

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

5·XFI

Product Status	Obsolete
Core Processor	R8C
Core Size	16-Bit
Speed	20MHz
Connectivity	CANbus, I ² C, LINbus, SIO, SSU, UART/USART
Peripherals	POR, Voltage Detect, WDT
Number of I/O	41
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	3K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f21238jfp-w4

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.2 Performance Overview

Table 1.1 outlines the Functions and Specifications for R8C/22 Group and Table 1.2 outlines the Functions and Specifications for R8C/23 Group.

	Item	Specification
CPU	Number of fundamental instructions	
	Minimum instruction execution time	50 ns (f(XIN) = 20 MHz, VCC = 3.0 to 5.5 V)
		100 ns (f(XIN) = 10 MHz, VCC = 2.7 to 5.5 V)
	Operating mode	Single-chip
	Address space	1 Mbyte
	Memory capacity	Refer to Table 1.3 Product Information for R8C/22 Group
Peripheral	Ports	I/O ports: 41 pins, Input port: 3 pins
Function	Timers	Timer RA: 8 bits x 1 channel,
		Timer RB: 8 bits x 1 channel
		(Each timer equipped with 8-bit prescaler)
		Timer RD: 16 bits x 2 channel
		(Circuits of input capture and output compare)
		Timer RE: With compare match function
	Serial interface	1 channel (UART0)
		Clock synchronous I/O, UART
		1 channel (UART1)
		UART
	Clock synchronous serial interface	
		I ² C bus interface ⁽²⁾ , Clock synchronous serial I/O with chip
		select
	LIN module	Hardware LIN: 1 channel
		(timer RA, UARTO)
	CAN module	1 channel with 2.0B specification: 16 slots
	A/D converter	10-bit A/D converter: 1 circuit, 12 channels
	Watchdog timer	15 bits x 1 channel (with prescaler)
		Reset start selectable
	Interrupt	Internal: 14 sources, External: 6 sources, Software: 4 sources,
		Priority level: 7 levels
	Clock generation circuits	2 circuits
		XIN clock generation circuit (with on-chip feedback resistor)
		On-chip oscillator (high speed, low speed)
		High-speed on-chip oscillator has frequency adjustment function.
	Oscillation stop detection	
	function	Stop detection of XIN clock oscillation
	Voltage detection circuit	On-chip
	Power-on reset circuit include	On-chip
Electric	Supply voltage	VCC = 3.0 to 5.5 V (f(XIN) = 20 MHz)(D, J version)
Characteristics	Supply voltage	VCC = 3.0 to 5.5 V (f(XIN) = 20 MHz)(D, 3 Version) VCC = 3.0 to 5.5 V (f(XIN) = 16 MHz)(K version)
Characteristics		VCC = 2.7 to 5.5 V (f(XIN) = 10 MHz)
	Current consumption	Typ. 12.5 mA (VCC = 5 V, $f(XIN) = 20$ MHz, High-speed on-
	Current consumption	chip oscillator stopping)
		Typ. 6.0 mA (VCC = 5 V, f(XIN) = 10 MHz, High-speed on-chip
		oscillator stopping)
Flash Memory	Programming and erasure voltage	VCC = 2.7 to 5.5 V
aon monory	Programming and erasure	100 times
	endurance	
Operating Ambi	ent Temperature	-40 to 85°C
epotating / mbr		-40 to 125°C (option ⁽¹⁾)
Package		48-pin mold-plastic LQFP
i acraye		

Table 1.1Functions and Specifications for R8C/22 Group

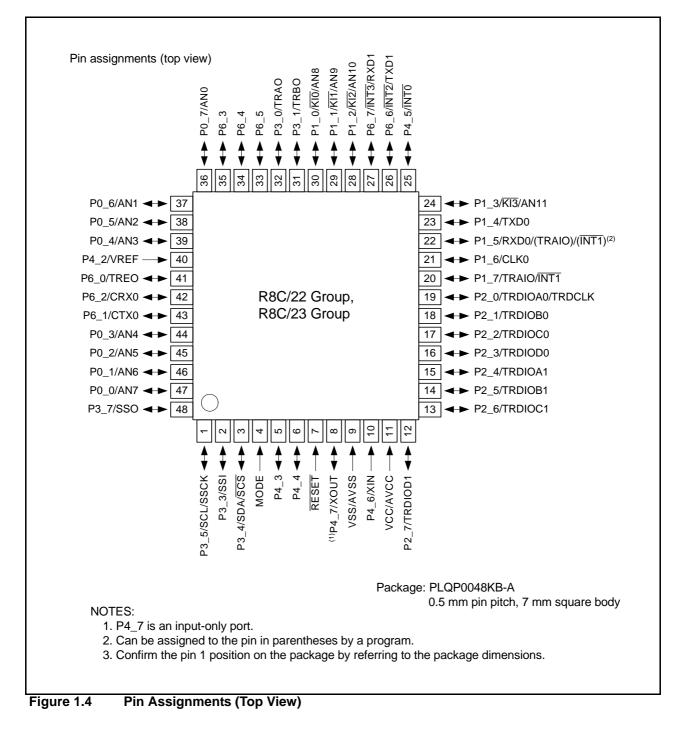
NOTES:

1. When using options, be sure to inquire about the specification.

2. I²C bus is a registered trademark of Koninklijke Philips Electronics N.V.

RENESAS

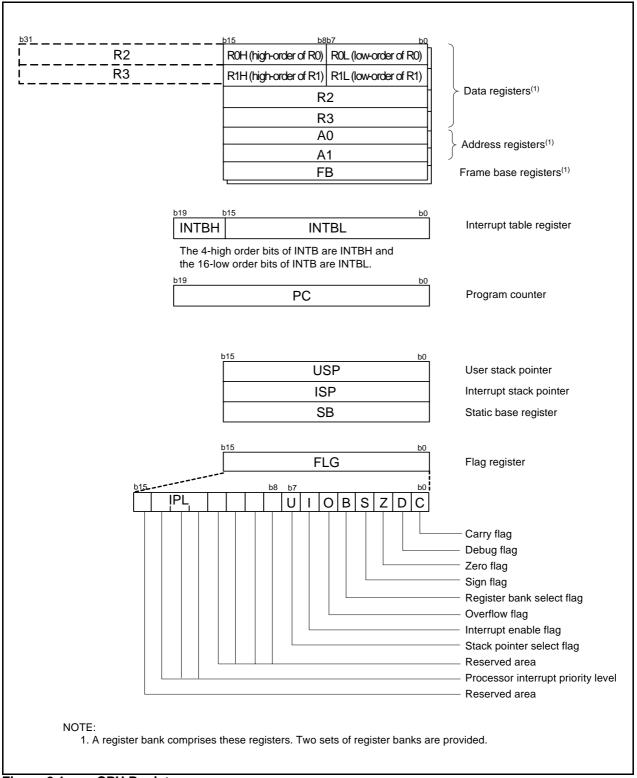
	Itom	Specification			
CPU	Item Number of fundamental instructions	•			
CFU					
	Minimum instruction execution time	50 ns (f(XIN) = 20 MHz, VCC = 3.0 to 5.5 V) 100 ns (f(XIN) = 10 MHz, VCC = 2.7 to 5.5 V)			
	Operating mode	Single-chip			
	Address space	1 Mbyte			
	-	Refer to Table 1.4 Product Information for R8C/23 Group			
Daviahaval	Memory capacity	-			
Peripheral Function	Ports	I/O ports: 41 pins, Input port: 3 pins			
FUNCTION	Timers	Timer RA: 8 bits x 1 channel,			
		Timer RB: 8 bits x 1 channel (Each timer equipped with 8-bit prescaler)			
		Timer RD: 16 bits x 2 channel			
		(Circuits of input capture and output compare)			
		Timer RE: With compare match function			
	Serial interface	1 channel (UARTO)			
		Clock synchronous I/O, UART			
		1 channel (UART1)			
		UART			
	Clock synchronous serial interface	1 channel			
		I ² C bus interface ⁽²⁾ , Clock synchronous serial I/O with chip			
		select			
	LIN module	Hardware LIN: 1 channel			
		(Timer RA, UART0)			
	CAN module	1 channel with 2.0B specification: 16 slots			
	A/D converter	10-bit A/D converter: 1 circuit, 12 channels			
	Watchdog timer	15 bits x 1 channel (with prescaler)			
	-	Reset start selectable			
	Interrupts	Internal: 14 sources, External: 6 sources, Software: 4 sources,			
		Priority level: 7 levels			
	Clock generation circuits	2 circuits			
		XIN clock generation circuit (with on-chip feedback resistor)			
		On-chip oscillator (high speed, low speed)			
		High-speed on-chip oscillator has frequency adjustmen			
		function.			
	Oscillation stop detection	Stop detection of XIN clock oscillation			
	function				
	Voltage detection circuit	On-chip			
	Power-on reset circuit include	On-chip			
Electric	Supply voltage	VCC = 3.0 to 5.5 V (f(XIN) = 20 MHz)(D, J version)			
Characteristics		VCC = 3.0 to 5.5 V (f(XIN) = 16 MHz)(K version)			
		VCC = 2.7 to 5.5 V (f(XIN) = 10 MHz)			
	Current consumption	Typ. 12.5 mA (VCC = 5 V, f(XIN) = 20 MHz, High-speed on-			
		chip oscillator stopping) Type 6.0 mA ($V(CC = 5.V)$ f(XIN) = 10 MHz. High speed op abin			
		Typ. 6.0 mA (VCC = 5 V, f(XIN) = 10 MHz, High-speed on-chip			
Floop Momory	Brogromming and areauty voltage	oscillator stopping) VCC = 2.7 to 5.5 V			
Flash Memory	Programming and erasure voltage				
	Programming and erasure	10,000 times (data flash)			
<u>On a matica</u> A 1 1		1,000 times (program ROM)			
Operating Ambi	ent Temperature	-40 to 85°C			
		-40 to 125°C (option ⁽¹⁾)			
Package		48-pin mold-plastic LQFP			


Table 1.2 Functions and Specifications for R8C/23 Group

NOTES:

- 1. When using options, be sure to inquire about the specification.
- 2. I²C bus is a registered trademark of Koninklijke Philips Electronics N.V.

1.5 Pin Assignments


Figure 1.4 shows Pin Assignments (Top View).

2. Central Processing Unit (CPU)

Figure 2.1 shows the CPU Registers. The CPU contains 13 registers. Of these, R0, R1, R2, R3, A0, A1, and FB comprise a register bank. Two sets of register banks are provided.

RENESAS

2.1 Data Registers (R0, R1, R2 and R3)

R0 is a 16-bit register for transfer, arithmetic, and logic operations. The same applies to R1 to R3. R0 can be split into high-order bit (R0H) and low-order bit (R0L) to be used separately as 8-bit data registers. The same applies to R1H and R1L as R0H and R0L. R2 can be combined with R0 to be used as a 32-bit data register (R2R0). The same applies R3R1 as R2R0.

2.2 Address Registers (A0 and A1)

A0 is a 16-bit register for address register indirect addressing and address register relative addressing. They also are used for transfer, arithmetic and logic operations. The same applies to A1 as A0. A1 can be combined with A0 to be used a 32-bit address register (A1A0).

2.3 Frame Base Register (FB)

FB is a 16-bit register for FB relative addressing.

2.4 Interrupt Table Register (INTB)

INTB, a 20-bit register, indicates the start address of an interrupt vector table.

2.5 Program Counter (PC)

PC, 20 bits wide, indicates the address of an instruction to be executed.

2.6 User Stack Pointer (USP) and Interrupt Stack Pointer (ISP)

The stack pointer (SP), USP and ISP, are 16 bits wide each. The U flag of FLG is used to switch between USP and ISP.

2.7 Static Base Register (SB)

SB is a 16-bit register for SB relative addressing.

2.8 Flag Register (FLG)

FLG is a 11-bit register indicating the CPU status.

2.8.1 Carry Flag (C)

The C flag retains a carry, borrow, or shift-out bit that has occurred in the arithmetic and logic unit.

2.8.2 Debug Flag (D)

The D flag is for debug only. Set to 0.

2.8.3 Zero Flag (Z)

The Z flag is set to 1 when an arithmetic operation resulted in 0; otherwise, 0.

2.8.4 Sign Flag (S)

The S flag is set to 1 when an arithmetic operation resulted in a negative value; otherwise, 0.

2.8.5 Register Bank Select Flag (B)

The register bank 0 is selected when the B flag is 0. The register bank 1 is selected when this flag is set to 1.

2.8.6 Overflow Flag (O)

The O flag is set to 1 when the operation resulted in an overflow; otherwise, 0.

2.8.7 Interrupt Enable Flag (I)

The I flag enables a maskable interrupt.

An interrupt is disabled when the I flag is set to 0, and are enabled when the I flag is set to 1. The I flag is set to 0 when an interrupt request is acknowledged.

2.8.8 Stack Pointer Select Flag (U)

ISP is selected when the U flag is set to 0; USP is selected when the U flag is set to 1. The U flag is set to 0 when a hardware interrupt request is acknowledged or the INT instruction of software interrupt numbers. 0 to 31 is executed.

2.8.9 Processor Interrupt Priority Level (IPL)

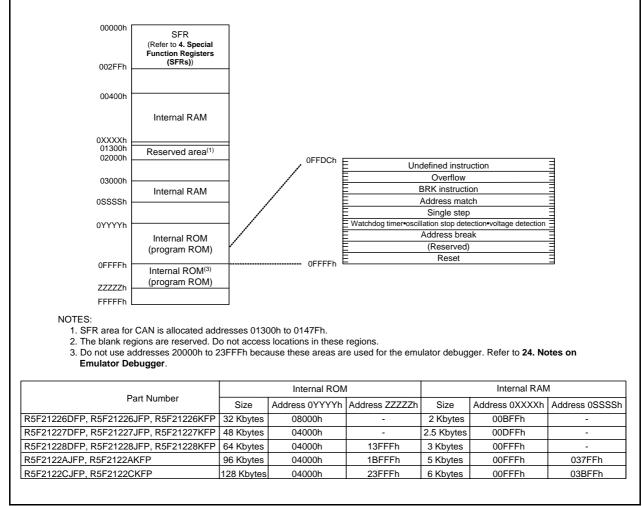
IPL, 3 bits wide, assigns processor interrupt priority levels from level 0 to level 7. If a requested interrupt has greater priority than IPL, the interrupt is enabled.

2.8.10 Reserved Bit

If necessary, set to 0. When read, the content is undefined.

3. Memory

3.1 R8C/22 Group


Figure 3.1 shows a Memory Map of R8C/22 Group. The R8C/22 Group has 1 Mbyte of address space from address 00000h to FFFFFh.

The internal ROM is allocated lower addresses, beginning with address 0FFFFh. For example, a 48-Kbyte internal ROM is allocated addresses 04000h to 0FFFFh.

The fixed interrupt vector table is allocated addresses 0FFDCh to 0FFFFh. They store the starting address of each interrupt routine.

The internal RAM is allocated higher addresses, beginning with address 00400h. For example, a 2.5-Kbyte internal RAM is allocated addresses 00400h to 00DFFh. The internal RAM is used not only for storing data but also for calling subroutines and as stacks when interrupt requests are acknowledged.

Special function registers (SFR) are allocated addresses 00000h to 002FFh and 01300h to 0147Fh (SFR area for CAN). The peripheral function control registers are allocated here. All addresses within the SFR, which have nothing allocated are reserved for future user and cannot be accessed by users.

3.2 R8C/23 Group

Figure 3.2 shows a Memory Map of R8C/23 Group. The R8C/23 Group has 1 Mbyte of address space from address 00000h to FFFFh.

The internal ROM (program ROM) is allocated lower addresses, beginning with address 0FFFFh. For example, a 48-Kbyte internal ROM is allocated addresses 04000h to 0FFFFh.

The fixed interrupt vector table is allocated addresses 0FFDCh to 0FFFFh. They store the starting address of each interrupt routine.

The internal ROM (data flash) is allocated addresses 02400h to 02BFFh.

The internal RAM is allocated higher addresses, beginning with address 00400h. For example, a 2.5-Kbyte internal RAM is allocated addresses 00400h to 00DFFh. The internal RAM is used not only for storing data but also for calling subroutines and as stacks when interrupt requests are acknowledged.

Special function registers (SFR) are allocated addresses 00000h to 002FFh and 01300h to 0147Fh (SFR area for CAN). The peripheral function control registers are allocated them. All addresses within the SFR, which have nothing allocated are reserved for future use and cannot be accessed by users.

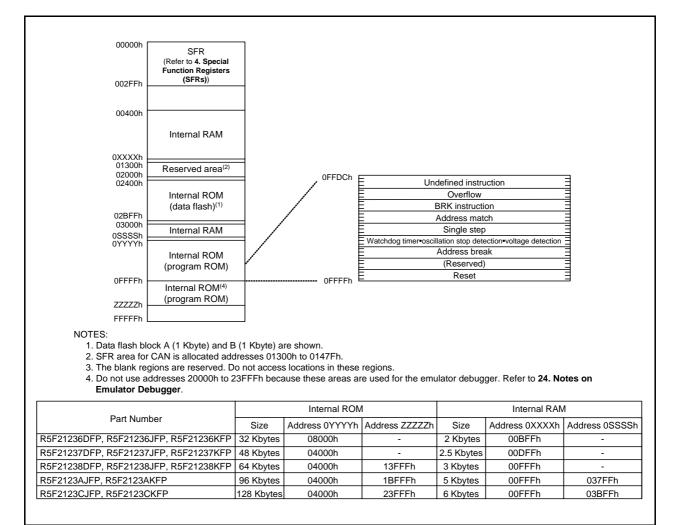


Figure 3.2 M

Memory Map of R8C/23 Group

4. Special Function Registers (SFRs)

An SFR (special function register) is a control register for a peripheral function. Table 4.1 to Table 4.13 list the SFR Information.

Address	Register	Symbol	After reset
0000h			
0001h			
0002h			
0003h			
0004h	Processor Mode Register 0	PM0	00h
0005h	Processor Mode Register 1	PM1	00h
0006h	System Clock Control Register 0	CM0	01101000b
0007h	System Clock Control Register 1	CM1	0010000b
0008h			
0009h			
000Ah	Protect Register	PRCR	00h
000Bh			
000Ch	Oscillation Stop Detection Register	OCD	00000100b
000Dh	Watchdog Timer Reset Register	WDTR	XXh
000Eh	Watchdog Timer Start Register	WDTS	XXh
000Fh	Watchdog Timer Control Register	WDC	00X11111b
0010h	Address Match Interrupt Register 0	RMAD0	00h
0011h			00h
0012h			00h
0013h	Address Match Interrupt Enable Register	AIER	00h
0014h	Address Match Interrupt Register 1	RMAD1	00h
0015h			00h
0016h			00h
0017h			
0018h			
0019h			
001Ah			
001Bh			
001Ch	Count Source Protect Mode Register	CSPR	00h
			1000000b ⁽⁸⁾
001Dh		1	
001Eh		1	
001Fh		1	
0020h		1	
0021h		1	
0022h		1	
0023h	High-Speed On-Chip Oscillator Control Register 0	FRA0	00h
0024h	High-Speed On-Chip Oscillator Control Register 1	FRA1	When shipping
0025h	High-Speed On-Chip Oscillator Control Register 2	FRA2	00h
0026h			

0030h			
0031h	Voltage Detection Register 1 ⁽²⁾	VCA1	00001000b
0032h	Voltage Detection Register 2 ⁽⁶⁾	VCA2	00h ⁽³⁾
			0100000b ⁽⁴⁾
0033h			
0034h			
0035h			
0036h	Voltage Monitor 1 Circuit Control Register ⁽⁷⁾	VW1C	0000X000b ⁽³⁾
			0100X001b ⁽⁴⁾
0037h	Voltage Monitor 2 Circuit Control Register ⁽⁵⁾	VW2C	00h
0038h			
0039h			

003Fh

X: Undefined

NOTES:

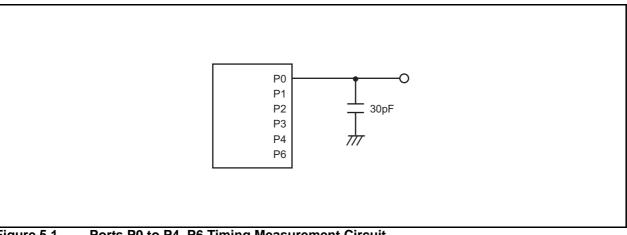
- 1. The blank regions are reserved. Do not access locations in these regions.
- 2. Software reset, watchdog timer reset, and voltage monitor 2 reset do not affect this register.
- 3. The LVD0ON bit in the OFS register is set to 1.
- 4. Power-on reset, voltage monitor 1 reset or the LVD0ON bit in the OFS register is set to 0.
- 5. Software reset, watchdog timer reset, and voltage monitor 2 reset do not affect b2 and b3.
- 6. Software reset, watchdog timer reset, and voltage monitor 2 reset do not affect b7.
- 7. Software reset, the watchdog timer rest, and the voltage monitor 2 reset do not affect other than the b0 and b6.
- 8. The CSPROINI bit in the OFS register is 0.

Address	Register	Symbol	After reset
00C0h	A/D Register	AD	XXh
00C1h			XXh
00C2h			
00C3h			
00C4h			
00C5h			
00C6h			
00C7h			
00C8h			
00C9h			
00CAh			
00CBh			
00CCh			
00CDh			
00CEh			
00CFh			
00D0h			
00D1h			
00D2h			
00D3h		1200110	
00D4h	A/D Control Register 2	ADCON2	00h
00D5h			
00D6h	A/D Control Register 0	ADCON0	00h
00D7h	A/D Control Register 1	ADCON1	00h
00D8h			
00D9h			
00DAh			
00DBh			
00DCh			
00DDh			
00DEh			
00DFh		D 0	
00E0h	Port P0 Register	PO	XXh
00E1h	Port P1 Register	P1	XXh
00E2h	Port PO Direction Register	PD0	00h
00E3h	Port P1 Direction Register	PD1	00h
00E4h	Port P2 Register	P2	XXh
00E5h	Port P3 Register Port P2 Direction Register	P3 PD2	XXh 00h
00E6h 00E7h	Port P2 Direction Register	PD2 PD3	00h
	Port P3 Direction Register		
00E8h	Port P4 Register	P4	XXh
00E9h 00EAh	Part D4 Direction Register		0.0h
00EAh 00EBh	Port P4 Direction Register	PD4	00h
00EBh 00ECh	Port P6 Register	P6	XXh
00ECh 00EDh		P0	^^!!
00EDh 00EEh	Port P6 Direction Register	PD6	00b
00EEh 00EFh	Port P6 Direction Register	PD6	00h
00EFh 00F0h			
	1		
00E1h			
00F1h			
00F2h			
00F2h 00F3h			
00F2h 00F3h 00F4h	IIADT4 Eunstion Salast Pagistar		VVb
00F2h 00F3h 00F4h 00F5h	UART1 Function Select Register	U1SR	XXh
00F2h 00F3h 00F4h 00F5h 00F6h	UART1 Function Select Register	U1SR	XXh
00F2h 00F3h 00F4h 00F5h 00F6h 00F7h	-		
00F2h 00F3h 00F4h 00F5h 00F6h 00F7h 00F8h	Port Mode Register	PMR	00h
00F2h 00F3h 00F4h 00F5h 00F6h 00F7h 00F8h 00F9h	Port Mode Register External Input Enable Register	PMR INTEN	00h 00h
00F2h 00F3h 00F4h 00F5h 00F6h 00F7h 00F8h 00F9h 00F9h	Port Mode Register External Input Enable Register INT Input Filter Select Register	PMR INTEN INTF	00h 00h 00h 00h
00F2h 00F3h 00F4h 00F5h 00F6h 00F7h 00F8h 00F9h 00F9h 00F8h	Port Mode Register External Input Enable Register INT Input Filter Select Register Key Input Enable Register	PMR INTEN INTF KIEN	00h 00h 00h 00h 00h
00F2h 00F3h 00F4h 00F5h 00F6h 00F7h 00F8h 00F9h 00F8h 00FBh 00FBh	Port Mode Register External Input Enable Register INT Input Filter Select Register Key Input Enable Register Pull-Up Control Register 0	PMR INTEN INTF KIEN PUR0	00h 00h 00h 00h 00h 00h
00F2h 00F3h 00F4h 00F5h 00F6h 00F7h 00F8h 00F9h 00F9h 00F8h	Port Mode Register External Input Enable Register INT Input Filter Select Register Key Input Enable Register	PMR INTEN INTF KIEN	00h 00h 00h 00h 00h

Table 4.4SFR Information (4)(1)

X: Undefined

NOTE:


1. The blank regions are reserved. Do not access locations in these regions.

Symbol	Parameter	Conditions	Standard			Unit	
Symbol		Farameter Conditions		Min.	Тур.	Max.	Unit
-	Resolution		Vref = AVCC	-	-	10	Bits
-	Absolute	10-bit mode	$\phi AD = 10 \text{ MHz}, \text{ Vref} = AVCC = 5.0 \text{ V}$	-	-	±3	LSB
	Accuracy	8-bit mode	$\phi AD = 10 \text{ MHz}, \text{ Vref} = AVCC = 5.0 \text{ V}$	-	-	±2	LSB
		10-bit mode	$\phi AD = 10 \text{ MHz}, \text{ Vref} = AVCC = 3.3 \text{ V}$	-	-	±5	LSB
		8-bit mode	$\phi AD = 10 \text{ MHz}, \text{ Vref} = AVCC = 3.3 \text{ V}$	-	-	±2	LSB
Rladder	Resistor ladder		Vref = AVCC	10	-	40	kΩ
tconv	Conversion time	10-bit mode	$\phi AD = 10 \text{ MHz}, \text{ Vref} = AVCC = 5.0 \text{ V}$	3.3	-	-	μs
		8-bit mode	$\phi AD = 10 \text{ MHz}, \text{ Vref} = AVCC = 5.0 \text{ V}$	2.8	-	-	μs
Vref	Reference voltage	9		2.7	-	AVcc	V
Via	Analog input volta	ge ⁽²⁾		0	-	AVcc	V
-	A/D operating	Without sample & hold		0.25	-	10	MHz
	clock frequency	With sample & hold		1	-	10	MHz

Table 5.3	A/D Converter Characteristi	cs
Table 5.5	A/D Converter Characteristi	CS

Vcc = AVcc = 2.7 to 5.5 V at Topr = -40 to 85°C (D, J version) / -40 to 125°C (K version), unless otherwise specified.
 When analog input voltage exceeds reference voltage, A/D conversion result is 3FFh in 10-bit mode, FFh in 8-bit mode.

Ports P0 to P4, P6 Timing Measurement Circuit Figure 5.1

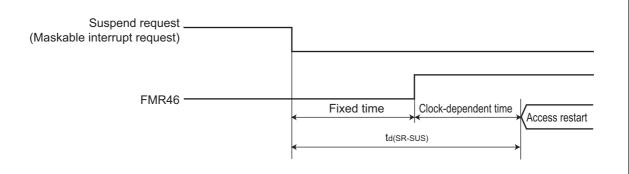


Figure 5.2 Time delay until Suspend

Table 5.6 Voltage Detection 1 Circuit Electrical Characteristics

Symbol	Parameter	Condition	Standard			Unit
Symbol	Falameter	Condition	Min.	Тур.	Max.	Offic
Vdet1	Voltage detection level ^(3, 4)		2.70	2.85	3.00	V
td(Vdet1-A)	Voltage monitor 1 reset generation time ⁽⁵⁾		-	40	200	μS
-	Voltage detection circuit self power consumption	VCA26 = 1, Vcc = 5.0 V	-	0.6	-	μΑ
td(E-A)	Waiting time until voltage detection circuit operation starts ⁽²⁾		-	-	100	μS
Vccmin	MCU operating voltage minimum value		2.70	-	-	V

NOTES:

1. The measurement condition is Vcc = 2.7 V to 5.5 V and Topr = -40°C to 85°C (D, J version) / -40°C to 125°C (K version).

2. Necessary time until the voltage detection circuit operates when setting to 1 again after setting the VCA26 bit in the VCA2

register to 0. 3. Hold Vdet2 > Vdet1.

- 4. This parameter shows the voltage detection level when the power supply drops. The voltage detection level when the power supply rises is higher than the voltage detection level when the power supply drops by approximately 0.1 V.
- 5. Time until the voltage monitor 1 reset is generated after the voltage passes V_{det1} when Vcc falls. When using the digital filter, its sampling time is added to td(Vdet1-A). When using the voltage monitor 1 reset, maintain this time until Vcc = 2.0 V after the voltage passes V_{det1} when the power supply falls.

Table 5.7 Voltage Detection 2 Circuit Electrical Characteristics

Symbol	Parameter	Condition		Unit		
Symbol	Falanetei	Condition	Min.	Тур.	Max.	Unit
Vdet2	Voltage detection level ⁽⁴⁾		3.3	3.6	3.9	V
td(Vdet2-A)	Voltage monitor 2 reset/interrupt request generation time ^(2, 5)		-	40	200	μS
-	Voltage detection circuit self power consumption	VCA27 = 1, Vcc = 5.0V	-	0.6	-	μA
td(E-A)	Waiting time until voltage detection circuit operation starts ⁽³⁾		-	-	100	μs

NOTES:

1. The measurement condition is Vcc = 2.7 V to 5.5 V and Topr = -40°C to 85°C (D, J version) / -40°C to 125°C (K version).

2. Time until the voltage monitor 2 reset/interrupt request is generated since the voltage passes Vdet2.

3. Necessary time until the voltage detection circuit operates when setting to 1 again after setting the VCA27 bit in the VCA2 register to 0.

4. Hold Vdet2 > Vdet1.

5. When using the digital filter, its sampling time is added to td(Vdet2-A). When using the voltage monitor 2 reset, maintain this time until Vcc = 2.0 V after the voltage passes Vdet2 when the power supply falls.

Symbol	Parameter	Condition	Standard		Unit	
			Min.	Тур.	Max.	
Vpor1	Power-on reset valid voltage ⁽⁴⁾		-	-	0.1	V
Vpor2	Power-on reset or voltage monitor 1 valid voltage		0	_	Vdet1	V
trth	External power Vcc rise gradient	$Vcc \leq 3.6 \ V$	20(2)	-	-	mV/msec
		Vcc > 3.6 V	20(2)	-	2,000	mV/msec

Table 5.8 Power-on Reset Circuit, Voltage Monitor 1 Reset Circuit Electrical Characteristics⁽³⁾

NOTES:

- 1. Topr = -40°C to 85°C (D, J version) / -40°C to 125°C (K version), unless otherwise specified.
- 2. This condition (the minimum value of external power Vcc rise gradient) does not apply if $V_{Por2} \ge 1.0$ V.
- 3. To use the power-on reset function, enable voltage monitor 1 reset by setting the LVD1ON bit in the OFS register to 0, the VW1C0 and VW1C6 bits in the VW1C register to 1 respectively, and the VCA26 bit in the VCA2 register to 1.
- 4. tw(por1) indicates the duration the external power Vcc must be held below the effective voltage (Vpor1) to enable a power on reset. When turning on the power for the first time, maintain tw(por1) for 30s or more if -20°C ≤ Topr ≤ 125°C, maintain tw(por1) for 3,000s or more if -40°C ≤ Topr < -20°C.</p>

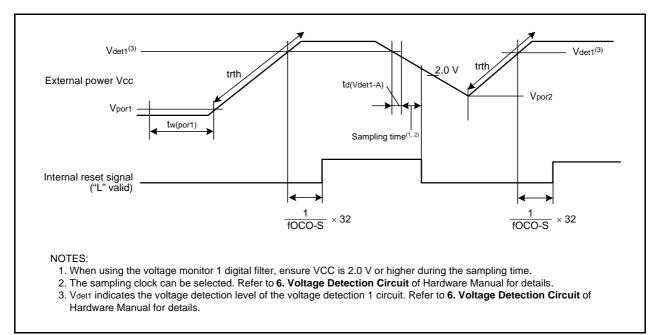


Figure 5.3 Power-on Reset Circuit Electrical Characteristics

Currente e l	Deservator	Condition	Standard		Unit	
Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
fOCO40M	High-speed on-chip oscillator frequency temperature • supply voltage dependence	$\label{eq:Vcc} \begin{array}{l} \mbox{Vcc} = 4.75 \mbox{ V to } 5.25 \mbox{ V}, \\ \mbox{0°C} \leq \mbox{Topr} \leq 60^{\circ} \mbox{C}^{(2)} \end{array}$	39.2	40	40.8	MHz
		Vcc = 3.0 V to 5.25 V, -20°C \leq Topr \leq 85°C ⁽²⁾	38.8	40	41.2	MHz
		$\label{eq:Vcc} \begin{array}{l} \text{Vcc} = 3.0 \text{ V to } 5.5 \text{ V}, \\ \text{-40}^\circ\text{C} \leq \text{Topr} \leq 85^\circ\text{C}^{(2)} \end{array}$	38.4	40	41.6	MHz
		Vcc = 3.0 V to 5.5 V , - $40^{\circ}\text{C} \le \text{Topr} \le 125^{\circ}\text{C}^{(2)}$	38.0	40	42.0	MHz
		Vcc = 2.7 V to 5.5 V, -40°C \leq Topr \leq 125°C ⁽²⁾	37.6	40	42.4	MHz
-	The value of the FRA1 register when the reset is deasserted		08h	40	F7h	-
_	High-speed on-chip oscillator adjustment range	Adjust the FRA1 register to -1 bit (the value when the reset is deasserted)	-	+ 0.3	-	MHz
-	Oscillation stability time		-	10	100	μs
-	Self power consumption when high-speed on-chip oscillator oscillating	Vcc = 5.0 V, Topr = 25°C	-	600	_	μΑ

 Table 5.9
 High-Speed On-Chip Oscillator Circuit Electrical Characteristics

1. Vcc = 2.7 V to 5.5 V, Topr = -40°C to 85°C (D, J version) / -40°C to 125°C (K version), unless otherwise specified.

2. The standard value shows when the reset is deasserted for the FRA1 register.

Table 5.10 Low-Speed On-Chip Oscillator Circuit Electrical Characteristics

Symbol	Parameter	Condition	Standard			Unit
Symbol	Falanetei	Condition	Min.	Тур.	Max.	Offic
fOCO-S	Low-speed on-chip oscillator frequency		40	125	250	kHz
-	Oscillation stability time		-	10	100	μS
-	Self power consumption when low-speed on-chip oscillator oscillating	Vcc = 5.0 V, Topr = 25°C		15	-	μA

NOTE:

1. Vcc = 2.7 V to 5.5 V, Topr = -40°C to 85°C (D, J version) / -40°C to 125°C (K version), unless otherwise specified.

Table 5.11 Power Supply Circuit Timing Characteristics

Symbol	Parameter	Condition	Standard			Unit
Symbol	Falanetei	Condition	Min.	Тур.	Max.	Onit
td(P-R)	Time for internal power supply stabilization during power-on ⁽²⁾		1		2000	μs
td(R-S)	STOP exit time ⁽³⁾		-	-	150	μs

NOTES:

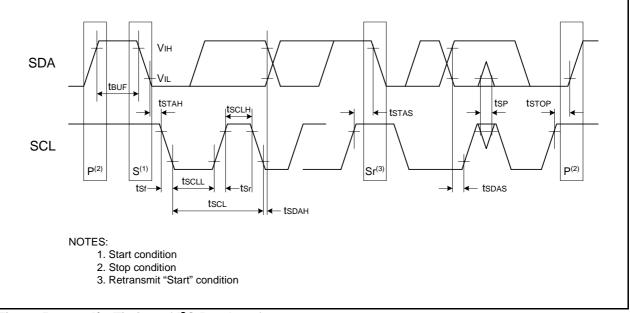
1. The measurement condition is Vcc = 2.7 to 5.5 V and Topr = -40 to 85°C (D, J version) / -40 to 125°C (K version), unless otherwise specified.

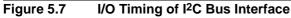
2. Waiting time until the internal power supply generation circuit stabilizes during power-on.

3. Time until CPU clock supply starts since the interrupt is acknowledged to exit stop mode.

Cumbal	Parameter		Conditions		Standar	b	Linit
Symbol	Faranielei		Conditions	Min.	Тур.	Max.	Unit
tsucyc	SSCK clock cycle time			4	-	-	tCYC ⁽²⁾
tнı	SSCK clock "H" width			0.4		0.6	tsucyc
tlo	SSCK clock "L" width			0.4	-	0.6	tsucyc
trise	SSCK clock rising time	Master		-	-	1	tCYC ⁽²⁾
		Slave		-	-	1	μS
t FALL	SSCK clock falling time	Master		-	-	1	tCYC ⁽²⁾
		Slave		-	-	1	μS
tsu	SSO, SSI data input setup ti	me		100	-	-	ns
tн	SSO, SSI data input hold tim	е		1	-	-	tCYC ⁽²⁾
tlead	SCS setup time	Slave		1tcyc + 50	-	-	ns
tlag	SCS hold time	Slave		1tcyc + 50	-	-	ns
top	SSO, SSI data output delay time			-	-	1	tCYC ⁽²⁾
tSA	SSI slave access time			-	-	1tcyc + 100	ns
tor	SSI slave out open time			_	-	1tcyc + 100	ns

Table 5.12 Timing Requirements of Clock Synchronous Serial I/O with Chip Select⁽¹⁾

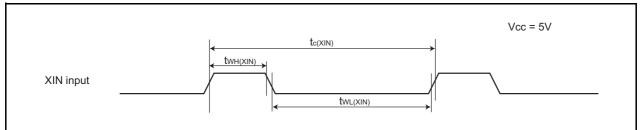

1. Vcc = 2.7 to 5.5 V, Vss = 0 V at Topr = -40 to 85°C (D, J version) / -40 to 125°C (K version), unless otherwise specified. 2. 1tcyc = 1/f1(s)



Symbol	Doromotor	Conditions		Linit		
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
tSCL	SCL input cycle time		12tcyc + 600 ⁽²⁾	-	-	ns
tSCLH	SCL input "H" width		3tcyc + 300 ⁽²⁾	-	-	ns
tSCLL	SCL input "L" width		5tcyc + 500 ⁽²⁾	_	-	ns
tsf	SCL, SDA input falling time		-	_	300	ns
tSP	SCL, SDA input spike pulse rejection time		-	-	1tcyc ⁽²⁾	ns
t BUF	SDA input bus-free time		5tCYC ⁽²⁾	-	-	ns
t STAH	Start condition input hole time		3tCYC ⁽²⁾	-	-	ns
t STAS	Retransmit start condition input setup time		3tcyc ⁽²⁾	-	-	ns
t STOP	Stop condition input setup time		3tcyc ⁽²⁾	-	-	ns
tsoas	Data input setup time		1tcyc + 20 ⁽²⁾	_	-	ns
t SDAH	Data input hold time		0	_	-	ns

Table 5.13 Timing Requirements of I²C Bus Interface⁽¹⁾

1. Vcc = 2.7 to 5.5 V, Vss = 0V at Topr = -40 to 85° C (D, J version) / -40 to 125° C (K version), unless otherwise specified. 2. 1tcvc = 1/f1(s)



Timing Requirements (Unless Otherwise Specified: Vcc = 5 V, Vss = 0 V at Topr = 25°C) [Vcc = 5 V]

Table 5.16 XIN Input

Symbol	Parameter	Standard		Unit	
Symbol	Falanielei	Min.	Max.	Unit	
tc(XIN)	XIN input cycle time	50	-	ns	
twh(xin)	XIN input "H" width	25	-	ns	
twl(XIN)	XIN input "L" width	25	-	ns	

Figure 5.8 XIN Input Timing Diagram when Vcc = 5 V

Table 5.17 TRAIO Input

Symbol	Parameter	Standard Min. Max.		Unit
Symbol	Falanielei			Unit
tc(TRAIO)	TRAIO input cycle time	100	-	ns
twh(traio)	TRAIO input "H" width	40	-	ns
twl(traio)	TRAIO input "L" width	40	-	ns

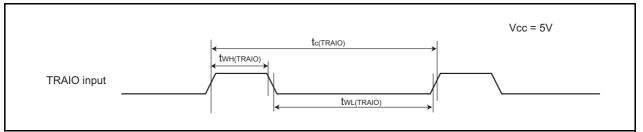
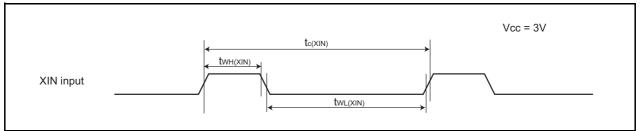



Figure 5.9 TRAIO Input Timing Diagram when Vcc = 5 V

Timing Requirements (Unless Otherwise Specified: Vcc = 3 V, Vss = 0V at Topr = 25°C) [Vcc = 3 V]

Table 5.22 XIN Input

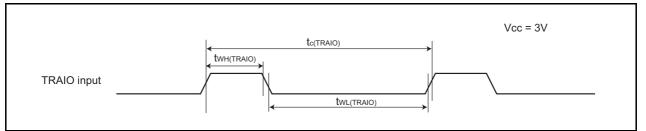

Symbol	Parameter	Standard Min. Max.		Unit	
Symbol	Falantelei				
tc(XIN)	XIN input cycle time	100	-	ns	
twh(xin)	XIN input "H" width	40	-	ns	
twl(XIN)	XIN input "L" width	40	-	ns	

Figure 5.12 XIN Input Timing Diagram when Vcc = 3 V

Table 5.23 TRAIO Input

Symbol	Parameter	Standard		Unit
Symbol	Falanielei	Min.	Max.	Unit
tc(TRAIO)	TRAIO input Cycle time	300	-	ns
twh(traio)	TRAIO input "H" width	120	-	ns
twl(traio)	TRAIO input "L" width	120	-	ns

Figure 5.13 TRAIO Input Timing Diagram when Vcc = 3 V

REVISION HISTORY

R8C/22 Group, R8C/23 Group Datasheet

Davi	Dete		Description
Rev.	Date	Page	Summary
0.10	Mar 08, 2005	-	First Edition issued
0.20	Sep 29, 2005	_	 Words standardized Clock synchronous serial interface → Clock synchronous serial I/O Chip-select clock synchronous interface(SSU) → Clock synchronous serial I/O with chip select I²C bus interface(IIC) → I²C bus interface
		2, 3	 Table1.1 R8C/22 Group Performance, Table1.2 R8C/23 Group Performance Serial Interface revised: Clock Synchronous Serial Interface: 1 channel I²C bus Interface (3), Clock synchronous serial I/O with chip select Power-On Reset Circuit added Power Consumption value determined
		5, 6	Table 1.3 Product Information of R8C/22 Group, Table 1.4 Product Information of R8C/23 Group Date revised.
		7	Figure 1.4 Pin Assignment Pin name revised: - P3_5/SSCK(/SCL) \rightarrow P3_5/ SCL/SSCK - P3_4/SCS(/SDA) \rightarrow P3_4/ SDA /SCS - VSS \rightarrow VSS/AVSS - VCC \rightarrow VCC/AVCC - P1_5/RXD0/(TRAIO/INT1) \rightarrow P1_5/RXD0/(TRAIO)/(INT1) - P6_6/INT2/(TXD1) \rightarrow P6_6/INT2/TXD1 - P6_7/INT3/(RXD1) \rightarrow P6_7/INT3/RXD1 - NOTE2 added
		8	Table 1.5 Pin Description - Analog Power Supply Input: line added - I^2C Bus Interface (IIC) $\rightarrow I^2C$ Bus Interface - SSU \rightarrow Clock Synchronous Serial I/O with Chip Select
		9	Table 1.6 Pin Name Information by Pin Number revised - Pin Number 1: (SCL) \rightarrow SCL - Pin Number 2: (SDA) \rightarrow SDA - Pin Number 9: VSS \rightarrow VSS/AVSS - Pin Number 11: VCC \rightarrow VCC/AVCC - Pin Number 26: (TXD1) \rightarrow TXD1 - Pin Number 27: (RXD1) \rightarrow RXD1
		15	Table 4.1 SFR Information (1) revised - 0013h: XXXXXX00b \rightarrow 00h
		17	Table 4.3 SFR Information (3) revised - 00BCh: 0000X000b \rightarrow 00h/0000X000b
		18	Table 4.4 SFR Information (4) revised - 00D6h: 00000XXXb → 00h - 00F5h: UART1 Function Select Register added
		19	Table 4.5 SFR Information (5) revised - 0104h: TRATR \rightarrow TRA

RenesasTechnology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Benesas lechnology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
 Pines
 This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information in this document.
 But not infinited to, product data. diagrams, charts, programs, algorithms, and application scule as the development of weapons of mass and regulations, and proceedures required by such laws and regulation.
 All information in this document, included in this document for the purpose of military application scuch as the development of weapons of mass and regulations, and proceedures required by such laws and regulations.
 All information included in this document, such as product data, diagrams, charts, programs, algorithms, and application carcuit examples, is current as of the data the discovered in this document, but Renesas as a such as a such as assumes and application is activated in this document, but Renesas assumes no liability Mattascever for any damages incurred as a such as such as the disclosed through our vebsite. (http://www.renesas.com)
 Renesas has used reasonable care in compiling the information in this document, but Renesas assumes no liability Mattascever for any damages incurred as a such as a such as a such as the disclosed through prevention in the data disclosed through proceedures required by Renesas as such as that disclosed through exploration included in this document.
 When using or otherwise required the information in this document, but Renesas as such as a not the such as product as the explorability of the total system before deciding about the applications on orbitime data different information in the data different i

RENESAS SALES OFFICES

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd. Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7858/7898

Renesas Technology Hong Kong Ltd. 7th Floor, North Tower, World Finance Centre, Harbour City, Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2377-3473

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 3518-3399

Renesas Technology Singapore Pte. Ltd.

1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510

http://www.renesas.com