

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

⊡XFI

Product Status	Not For New Designs
Core Processor	R8C
Core Size	16-Bit
Speed	16MHz
Connectivity	CANbus, I ² C, LINbus, SIO, SSU, UART/USART
Peripherals	POR, Voltage Detect, WDT
Number of I/O	41
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	6K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f2123ckfp-u0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

1.3 Block Diagram

Figure 1.1 shows a Block Diagram.

RENESAS

1.4 **Product Information**

Table 1.3 lists Product Information for R8C/22 Group and Table 1.4 lists Product Information for R8C/23 Group.

Table 1.3 Product Information for R8C/22 Group Current of Aug. 2					ent of Aug. 2008
Type No.	ROM Capacity	RAM Capacity	Package Type	Rer	narks
R5F21226DFP	32 Kbytes	2 Kbytes	PLQP0048KB-A	D version	Flash memory
R5F21227DFP	48 Kbytes	2.5 Kbytes	PLQP0048KB-A	-	version
R5F21228DFP	64 Kbytes	3 Kbytes	PLQP0048KB-A	-	
R5F21226JFP	32 Kbytes	2 Kbytes	PLQP0048KB-A	J version	
R5F21227JFP	48 Kbytes	2.5 Kbytes	PLQP0048KB-A	-	
R5F21228JFP	64 Kbytes	3 Kbytes	PLQP0048KB-A	-	
R5F2122AJFP	96 Kbytes	5 Kbytes	PLQP0048KB-A	-	
R5F2122CJFP	128 Kbytes ⁽¹⁾	6 Kbytes	PLQP0048KB-A	-	
R5F21226KFP	32 Kbytes	2 Kbytes	PLQP0048KB-A	K version	
R5F21227KFP	48 Kbytes	2.5 Kbytes	PLQP0048KB-A	-	
R5F21228KFP	64 Kbytes	3 Kbytes	PLQP0048KB-A	-	
R5F2122AKFP	96 Kbytes	5 Kbytes	PLQP0048KB-A	1	
R5F2122CKFP	128 Kbytes ⁽¹⁾	6 Kbytes	PLQP0048KB-A		

NOTE:

1. Do not use addresses 20000h to 23FFFh because these areas are used for the emulator debugger. Refer to 24. Notes on Emulator Debugger of Hardware Manual.

Type Number, Memory Size, and Package of R8C/22 Group

3.2 R8C/23 Group

Figure 3.2 shows a Memory Map of R8C/23 Group. The R8C/23 Group has 1 Mbyte of address space from address 00000h to FFFFh.

The internal ROM (program ROM) is allocated lower addresses, beginning with address 0FFFFh. For example, a 48-Kbyte internal ROM is allocated addresses 04000h to 0FFFFh.

The fixed interrupt vector table is allocated addresses 0FFDCh to 0FFFFh. They store the starting address of each interrupt routine.

The internal ROM (data flash) is allocated addresses 02400h to 02BFFh.

The internal RAM is allocated higher addresses, beginning with address 00400h. For example, a 2.5-Kbyte internal RAM is allocated addresses 00400h to 00DFFh. The internal RAM is used not only for storing data but also for calling subroutines and as stacks when interrupt requests are acknowledged.

Special function registers (SFR) are allocated addresses 00000h to 002FFh and 01300h to 0147Fh (SFR area for CAN). The peripheral function control registers are allocated them. All addresses within the SFR, which have nothing allocated are reserved for future use and cannot be accessed by users.

Figure 3.2 M

Memory Map of R8C/23 Group

4. Special Function Registers (SFRs)

An SFR (special function register) is a control register for a peripheral function. Table 4.1 to Table 4.13 list the SFR Information.

Table 4.1	SFR Information (1) ⁽¹⁾
-----------	------------------------------------

Address	Register	Symbol	After reset
0000h			
0001h			
0002h			
0003h			
0004h	Processor Mode Register 0	PM0	00h
0005h	Processor Mode Register 1	PM1	00h
0006h	System Clock Control Register 0	CM0	01101000b
0007h	System Clock Control Register 1	CM1	0010000b
0008h			
0009h			
000Ah	Protect Register	PRCR	00h
000Bh			
000Ch	Oscillation Stop Detection Register	OCD	00000100b
000Dh	Watchdog Timer Reset Register	WDTR	XXh
000Eh	Watchdog Timer Start Register	WDTS	XXh
000Fh	Watchdog Timer Control Register	WDC	00X11111b
0010h	Address Match Interrupt Register 0	RMAD0	00h
0011h			00h
0012h			00h
0013h	Address Match Interrupt Enable Register	AIER	00h
0014h	Address Match Interrupt Register 1	RMAD1	00h
0015h			00h
0016h			00h
0017h			
0018h			
0019h			
001Ah			
001Bh			
001Ch	Count Source Protect Mode Register	CSPR	00h
			1000000b ⁽⁸⁾
001Dh			
001Eh			
001Fh			
0020h			
0021h			
0022h			
0023h	High-Speed On-Chip Oscillator Control Register 0	FRA0	00h
0024h	High-Speed On-Chip Oscillator Control Register 1	FRA1	When shipping
0025h	High-Speed On-Chip Oscillator Control Register 2	FRA2	00h
0026h			

0030h			
0031h	Voltage Detection Register 1 ⁽²⁾	VCA1	00001000b
0032h	Voltage Detection Register 2 ⁽⁶⁾	VCA2	00h ⁽³⁾
			0100000b ⁽⁴⁾
0033h			
0034h			
0035h			
0036h	Voltage Monitor 1 Circuit Control Register ⁽⁷⁾	VW1C	0000X000b ⁽³⁾
			0100X001b ⁽⁴⁾
0037h	Voltage Monitor 2 Circuit Control Register ⁽⁵⁾	VW2C	00h
0038h			
0039h			
00056			

003Fh

X: Undefined

NOTES:

- 1. The blank regions are reserved. Do not access locations in these regions.
- 2. Software reset, watchdog timer reset, and voltage monitor 2 reset do not affect this register.
- 3. The LVD0ON bit in the OFS register is set to 1.
- 4. Power-on reset, voltage monitor 1 reset or the LVD0ON bit in the OFS register is set to 0.
- 5. Software reset, watchdog timer reset, and voltage monitor 2 reset do not affect b2 and b3.
- 6. Software reset, watchdog timer reset, and voltage monitor 2 reset do not affect b7.
- 7. Software reset, the watchdog timer rest, and the voltage monitor 2 reset do not affect other than the b0 and b6.
- 8. The CSPROINI bit in the OFS register is 0.

SFR Information (2)⁽¹⁾ Table 4.2

Address	Register	Symbol	After reset
0040h		-	
0041h			
0042h			
0043h	CAN0 Wake Up Interrupt Control Register	C01WKIC	XXXXX000b
0044h	CANO Successful Reception Interrupt Control Register	CORECIC	XXXXX000b
0045h	CANO Successful Transmission Interrunt Control Register	COTRMIC	XXXXX000b
0046b	CANO State/Error Interrupt Control Register	C01ERRIC	XXXXX000b
0040h	on the blate/Enter interrupt bonition register	OUTERRIO	700000000
0047H	Timer RD0 Interrupt Control Register	TROOIC	XXXXX000b
0040h	Timer RD1 Interrupt Control Register		XXXXX000b
0045h	Timer RE Interrupt Control Register	TREIC	XXXXX000b
004A11		IREIG	~~~~~000b
004611			
004Ch	Key leave later much Constant Dominton	KUDIO	XXXXXX000F
004Dh		KUPIC	
004Eh	A/D Conversion Interrupt Control Register	ADIC	XXXXXUUUD
004Fh	SSU Interrupt Control Register/IIC Bus Interrupt Control Register ⁽²⁾	SSUIC/IICIC	XXXXX000b
0050h			
0051h	UART0 Transmit Interrupt Control Register	SOTIC	XXXXX000b
0052h	UART0 Receive Interrupt Control Register	SORIC	XXXXX000b
0053h	UART1 Transmit Interrupt Control Register	S1TIC	XXXXX000b
0054h	UART1 Receive Interrupt Control Register	S1RIC	XXXXX000b
0055h	INT2 Interrupt Control Register	INT2IC	XX00X000b
0056h	Timer RA Interrupt Control Register	TRAIC	XXXXX000b
0057h			
0058h	Timer RB Interrupt Control Register	TRBIC	XXXXX000b
0059h	INT1 Interrupt Control Register	INT1IC	XX00X000b
005Ah	INT3 Interrupt Control Register	INT3IC	XX00X000b
005Bh			
005Ch			
005Dh	INTO Interrupt Control Register	INTOIC	XX00X000b
005Eh			
005Fh			
0060h			
0061h			
0062h			
0063h			
0064h			
0065h			
0066h			
0067h			
0068h			
0069h			
006Ah			
006Bh			
006Ch			
006Dh			
006Fh			
006Fh			
0070h			
0071h			
0072h			
0073h			
0073h			
0075h			
0076h			
0077h			
00785			
0070h		ł	
00746			
00786			
00705			
00701			
00755			
007Eh			
007111		1	1

X: Undefined

NOTES:

The blank regions are reserved. Do not access locations in these regions.
 Selected by the IICSEL bit in the PMR register.

Address	Register	Symbol	After reset
0080h			
0081h			
0082h			
0083h			
0084h			
0085h			
0086h			
0087h			
0088h			
0089h			
008Rh			
008Ch			
008Dh			
008Eh			
008Fh			
0090h			
0091h			
0092h			
0093h			
0094h			
0095h			
0096h			
0097h			
0098h			
0099h			
009An			
009Dh			
009Dh			
009Eh			
009Fh			
00A0h	UART0 Transmit/Receive Mode Register	U0MR	00h
00A1h	UART0 Bit Rate Register	U0BRG	XXh
00A2h	UART0 Transmit Buffer Register	U0TB	XXh
00A3h			XXh
00A4h	UART0 Transmit/Receive Control Register 0	U0C0	00001000b
00A5h	UART0 Transmit/Receive Control Register 1	U0C1	00000010b
00A6h	UART0 Receive Buffer Register	UORB	XXh
00A7h			XXh
00A8h	UART1 Transmit/Receive Mode Register	U1MR	00h
00A9h	UARTI Dil Rale Register		
00ARh	UARTT Transmit Buller Register	UIIB	XXh
00ADh	LIART1 Transmit/Receive Control Register 0	11100	00001000b
00ADh	UART1 Transmit/Receive Control Register 1	U1C1	0000010b
00AEh	UART1 Receive Buffer Register	U1RB	XXh
00AFh			XXh
00B0h			
00B1h			
00B2h			
00B3h			
00B4h			
00B5h			
00B6h			
00B7h			005
	SS Control Register H/IIC Bus Control Register 1 ⁽²⁾	SSUKH/ICUK1	011111015
UUB9N	SS Control Register L/IIC Bus Control Register 2 ⁽²⁾	SSURL/IUUK2	011111010
UUBAh	SS Mode Register/IIC Bus Mode Register 1 ⁽²⁾	SSMK/ICMK	000110000
UUBBh	SS Enable Register/IIC Bus Interrupt Enable Register ⁽²⁾	SSER/ICIER	
UUBCh	SS Status Register/IIC Bus Status Register ⁽²⁾	SSSR/ICSR	000/0000X000b
00BDh	SS Mode Register 2/Slave Address Register ⁽²⁾	SSMR2/SAR	00h
00BEh	SS Transmit Data Register/IIC Bus Transmit Data Register ⁽²⁾	SSTDR/ICDRT	FFh
00BFh	SS Receive Data Register/IIC Bus Receive Data Register ⁽²⁾	SSRDR/ICDRR	FFh

SFR Information (3)⁽¹⁾ Table 4.3

X: Undefined

NOTES:

The blank regions are reserved. Do not access locations in these regions.
 Selected by the IICSEL bit in the PMR register.

Table 4.8	SFR Information	(8) ⁽¹)	
-----------	-----------------	--------------------------	---	--

Address	Register	Symbol	After reset
1300h	CAN0 Message Control Register 0	COMCTL0	00h
1301h	CAN0 Message Control Register 1	C0MCTL1	00h
1302h	CAN0 Message Control Register 2	C0MCTL2	00h
1303h	CAN0 Message Control Register 3	C0MCTL3	00h
1304h	CANO Message Control Register 4	COMCTL4	00h
1305h	CANO Message Control Register 5	COMCTL5	00h
1306h	CAN0 Message Control Register 6	COMCTL6	00h
1307h	CANO Message Control Register 7	COMCTL7	00h
1308h	CANO Message Control Register 8	COMCTL8	00h
1309h	CANO Message Control Register 9	COMCTL9	00h
1304h	CANO Message Control Register 10	COMCTL 10	00h
130Rh	CANO Message Control Register 10	COMCTL 11	00h
130Ch	CANO Message Control Register 12	COMCTL 12	00b
1300h	CANO Message Control Register 12		00b
130Dh	CANO Message Control Register 14	COMCTL14	00h
130Eh	CANO Message Control Register 14	COMOTE 14	00h
1301 H	CANO Message Control Register 13		20000001h
1310h	CAND CONTO REGISTER	COUTER	XX0X0000b
1312h	CAN0 Status Register	COSTR	00h
1313h			X000001b
1314h	CAN0 Slot Status Register	COSSTR	00h
1315h			00h
1316h	CAN0 Interrupt Control Register	COICR	00h
1317h			00h
1318h	CAN0 Extended ID Register	COIDR	00h
1319h	·		00h
131Ah	CAN0 Configuration Register	COCONR	XXh
131Bh			XXh
131Ch	CANO Receive Error Count Register	CORECR	00h
131Dh	CANO Transmit Error Count Register	COTECR	00h
131Fh		0012011	
131Eh			
1320h			
13201			
1327h			
1322h			
132311			
132411			
13200			
132011			
13270			
1328h			
1329h			
132Ah			
132Bh			
132Ch			
132Dh			
132Eh			
132Fh			
1330h			
1331h			
1332h			
1333h			
1334h			
1335h			
1336h			
1337h			
1338h			
1339h			
133Ah			
133Bh			
133Ch			
133Dh			
133Eh			
133Fh			
100111			

X: Undefined

NOTE:

1. The blank regions are reserved. Do not access locations in these regions.

Address	Register	Symbol	After reset
1340h			
1341h			
1342h	CAN0 Acceptance Filter Support Register	COAFS	XXh
1343h			XXh
1344h			
1345h			
1346h			
1347h			
1348h			
1349h			
134Ah			
134Bh			
134Ch			
134Dh			
134Eh			
134Fh			
1350h			
1351h			
1352h			
1353h			
1354h			
1355h			
1356h			
1357h			
1358h			
1359h			
135Ah			
135Bh			
135Ch			
135Dh			
135Eh			
135Fh	CAN0 Clock Select Register	CCLKR	00h
1360h	CAN0 Slot 0: Identifier/DLC		XXh
1361h			XXh
1362h			XXh
1363h			XXh
1364h			XXh
1365h			XXh
1366h	CAN0 Slot 0: Data Field		XXh
1367h			XXh
1368h			XXh
1369h			XXh
136Ah			XXh
136Bh			XXh
136Ch			XXh
136Dh			XXh
136Eh	CANU Slot 0: Time Stamp		XXh
136Fh			XXN
1370h	CANU Slot 1: Identifier/DLC		XXN
1371h			XXN
1372h			XXN
13/3h			
13/4h			
13/50	CANO Slot 1: Data Field		
13/00	CAINU SIUL T. Data FIEIU		
13//1			
13/011			
137911 1274b			XYh
137Ph			YYh
1370h			XXh
137Dh			XXh
137Eh	CANO Slot 1: Time Stamp	L	XXh
137Eh	onino olor 1. Time olamp		XXh
10/111			77711

Table 4.9SFR Information (9)⁽¹⁾

X: Undefined

NOTE:

1. The blank regions are reserved. Do not access locations in these regions.

5. Electrical Characteristics

Table 5.1 Absolute Maximum Rating

Symbol	Parameter	Condition	Rated value	Unit
Vcc/AVcc	Supply voltage		-0.3 to 6.5	V
Vi	Input voltage		-0.3 to Vcc+0.3	V
Vo	Output voltage		-0.3 to Vcc+0.3	V
Pd	Power dissipation	$-40^\circ C \leq Topr \leq 85^\circ C$	300	mW
		$85^\circ C < Topr \leq 125^\circ C$	125	mW
Topr	Operating ambient temperature		-40 to 85 (D, J version) / -40 to 125 (K version)	°C
Tstg	Storage temperature		-65 to 150	°C

Table 5.2 Recommended Operating Conditions

Cumbal	Doromotor		Conditions		Standard		Linit
Symbol	Farameter		Conditions	Min.	Тур.	Max.	Unit
Vcc/AVcc	Supply voltage			2.7	-	5.5	V
Vss/AVcc	Supply voltage			-	0	-	V
Vih	Input "H" voltage			0.8Vcc	-	Vcc	V
VIL	Input "L" voltage			0	-	0.2Vcc	V
IOH(sum)	Peak sum output "H" current	Sum of all Pins IOH (peak)		-	-	-60	mA
IOH(peak)	Peak output "H" current			-	-	-10	mA
IOH(avg)	Average output "H" current			-	-	-5	mA
IOL(sum)	Peak sum output "L" currents	Sum of all Pins IOL (peak)		-	-	60	mA
IOL(peak)	Peak output "L" currents			-	-	10	mA
IOL(avg)	Average output "L" current			-	-	5	mA
f(XIN)	XIN clock input oscillation frequency		$\begin{array}{l} 3.0 \ V \leq Vcc \leq 5.5 \ V \\ -40^{\circ}C \leq Topr \leq 85^{\circ}C \end{array}$	0	-	20	MHz
			$\begin{array}{l} 3.0 \ V \leq Vcc \leq 5.5 \ V \\ -40^{\circ}C \leq Topr \leq 125^{\circ}C \end{array}$	0	-	16	MHz
			$2.7~\text{V} \leq \text{Vcc} < 3.0~\text{V}$	0	-	10	MHz
_	System clock	OCD2 = 0 When XIN	$\begin{array}{l} 3.0 \ V \leq Vcc \leq 5.5 \ V \\ -40^{\circ}C \leq Topr \leq 85^{\circ}C \end{array}$	0	-	20	MHz
		clock is selected.	$\begin{array}{l} 3.0 \ V \leq Vcc \leq 5.5 \ V \\ -40^{\circ}C \leq Topr \leq 125^{\circ}C \end{array}$	0	-	16	MHz
			$2.7~V \leq Vcc < 3.0~V$	0	-	10	MHz
		OCD2 = 1 When on-chip oscillator clock is selected.	FRA01 = 0 When low-speed on- chip oscillator clock is selected.	_	125	_	kHz
			FRA01 = 1 When high-speed on- chip oscillator clock is selected. $3.0 V \le Vcc \le 5.5 V$ $-40^{\circ}C \le Topr \le 85^{\circ}C$	_	_	20	MHz
			FRA01 = 1 When high-speed on- chip oscillator clock is selected.	_	_	10	MHz

NOTES:

1. Vcc = 2.7 to 5.5 V at Topr = -40 to 85°C (D, J version) / -40 to 125°C (K version), unless otherwise specified.

2. The average output current indicates the average value of current measured during 100 ms.

Symbol	Parameter		Conditions		Linit		
Symbol			Conditions	Min.	Тур.	Max.	Offic
-	Resolution		Vref = AVCC	-	-	10	Bits
-	Absolute	10-bit mode	$\phi AD = 10 \text{ MHz}, \text{ Vref} = AVcc = 5.0 \text{ V}$	-	-	±3	LSB
	Accuracy	8-bit mode	$\phi AD = 10 \text{ MHz}, \text{ Vref} = AVcc = 5.0 \text{ V}$	-	-	±2	LSB
		10-bit mode	φAD = 10 MHz, Vref = AVcc = 3.3 V	-	-	±5	LSB
		8-bit mode	φAD = 10 MHz, Vref = AVcc = 3.3 V	-	-	±2	LSB
Rladder	Resistor ladder		Vref = AVCC	10	-	40	kΩ
tconv	Conversion time	10-bit mode	$\phi AD = 10 \text{ MHz}, \text{ Vref} = AVcc = 5.0 \text{ V}$	3.3	-	-	μS
		8-bit mode	$\phi AD = 10 \text{ MHz}, \text{ Vref} = AVcc = 5.0 \text{ V}$	2.8	-	-	μS
Vref	Reference voltage			2.7	-	AVcc	V
VIA	Analog input voltage ⁽²⁾			0	-	AVcc	V
-	A/D operating	Without sample & hold		0.25	-	10	MHz
	clock frequency	With sample & hold		1	-	10	MHz

Table 5.3	A/D Converter	Characteristics

NOTES:

Vcc = AVcc = 2.7 to 5.5 V at Topr = -40 to 85°C (D, J version) / -40 to 125°C (K version), unless otherwise specified.
 When analog input voltage exceeds reference voltage, A/D conversion result is 3FFh in 10-bit mode, FFh in 8-bit mode.

Ports P0 to P4, P6 Timing Measurement Circuit Figure 5.1

Symbol	Boromotor	Conditions		Linit			
Symbol Parameter		Conditions	Min.	Тур.	Max.		
-	Program/erase endurance ⁽²⁾	R8C/22 Group	100 ⁽³⁾	-	-	times	
		R8C/23 Group	1,000 ⁽³⁾	-	-	times	
-	Byte program time		-	50	400	μS	
-	Block erase time		-	0.4	9	S	
td(SR-SUS)	Time delay from suspend request until erase suspend		-	-	97 + CPU clock × 6 cycle	μS	
_	Interval from erase start/restart until following suspend request		650	-	_	μS	
-	Interval from program start/restart until following suspend request		0	-	_	ns	
_	Time from suspend until program/erase restart		_	-	3 + CPU clock × 4 cycle	μS	
-	Program, erase voltage		2.7	_	5.5	V	
-	Read voltage		2.7	-	5.5	V	
-	Program, erase temperature		0	-	60	°C	
-	Data hold time ⁽⁷⁾	Ambient temperature = 55°C	20	_	_	year	

Table 5.4	Flash Memory (Program ROM) Electrical Characteristics
	Thas memory (Trogram Nom) Electrical on a deteristics

NOTES:

1. Vcc = 2.7 to 5.5 V at Topr = -40 to 85°C (D, J version) / -40 to 125°C (K version), unless otherwise specified.

 Definition of programming/erasure endurance The programming and erasure endurance is defined on a per-block basis. If the programming and erasure endurance is n (n = 100 or 1,000), each block can be erased n times. For example, if 1,024 1-byte writes are performed to different addresses in block A, a 1 Kbyte block, and then the block is erased, the programming/erasure endurance still stands at one. However, the same address must not be programmed more than once per erase operation (overwriting prohibited).

3. Endurance to guarantee all electrical characteristics after program and erase (1 to Min. value can be guaranteed).

4. In a system that executes multiple programming operations, the actual erasure endurance can be reduced by writing to sequential addresses in turn so that as much of the block as possible is used up before performing an erase operation. For example, when programming groups of 16 bytes, the effective number of rewrites can be minimized by programming up to 128 groups before erasing them all in one operation. It is also advisable to retain data on the erasure endurance of each block and limit the number of erase operations to a certain number.

5. If error occurs during block erase, attempt to execute the clear status register command, then the block erase command at least three times until the erase error does not occur.

- 6. Customers desiring program/erase failure rate information should contact their Renesas technical support representative.
- 7. The data hold time includes time that the power supply is off or the clock is not supplied.

Symbol	Baramatar	Conditions		Linit			
Symbol Parameter		Conditions	Min.	Тур.	Max.		
-	Program/erase endurance ⁽²⁾		10,000 ⁽³⁾	-	-	times	
-	Byte program time (Program/erase endurance \leq 1,000 times)		_	50	400	μS	
_	Byte program time (Program/erase endurance > 1,000 times)		_	65	-	μs	
_	Block erase time (Program/erase endurance ≤ 1,000 times)		-	0.2	9	S	
-	Block erase time (Program/erase endurance > 1,000 times)		_	0.3	_	S	
td(SR-SUS)	Time delay from suspend request until erase suspend		_	-	97 + CPU clock × 6 cycle	μs	
-	Interval from erase start/restart until following suspend request		650	-	_	μS	
_	Interval from program start/restart until following suspend request		0	-	_	ns	
_	Time from suspend until program/erase restart		_	-	3 + CPU clock × 4 cycle	μS	
-	Program, erase voltage		2.7	-	5.5	V	
-	Read voltage		2.7	_	5.5	V	
-	Program, erase temperature		-40	-	85 ⁽⁸⁾	°C	
-	Data hold time ⁽⁹⁾	Ambient temperature = 55°C	20	_		year	

Table 5.5	Flash Memory	(Data Flash B	lock A, Block I	B) Electrical	Characteristics ⁽⁴⁾
-----------	--------------	---------------	-----------------	---------------	--------------------------------

NOTES:

1. Vcc = 2.7 to 5.5 V at Topr = -40 to 85°C (D, J version) / -40 to 125°C (K version), unless otherwise specified.

2. Definition of programming/erasure endurance

The programming and erasure endurance is defined on a per-block basis.

If the programming and erasure endurance is n (n = 10,000), each block can be erased n times.

For example, if 1,024 1-byte writes are performed to different addresses in block A, a 1 Kbyte block, and then the block is erased, the programming/erasure endurance still stands at one. However, the same address must not be programmed more than once per erase operation (overwriting prohibited).

- 3. Minimum endurance to guarantee all electrical characteristics after program and erase (1 to Min. value can be guaranteed).
- 4. Standard of block A and block B when program and erase endurance exceeds 1,000 times. Byte program time to 1,000 times are the same as that in program ROM.
- 5. In a system that executes multiple programming operations, the actual erasure endurance can be reduced by writing to sequential addresses in turn so that as much of the block as possible is used up before performing an erase operation. For example, when programming groups of 16 bytes, the effective number of rewrites can be minimized by programming up to 128 groups before erasing them all in one operation. In addition, averaging the erasure endurance between blocks A and B can further reduce the actual erasure endurance. It is also advisable to retain data on the erasure endurance of each block and limit the number of erase operations to a certain number.

6. If error occurs during block erase, attempt to execute the clear status register command, then the block erase command at least three times until the erase error does not occur.

7. Customers desiring program/erase failure rate information should contact their Renesas technical support representative.

8. 125°C for K version.

9. The data hold time includes time that the power supply is off or the clock is not supplied.

Symbol	Parameter	Condition	Standard		Unit	
			Min.	Тур.	Max.	
Vpor1	Power-on reset valid voltage ⁽⁴⁾		-	-	0.1	V
Vpor2	Power-on reset or voltage monitor 1 valid voltage		0	_	Vdet1	V
trth	External power Vcc rise gradient	$Vcc \leq 3.6 \ V$	20(2)	-	-	mV/msec
		Vcc > 3.6 V	20(2)	_	2,000	mV/msec

Table 5.8 Power-on Reset Circuit, Voltage Monitor 1 Reset Circuit Electrical Characteristics⁽³⁾

NOTES:

- 1. Topr = -40°C to 85°C (D, J version) / -40°C to 125°C (K version), unless otherwise specified.
- 2. This condition (the minimum value of external power Vcc rise gradient) does not apply if $V_{Por2} \ge 1.0$ V.
- 3. To use the power-on reset function, enable voltage monitor 1 reset by setting the LVD1ON bit in the OFS register to 0, the VW1C0 and VW1C6 bits in the VW1C register to 1 respectively, and the VCA26 bit in the VCA2 register to 1.
- 4. tw(por1) indicates the duration the external power Vcc must be held below the effective voltage (Vpor1) to enable a power on reset. When turning on the power for the first time, maintain tw(por1) for 30s or more if -20°C ≤ Topr ≤ 125°C, maintain tw(por1) for 3,000s or more if -40°C ≤ Topr < -20°C.</p>

Figure 5.3 Power-on Reset Circuit Electrical Characteristics

RENESAS

Table 5.15Electrical Characteristics (2) [Vcc = 5 V]
(Topr = -40 to 85°C (D, J version) / -40 to 125°C (K version), Unless Otherwise Specified.)

Symbol	Parameter	Condition			Standard		
Cymbol				Min.	Тур.	Max.	onic
Icc	Power supply current (Vcc = 3.3 to 5.5 V) In single-chip mode, the output pins are	High-clock mode	XIN = 20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	_	12.5	25.0	mA
	are Vss		XIN = 16 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	-	10.0	20.0	mA
			XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	-	6.5	-	mA
			XIN = 20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	-	6.5	-	mA
			XIN = 16MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	5.0	_	mA
			XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8		3.5	-	mA
		High-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator on fOCO = 10 MHz Low-speed on-chip oscillator on = 125 kHz No division		6.5	13.0	mA
			XIN clock off High-speed on-chip oscillator on fOCO= 10 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	1	3.2	_	mA
		Low-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8 FMR47 = 1	_	150	300	μΑ
		Wait mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock operation VCA20 = 0 VCA26 = VCA27 = 0	_	60	120	μA
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock off VCA20 = 0 VCA26 = VCA27 = 0	_	38	76	μΑ
		Stop mode Topr = 25°C	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA26 = VCA27 = 0	_	0.8	3.0	μA
		Stop mode Topr = 85°C	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA26 = VCA27 = 0	_	1.2	_	μA
		Stop mode Topr = 125°C	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA26 = VCA27 = 0	_	4.0	_	μA

RENESAS

Timing Requirements (Unless Otherwise Specified: Vcc = 5 V, Vss = 0 V at Topr = 25°C) [Vcc = 5 V]

Table 5.16 XIN Input

Symbol	Parameter		Standard		
Symbol			Max.	Unit	
tc(XIN)	XIN input cycle time	50	-	ns	
twh(xin)	XIN input "H" width	25	-	ns	
twl(XIN)	XIN input "L" width	25	-	ns	

Figure 5.8 XIN Input Timing Diagram when Vcc = 5 V

Table 5.17 TRAIO Input

Symbol	Parameter		Standard		
Symbol			Max.	Onit	
tc(TRAIO)	TRAIO input cycle time	100	-	ns	
twh(traio)	TRAIO input "H" width		-	ns	
twl(traio)	TRAIO input "L" width	40	-	ns	

Figure 5.9 TRAIO Input Timing Diagram when Vcc = 5 V

Table 5.18	Serial Interface
------------	------------------

Symbol	Derometer	Standard		Unit
	Falameter		Max.	
tc(CK)	CLK0 input cycle time	200	-	ns
tw(ckh)	CLK0 input "H" width	100	-	ns
tW(CKL)	CLK0 input "L" width	100	-	ns
td(C-Q)	TXDi output delay time	-	50	ns
th(C-Q)	TXDi hold time	0	-	ns
tsu(D-C)	RXDi input setup time 50 -			ns
th(C-D)	RXDi input hold time	90	-	ns

i = 0 or 1

Figure 5.10 Serial Interface Timing Diagram when Vcc = 5 V

Table 5.19 External Interrupt INTi (i = 0 to 3) Input

Symbol	Parameter	Standard		Linit
		Min.	Max.	Onit
tw(INH)	INTi input "H" width	250(1)	-	ns
tw(INL)	INTi input "L" width	250 ⁽²⁾	-	ns

NOTES:

1. When selecting the digital filter by the INTi input filter select bit, use the INTi input HIGH width to the greater value, either (1/digital filter clock frequency x 3) or the minimum value of standard.

2. When selecting the digital filter by the INTi input filter select bit, use the INTi input LOW width to the greater value, either (1/digital filter clock frequency x 3) or the minimum value of standard.

Figure 5.11 External Interrupt INTi Input Timing Diagram when Vcc = 5 V (i = 0 to 3)

REVISION HISTORY

R8C/22 Group, R8C/23 Group Datasheet

Dev	Date	Description			
Rev.		Page	Summary		
0.20	Sep 29, 2005	20	Table 4.6 SFR Information (6) revised - 0145h: POCR0 \rightarrow TRDPOCR0 - 0146h, 0147h: TRDCNT0 \rightarrow TRD0 - 0148h, 0149h: GRA0 \rightarrow TRDGRA0 - 014Ah, 014Bh: GRB0 \rightarrow TRDGRB0 - 014Ch, 014Dh: GRC0 \rightarrow TRDGRC0 - 014Eh, 014Fh: GRD0 \rightarrow TRDGRD0 - 0155h: POCR1 -> TRDPOCR1 - 0156h, 0157h: TRDCNT1 \rightarrow TRD1 - 0156h, 0159h: GRA1 \rightarrow TRDGRA1 - 015Ah, 015Bh: GRB1 \rightarrow TRDGRB1 - 015Ch, 015Dh: GRC1 \rightarrow TRDGRD1		
		28	5. Electrical Characteristics added		
1.00	Oct 27, 2006	All pages	"Preliminary" and "Under development" deleted		
		2	Table 1.1 Functions and Specifications for R8C/22 Group revised. NOTE1 deleted.		
		3	Table 1.2 Functions and Specifications for R8C/23 Group revised. NOTE1 deleted.		
		5	Table 1.3 Product Information for R8C/22 Group; "R5F2122AJFP (D)", "R5F2122CJFP (D)", "R5F2122AKFP (D)", "R5F2122CKFP (D)", and NOTE added. Figure 1.2 Type Number, Memory Size, and Package of R8C/22 Group; "A: 96 KB" and "C: 128 KB" added.		
		6	Table 1.4 Product Information for R8C/23 Group; "R5F2123AJFP (D)", "R5F2123CJFP (D)", "R5F2123AKFP (D)", "R5F2123CKFP (D)", and NOTE added. Figure 1.3 Type Number, Memory Size, and Package of R8C/23 Group; "A: 96 KB" and "C: 128 KB" added.		
		13	Figure 3.1 Memory Map of R8C/22 Group revised.		
		14	Figure 3.2 Memory Map of R8C/23 Group revised.		
		15	Table 4.1 SFR Information (1) ⁽¹⁾ ; NOTE8; "The CSPROINI bit in the OFS register is set to 0." \rightarrow "The CSPROINI bit in the OFS register is 0." revised.		
		28	Table 5.1 Absolute Maximum Ratings; Power dissipation revised. Table 5.2 Recommended Operating Conditions; System clock revised.		
		33	 Table 5.8 Voltage Monitor 1 Reset Circuit Electrical Characteristics → Table 5.8 Power-on Reset Circuit, Voltage Monitor 1 Reset Circuit Electrical Characteristics⁽¹⁾ replaced. Table 5.8 revised. NOTE3 added. Table 5.9 Power-on Reset Circuit Electrical Characteristics deleted. Figure 5.3 Power-on Reset Circuit Electrical Characteristics revised. 		
		34	Table 5.10 High-Speed On-Chip Oscillator Circuit Electrical Characteristics \rightarrow Table 5.9 High-Speed On-Chip Oscillator Circuit Electrical Characteristics revised.		

REVISION HISTORY

R8C/22 Group, R8C/23 Group Datasheet

Davi	Dete	Description			
Rev.	Date	Page	Summary		
1.00	Oct 27, 2006	40	Table 5.15 Electrical Characteristics (1) [VCC = 5 V] \rightarrow Table 5.14 Electrical Characteristics (1) [VCC = 5 V] revised. RAM Hold Voltage, Min.; "1.8" \rightarrow "2.0" corrected.		
		41	Table 5.16 Electrical Characteristics (2) [Vcc = 5 V] \rightarrow Table 5.15 Electrical Characteristics (2) [Vcc = 5 V] revised. Wait mode revised.		
		44	Table 5.21 Electrical Characteristics (3) [VCC = 3 V \rightarrow Table 5.20 Electrical Characteristics (3) [VCC = 3 V] revised. RAM hold voltage, Min.; "1.8" \rightarrow "2.0" corrected.		
		45	Table 5.22 Electrical Characteristics (4) [Vcc = 3 V] \rightarrow Table 5.21 Electrical Characteristics (4) [Vcc = 3 V] revised. Wait mode revised.		
1.10	Mar 16, 2007	_	D version products added. Relevant descriptions revised because of expanding products - Table 1.1 to 1.4 revised. - Figure 1.2 and 1.3 revised. - Figure 3.1 and 3.2 revised. - Table 5.1 to 5.15 revised. - Table 5.20 and 5.21 revised.		
		15	Table 4.1 revised; 000Ah: "00XXX000b" → "00h", 000Fh: "00011111b" → "00X11111b"		
		42	Table 5.17 and Figure 5.9 revised; "INT1 input" deleted		
		43	Table 5.19 and Figure 5.11 revised; "i = 0, 2, 3" → "i = 0 to 3"		
		46	Table 5.23 and Figure 5.13 revised; "INT1 input" deleted		
		47	Table 5.25 and Figure 5.15 revised; "i = 0, 2, 3" → "i = 0 to 3"		
2.00	Aug 20, 2008	-	"RENESAS TECHNICAL UPDATE" reflected: TN-16C-A172A/E		
		5, 6	Table 1.3, Table 1.4 revised Figure 1.2, Figure 1.3; ROM number "XXX" added		
		13, 14	Figure 3.1, Figure 3.2; "Expanding area" deleted		
		23	Table 4.9 135Fh Address "XXXX0000b" → "00h"		
		28	Table 5.2; NOTE2 revised		
		30	Table 5.4; NOTE2 and NOTE4 revised		
		31	Table 5.5; NOTE2 and NOTE5 revised		
		32	Table 5.6; "td(Vdet1-A)" added, NOTE5 added Table 5.7; "td(Vdet2-A)" and NOTE2 revised, NOTE5 added		
		33	Table 5.8; "trth" and NOTE2 revised, Figure 5.3 revised		

All trademarks and registered trademarks are the property of their respective owners.