	COCONR	XXh
131Bh			XXh
131Ch	CANO Receive Error Count Register	CORECR	00h
131Dh	CANO Transmit Error Count Register	COTECR	00h
131Fh		0012011	
131Eh			
1320h			
13201			
1327h			
1322h			
132311			
132411			
13200			
132011			
13270			
1328h			
1329h			
132Ah			
132Bh			
132Ch			
132Dh			
132Eh			
132Fh			
1330h			
1331h			
1332h			
1333h			
1334h			
1335h			
1336h			
1337h			
1338h			
1339h			
133Ah			
133Bh			
133Ch			
133Dh			
133Eh			
133Fh			
100111			

X: Undefined

NOTE:

Table 4.11	SFR Information	(11) ⁽¹⁾
------------	-----------------	---------------------

Address	Register	Symbol	After reset
13C0h	CAN0 Slot 6: Identifier/DLC		XXh
13C1h			XXh
13C2h			XXh
13C3h			XXh
13C4h			XXh
13C5h			XXh
13C6h	CAN0 Slot 6: Data Field		XXh
13C7h			XXh
13C8h			XXh
13C9h			XXh
13CAh			XXh
13CBh			XXh
13CCh			XXh
13CDh			XXh
13CEh	CAN0 Slot 6: Time Stamp		XXh
13CFh			XXh
13D0h	CAN0 Slot 7: Identifier/DLC		XXh
13D1h			XXh
13D2h			XXh
13D3h			XXh
13D4h			XXh
13D5h			XXh
13D6h	CAN0 Slot 7: Data Field		XXh
13D7h			XXh
13D8h			XXh
13D9h			XXh
13DAh			XXh
13DBh			XXh
13DCh			XXh
13DDh			XXh
13DEh	CAN0 Slot 7: Time Stamp		XXh
13DFh			XXh
13E0h	CAN0 Slot 8: Identifier/DLC		XXh
13E1h			XXh
13E2h			XXh
13E3h			XXh
13E4h			XXh
13E5h			XXh
13E6h	CAN0 Slot 8: Data Field		XXh
13E7h			XXh
13E8h			XXh
13E9h			XXh
13EAh			XXh
13EBh			XXh
13ECh			XXh
13EDh			XXh
13EEh	CAN0 Slot 8: Time Stamp		XXh
13EFh			XXh
13F0h	CAN0 Slot 9: Identifier/DLC		XXh
13F1h			XXh
13F2h			XXh
13F3h			XXh
13F4h			XXh
13F5h			XXh
13F6h	CAN0 Slot 9: Data Field		XXh
13F7h			XXh
13F8h			XXh
13F9h			XXh
13FAh			XXh
13FBh			XXh
13FCh			XXh
13FDh			XXh
13FEh	CAN0 Slot 9: Time Stamp		XXh
13FFh			XXh

X: Undefined

NOTE:

Table 4.12	SFR Information (12) ⁽¹⁾
------------	-------------------------------------

Address	Register	Symbol	After reset
1400h	CAN0 Slot 10: Identifier/DLC	-	XXh
1401h			XXh
1402h			XXh
1403h			XXh
1404h			XXh
1405h			XXh
1406h	CAN0 Slot 10: Data Field		XXh
1407h			XXh
1408h			XXh
1409h			XXh
140Ah			XXh
140Bh			XXh
140Ch			XXh
140Dh			XXh
140Fh	CAN0 Slot 10 [,] Time Stamp		XXh
140Fh			XXh
1410h	CANO Slot 11: Identifier/DLC		XXh
1411h			XXh
1412h			XXh
1413h			XXh
1414h			XXh
1415h			XXh
1416h	CAN0 Slot 11: Data Field		XXh
1417h			XXh
1418h			XXh
1410h			XXh
1410h			XXh
141Rh			XXh
141Ch			XXh
141Dh			XXh
141Eh	CANO Slot 11: Time Stamp		XXh
141Eh			XXh
1420h	CANO Slot 12: Identifier/DLC		XXh
1421h			XXh
1422h			XXh
1423h			XXh
1424h			XXh
1425h			XXh
1426h	CAN0 Slot 12 [.] Data Field		XXh
1427h	ovinto olor 12. Bala Hola		XXh
1428h			XXh
1420h			XXh
142Ah			XXh
142Rh			XXh
142Ch			XXh
142Dh			XXh
142Fh	CAN0 Slot 12: Time Stamp		XXh
142Fh			XXh
1430h	CAN0 Slot 13: Identifier/DLC		XXh
1431h			XXh
1432h			XXh
1433h			XXh
1434h			XXh
1435h			XXh
1436h	CAN0 Slot 13 [.] Data Field		XXh
1437h			XXh
1438h			XXh
1439h			XXh
143Ah			XXh
143Rh			XXh
143Ch			XXh
143Dh			XXh
143Eh	CAN0 Slot 13: Time Stamp		XXh
143Fh			XXh
			79.91

X: Undefined

NOTE:

5. Electrical Characteristics

Table 5.1 Absolute Maximum Rating

Symbol	Parameter	Condition	Rated value	Unit
Vcc/AVcc	Supply voltage		-0.3 to 6.5	V
VI	Input voltage		-0.3 to Vcc+0.3	V
Vo	Output voltage		-0.3 to Vcc+0.3	V
Pd	Power dissipation	$-40^\circ C \leq Topr \leq 85^\circ C$	300	mW
		$85^\circ C < Topr \leq 125^\circ C$	125	mW
Topr	Operating ambient temperature		-40 to 85 (D, J version) / -40 to 125 (K version)	°C
Tstg	Storage temperature		-65 to 150	°C

Table 5.2 Recommended Operating Conditions

Symbol	Doromotor		Conditions		Standard		Linit
Symbol	Falameter		Conditions	Min.	Тур.	Max.	Onit
Vcc/AVcc	Supply voltage			2.7	-	5.5	V
Vss/AVcc	Supply voltage			-	0	-	V
Vih	Input "H" voltage			0.8Vcc	-	Vcc	V
VIL	Input "L" voltage			0	-	0.2Vcc	V
IOH(sum)	Peak sum output "H" current	Sum of all Pins IOH (peak)		-	-	-60	mA
IOH(peak)	Peak output "H" current			-	-	-10	mA
IOH(avg)	Average output "H" current			-	-	-5	mA
IOL(sum)	Peak sum output "L" currents	Sum of all Pins IOL (peak)		-	-	60	mA
IOL(peak)	Peak output "L" currents			-	-	10	mA
IOL(avg)	Average output "L" current			-	-	5	mA
f(XIN)	XIN clock input oscillation fr	equency	$\begin{array}{l} 3.0 \ V \leq Vcc \leq 5.5 \ V \\ -40^{\circ}C \leq Topr \leq 85^{\circ}C \end{array}$	0	-	20	MHz
			$\begin{array}{l} 3.0 \ V \leq Vcc \leq 5.5 \ V \\ -40^{\circ}C \leq Topr \leq 125^{\circ}C \end{array}$	0	-	16	MHz
			$2.7~\text{V} \leq \text{Vcc} < 3.0~\text{V}$	0	-	10	MHz
_	System clock	OCD2 = 0 When XIN	$\begin{array}{l} 3.0 \ V \leq Vcc \leq 5.5 \ V \\ -40^{\circ}C \leq Topr \leq 85^{\circ}C \end{array}$	0	-	20	MHz
		clock is selected.	$\begin{array}{l} 3.0 \ V \leq Vcc \leq 5.5 \ V \\ -40^{\circ}C \leq Topr \leq 125^{\circ}C \end{array}$	0	-	16	MHz
			$2.7~V \leq Vcc < 3.0~V$	0	-	10	MHz
		OCD2 = 1 When on-chip oscillator clock is selected.	FRA01 = 0 When low-speed on- chip oscillator clock is selected.	_	125	_	kHz
			FRA01 = 1 When high-speed on- chip oscillator clock is selected. $3.0 V \le Vcc \le 5.5 V$ $-40^{\circ}C \le Topr \le 85^{\circ}C$	_	_	20	MHz
			FRA01 = 1 When high-speed on- chip oscillator clock is selected.	_	_	10	MHz

NOTES:

1. Vcc = 2.7 to 5.5 V at Topr = -40 to 85°C (D, J version) / -40 to 125°C (K version), unless otherwise specified.

2. The average output current indicates the average value of current measured during 100 ms.

Symbol	Parameter	Conditions		Linit			
Symbol	Falameter	Conditions	Min.	Min. Typ.		Onit	
-	Program/erase endurance ⁽²⁾	R8C/22 Group	100 ⁽³⁾	-	-	times	
		R8C/23 Group	1,000 ⁽³⁾	-	-	times	
-	Byte program time		-	50	400	μS	
-	Block erase time		-	0.4	9	S	
td(SR-SUS)	Time delay from suspend request until erase suspend		-	-	97 + CPU clock × 6 cycle	μS	
_	Interval from erase start/restart until following suspend request		650	-	_	μS	
-	Interval from program start/restart until following suspend request		0	-	_	ns	
_	Time from suspend until program/erase restart		_	-	3 + CPU clock × 4 cycle	μS	
-	Program, erase voltage		2.7	_	5.5	V	
-	Read voltage		2.7	-	5.5	V	
-	Program, erase temperature		0	-	60	°C	
-	Data hold time ⁽⁷⁾	Ambient temperature = 55°C	20	_	_	year	

Table 5.4	Flash Memory (Program ROM) Electrical Characteristics
	Thas memory (Trogram Nom) Electrical on a deteristics

NOTES:

1. Vcc = 2.7 to 5.5 V at Topr = -40 to 85°C (D, J version) / -40 to 125°C (K version), unless otherwise specified.

 Definition of programming/erasure endurance The programming and erasure endurance is defined on a per-block basis. If the programming and erasure endurance is n (n = 100 or 1,000), each block can be erased n times. For example, if 1,024 1-byte writes are performed to different addresses in block A, a 1 Kbyte block, and then the block is erased, the programming/erasure endurance still stands at one. However, the same address must not be programmed more than once per erase operation (overwriting prohibited).

3. Endurance to guarantee all electrical characteristics after program and erase (1 to Min. value can be guaranteed).

4. In a system that executes multiple programming operations, the actual erasure endurance can be reduced by writing to sequential addresses in turn so that as much of the block as possible is used up before performing an erase operation. For example, when programming groups of 16 bytes, the effective number of rewrites can be minimized by programming up to 128 groups before erasing them all in one operation. It is also advisable to retain data on the erasure endurance of each block and limit the number of erase operations to a certain number.

5. If error occurs during block erase, attempt to execute the clear status register command, then the block erase command at least three times until the erase error does not occur.

- 6. Customers desiring program/erase failure rate information should contact their Renesas technical support representative.
- 7. The data hold time includes time that the power supply is off or the clock is not supplied.

Symbol	Standa		ard	Unit		
Symbol	Falameter	Conditions	Min.	Тур.	Max.	Unit
-	Program/erase endurance ⁽²⁾		10,000 ⁽³⁾	-	-	times
-	Byte program time (Program/erase endurance \leq 1,000 times)		_	50	400	μS
_	Byte program time (Program/erase endurance > 1,000 times)		_	65	-	μs
_	Block erase time (Program/erase endurance ≤ 1,000 times)		_	0.2	9	S
-	Block erase time (Program/erase endurance > 1,000 times)		_	0.3	_	S
td(SR-SUS)	Time delay from suspend request until erase suspend		_	-	97 + CPU clock × 6 cycle	μs
-	Interval from erase start/restart until following suspend request		650	-	_	μS
_	Interval from program start/restart until following suspend request		0	-	_	ns
_	Time from suspend until program/erase restart		_	-	3 + CPU clock × 4 cycle	μS
-	Program, erase voltage		2.7	-	5.5	V
-	Read voltage		2.7	_	5.5	V
-	Program, erase temperature		-40	-	85 ⁽⁸⁾	°C
-	Data hold time ⁽⁹⁾	Ambient temperature = 55°C	20	_		year

Table 5.5	Flash Memory	(Data Flash B	lock A, Block I	B) Electrical	Characteristics ⁽⁴⁾
-----------	--------------	---------------	-----------------	---------------	--------------------------------

NOTES:

1. Vcc = 2.7 to 5.5 V at Topr = -40 to 85°C (D, J version) / -40 to 125°C (K version), unless otherwise specified.

2. Definition of programming/erasure endurance

The programming and erasure endurance is defined on a per-block basis.

If the programming and erasure endurance is n (n = 10,000), each block can be erased n times.

For example, if 1,024 1-byte writes are performed to different addresses in block A, a 1 Kbyte block, and then the block is erased, the programming/erasure endurance still stands at one. However, the same address must not be programmed more than once per erase operation (overwriting prohibited).

- 3. Minimum endurance to guarantee all electrical characteristics after program and erase (1 to Min. value can be guaranteed).
- 4. Standard of block A and block B when program and erase endurance exceeds 1,000 times. Byte program time to 1,000 times are the same as that in program ROM.
- 5. In a system that executes multiple programming operations, the actual erasure endurance can be reduced by writing to sequential addresses in turn so that as much of the block as possible is used up before performing an erase operation. For example, when programming groups of 16 bytes, the effective number of rewrites can be minimized by programming up to 128 groups before erasing them all in one operation. In addition, averaging the erasure endurance between blocks A and B can further reduce the actual erasure endurance. It is also advisable to retain data on the erasure endurance of each block and limit the number of erase operations to a certain number.

6. If error occurs during block erase, attempt to execute the clear status register command, then the block erase command at least three times until the erase error does not occur.

7. Customers desiring program/erase failure rate information should contact their Renesas technical support representative.

8. 125°C for K version.

9. The data hold time includes time that the power supply is off or the clock is not supplied.

Symbol	Deremeter	Condition		Standard	ł	Linit
Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
fOCO40M	High-speed on-chip oscillator frequency temperature	Vcc = 4.75 V to 5.25 V,	39.2	40	40.8	MHz
	 supply voltage dependence 	$0^\circ C \leq Topr \leq 60^\circ C^{(2)}$				
		Vcc = 3.0 V to 5.25 V,	38.8	40	41.2	MHz
		$\text{-20°C} \leq \text{Topr} \leq 85^{\circ}C^{(2)}$				
		Vcc = 3.0 V to 5.5 V,	38.4	40	41.6	MHz
		$-40^\circ C \leq Topr \leq 85^\circ C^{(2)}$				
		Vcc = 3.0 V to 5.5 V,	38.0	40	42.0	MHz
		$-40^{\circ}C \leq Topr \leq 125^{\circ}C^{(2)}$				
		Vcc = 2.7 V to 5.5 V,	37.6	40	42.4	MHz
		$-40^{\circ}C \leq Topr \leq 125^{\circ}C^{(2)}$				
-	The value of the FRA1 register when the reset is deasserted		08h	40	F7h	-
_	High-speed on-chip oscillator adjustment range	Adjust the FRA1 register to	_	+ 0.3	_	MHz
		-1 bit (the value when the				
		reset is deasserted)				
-	Oscillation stability time		-	10	100	μS
_	Self power consumption when high-speed on-chip oscillator oscillating	Vcc = 5.0 V, Topr = 25°C	_	600	_	μA

 Table 5.9
 High-Speed On-Chip Oscillator Circuit Electrical Characteristics

NOTES:

1. Vcc = 2.7 V to 5.5 V, Topr = -40°C to 85°C (D, J version) / -40°C to 125°C (K version), unless otherwise specified.

2. The standard value shows when the reset is deasserted for the FRA1 register.

Table 5.10 Low-Speed On-Chip Oscillator Circuit Electrical Characteristics

Symbol	Doromotor	Condition	Standard			Linit
Symbol	Falanelei	Condition	Min.	Тур.	Max.	Onit
fOCO-S	Low-speed on-chip oscillator frequency		40	125	250	kHz
-	Oscillation stability time		-	10	100	μS
-	Self power consumption when low-speed on-chip oscillator oscillating	Vcc = 5.0 V, Topr = 25°C	I	15	-	μA

NOTE:

1. Vcc = 2.7 V to 5.5 V, Topr = -40°C to 85°C (D, J version) / -40°C to 125°C (K version), unless otherwise specified.

Table 5.11 Power Supply Circuit Timing Characteristics

Symbol	Parameter	Condition	Standard			Linit
		Condition	Min.	Тур.	Max.	Offic
td(P-R)	Time for internal power supply stabilization during power-on ⁽²⁾		1	-	2000	μS
td(R-S)	STOP exit time ⁽³⁾		-	-	150	μS

NOTES:

1. The measurement condition is Vcc = 2.7 to 5.5 V and Topr = -40 to 85°C (D, J version) / -40 to 125°C (K version), unless otherwise specified.

2. Waiting time until the internal power supply generation circuit stabilizes during power-on.

3. Time until CPU clock supply starts since the interrupt is acknowledged to exit stop mode.

Table 5.18	Serial Interface
------------	------------------

Symbol	Deremeter		Standard		
	Falameter	Min.	Max.	Offic	
tc(CK)	CLK0 input cycle time	200	-	ns	
tw(ckh)	CLK0 input "H" width	100	-	ns	
tW(CKL)	CLK0 input "L" width	100	-	ns	
td(C-Q)	TXDi output delay time	-	50	ns	
th(C-Q)	TXDi hold time	0	-	ns	
tsu(D-C)	RXDi input setup time	50	-	ns	
th(C-D)	RXDi input hold time	90	-	ns	

i = 0 or 1

Figure 5.10 Serial Interface Timing Diagram when Vcc = 5 V

Table 5.19 External Interrupt INTi (i = 0 to 3) Input

Symbol	Parameter		Standard	
			Max.	Onit
tw(INH)	INTi input "H" width	250(1)	-	ns
tw(INL)	INTi input "L" width	250 ⁽²⁾	-	ns

NOTES:

1. When selecting the digital filter by the INTi input filter select bit, use the INTi input HIGH width to the greater value, either (1/digital filter clock frequency x 3) or the minimum value of standard.

2. When selecting the digital filter by the INTi input filter select bit, use the INTi input LOW width to the greater value, either (1/digital filter clock frequency x 3) or the minimum value of standard.

Figure 5.11 External Interrupt INTi Input Timing Diagram when Vcc = 5 V (i = 0 to 3)

Table 5.21Electrical Characteristics (4) [Vcc = 3 V]
(Topr = -40 to 85°C (D, J version) / -40 to 125°C (K version), Unless Otherwise Specified.)

Symbol	Parameter	Condition		Standard			Unit
					Тур.	Max.	Onic
	Power supply current (Vcc = 2.7 to 3.3 V) In single-chip mode, the output pins are open and other pins are Vss	High-clock mode	XIN = 20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	_	11.5	23.0	mA
			XIN = 16 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	_	9.5	19.0	mA
			XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	_	6.0	12.0	mA
			XIN = 20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	-	5.5	-	mA
			XIN = 16 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	4.5	1	mA
			XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8		3.0	1	mA
		High-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator on fOCO = 10 MHz Low-speed on-chip oscillator on = 125 kHz No division		6.3	12.6	mA
			XIN clock off High-speed on-chip oscillator on fOCO = 10 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8		3.1	1	mA
		Low-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8 FMR47 = 1	-	145	290	μΑ
		Wait mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock operation VCA20 = 0 VCA26 = VCA27 = 0	_	56	112	μA
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock off VCA20 = 0 VCA26 = VCA27 = 0	_	35	70	μΑ
		Stop mode Topr = 25°C	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA26 = VCA27 = 0	-	0.7	3.0	μΑ
		Stop mode Topr = 85°C	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA26 = VCA27 = 0	_	1.1	-	μA
		Stop mode Topr = 125°C	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA26 = VCA27 = 0	_	3.8	_	μA

RENESAS

Package Dimensions

Diagrams showing the latest package dimensions and mounting information are available in the "Packages" section of the Renesas Technology website.

REVISION HISTORY

R8C/22 Group, R8C/23 Group Datasheet

Rev.	Date	Description		
		Page	Summary	
0.10	Mar 08, 2005		First Edition issued	
0.20	Sep 29, 2005	_	 Words standardized Clock synchronous serial interface → Clock synchronous serial I/O Chip-select clock synchronous interface(SSU) → Clock synchronous serial I/O with chip select I²C bus interface(IIC) → I²C bus interface 	
		2, 3	 Table1.1 R8C/22 Group Performance, Table1.2 R8C/23 Group Performance Serial Interface revised: Clock Synchronous Serial Interface: 1 channel I²C bus Interface (3), Clock synchronous serial I/O with chip select Power-On Reset Circuit added Power Consumption value determined 	
		5, 6	Table 1.3 Product Information of R8C/22 Group, Table 1.4 Product Information of R8C/23 Group Date revised.	
		7	Figure 1.4 Pin Assignment Pin name revised: - P3_5/SSCK(/SCL) \rightarrow P3_5/ SCL/SSCK - P3_4/SCS(/SDA) \rightarrow P3_4/ SDA /SCS - VSS \rightarrow VSS/AVSS - VCC \rightarrow VCC/AVCC - P1_5/RXD0/(TRAIO/INT1) \rightarrow P1_5/RXD0/(TRAIO)/(INT1) - P6_6/INT2/(TXD1) \rightarrow P6_6/INT2/TXD1 - P6_7/INT3/(RXD1) \rightarrow P6_7/INT3/RXD1 - NOTE2 added	
		8	Table 1.5 Pin Description - Analog Power Supply Input: line added - I ² C Bus Interface (IIC) \rightarrow I ² C Bus Interface - SSU \rightarrow Clock Synchronous Serial I/O with Chip Select	
		9	Table 1.6 Pin Name Information by Pin Number revised - Pin Number 1: (SCL) \rightarrow SCL - Pin Number 2: (SDA) \rightarrow SDA - Pin Number 9: VSS \rightarrow VSS/AVSS - Pin Number 11: VCC \rightarrow VCC/AVCC - Pin Number 26: (TXD1) \rightarrow TXD1 - Pin Number 27: (RXD1) \rightarrow RXD1	
		15	Table 4.1 SFR Information (1) revised - 0013h: XXXXXX00b \rightarrow 00h	
		17	Table 4.3 SFR Information (3) revised - 00BCh: 0000X000b → 00h/0000X000b	
		18	Table 4.4 SFR Information (4) revised - 00D6h: 00000XXXb → 00h - 00F5h: UART1 Function Select Register added	
		19	Table 4.5 SFR Information (5) revised - 0104h: TRATR \rightarrow TRA	

REVISION HISTORY

R8C/22 Group, R8C/23 Group Datasheet

Rev.	Date	Description		
		Page	Summary	
1.00	Oct 27, 2006	40	Table 5.15 Electrical Characteristics (1) [VCC = 5 V] \rightarrow Table 5.14 Electrical Characteristics (1) [VCC = 5 V] revised. RAM Hold Voltage, Min.; "1.8" \rightarrow "2.0" corrected.	
		41	Table 5.16 Electrical Characteristics (2) [Vcc = 5 V] \rightarrow Table 5.15 Electrical Characteristics (2) [Vcc = 5 V] revised. Wait mode revised.	
		44	Table 5.21 Electrical Characteristics (3) [VCC = 3 V \rightarrow Table 5.20 Electrical Characteristics (3) [VCC = 3 V] revised. RAM hold voltage, Min.; "1.8" \rightarrow "2.0" corrected.	
		45	Table 5.22 Electrical Characteristics (4) [Vcc = 3 V] \rightarrow Table 5.21 Electrical Characteristics (4) [Vcc = 3 V] revised. Wait mode revised.	
1.10	Mar 16, 2007	_	D version products added. Relevant descriptions revised because of expanding products - Table 1.1 to 1.4 revised. - Figure 1.2 and 1.3 revised. - Figure 3.1 and 3.2 revised. - Table 5.1 to 5.15 revised. - Table 5.20 and 5.21 revised.	
		15	Table 4.1 revised; 000Ah: "00XXX000b" → "00h", 000Fh: "00011111b" → "00X11111b"	
		42	Table 5.17 and Figure 5.9 revised; "INT1 input" deleted	
		43	Table 5.19 and Figure 5.11 revised; "i = 0, 2, 3" → "i = 0 to 3"	
		46	Table 5.23 and Figure 5.13 revised; "INT1 input" deleted	
		47	Table 5.25 and Figure 5.15 revised; "i = 0, 2, 3" → "i = 0 to 3"	
2.00	Aug 20, 2008	-	"RENESAS TECHNICAL UPDATE" reflected: TN-16C-A172A/E	
		5, 6	Table 1.3, Table 1.4 revised Figure 1.2, Figure 1.3; ROM number "XXX" added	
		13, 14	Figure 3.1, Figure 3.2; "Expanding area" deleted	
		23	Table 4.9 135Fh Address "XXXX0000b" → "00h"	
		28	Table 5.2; NOTE2 revised	
		30	Table 5.4; NOTE2 and NOTE4 revised	
		31	Table 5.5; NOTE2 and NOTE5 revised	
		32	Table 5.6; "td(Vdet1-A)" added, NOTE5 added Table 5.7; "td(Vdet2-A)" and NOTE2 revised, NOTE5 added	
		33	Table 5.8; "trth" and NOTE2 revised, Figure 5.3 revised	

All trademarks and registered trademarks are the property of their respective owners.