

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	AVR
Core Size	32-Bit Single-Core
Speed	50MHz
Connectivity	I²C, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	51
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.62V ~ 3.6V
Data Converters	A/D 8x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atuc128l3u-z3ut

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 4-3.	System Reg	gisters (Continue	d)
Reg #	Address	Name	Function
24	96	JAVA_LV1	Unused in AVR32UC
25	100	JAVA_LV2	Unused in AVR32UC
26	104	JAVA_LV3	Unused in AVR32UC
27	108	JAVA_LV4	Unused in AVR32UC
28	112	JAVA_LV5	Unused in AVR32UC
29	116	JAVA_LV6	Unused in AVR32UC
30	120	JAVA_LV7	Unused in AVR32UC
31	124	JTBA	Unused in AVR32UC
32	128	JBCR	Unused in AVR32UC
33-63	132-252	Reserved	Reserved for future use
64	256	CONFIG0	Configuration register 0
65	260	CONFIG1	Configuration register 1
66	264	COUNT	Cycle Counter register
67	268	COMPARE	Compare register
68	272	TLBEHI	Unused in AVR32UC
69	276	TLBELO	Unused in AVR32UC
70	280	PTBR	Unused in AVR32UC
71	284	TLBEAR	Unused in AVR32UC
72	288	MMUCR	Unused in AVR32UC
73	292	TLBARLO	Unused in AVR32UC
74	296	TLBARHI	Unused in AVR32UC
75	300	PCCNT	Unused in AVR32UC
76	304	PCNT0	Unused in AVR32UC
77	308	PCNT1	Unused in AVR32UC
78	312	PCCR	Unused in AVR32UC
79	316	BEAR	Bus Error Address Register
80	320	MPUAR0	MPU Address Register region 0
81	324	MPUAR1	MPU Address Register region 1
82	328	MPUAR2	MPU Address Register region 2
83	332	MPUAR3	MPU Address Register region 3
84	336	MPUAR4	MPU Address Register region 4
85	340	MPUAR5	MPU Address Register region 5
86	344	MPUAR6	MPU Address Register region 6
87	348	MPUAR7	MPU Address Register region 7
88	352	MPUPSR0	MPU Privilege Select Register region 0
89	356	MPUPSR1	MPU Privilege Select Register region 1

- (\mathbf{c}) nti 47 . . A ~ .

7.4.4 Peripheral Events

The PDCA peripheral events are connected via the Peripheral Event System. Refer to the Peripheral Event System chapter for details.

7.5 Functional Description

7.5.1 Basic Operation

The PDCA consists of multiple independent PDCA channels, each capable of handling DMA requests in parallel. Each PDCA channels contains a set of configuration registers which must be configured to start a DMA transfer.

In this section the steps necessary to configure one PDCA channel is outlined.

The peripheral to transfer data to or from must be configured correctly in the Peripheral Select Register (PSR). This is performed by writing the Peripheral Identity (PID) value for the corresponding peripheral to the PID field in the PSR register. The PID also encodes the transfer direction, i.e. memory to peripheral or peripheral to memory. See Section 7.5.6.

The transfer size must be written to the Transfer Size field in the Mode Register (MR.SIZE). The size must match the data size produced or consumed by the selected peripheral. See Section 7.5.7.

The memory address to transfer to or from, depending on the PSR, must be written to the Memory Address Register (MAR). For each transfer the memory address is increased by either a one, two or four, depending on the size set in MR. See Section 7.5.2.

The number of data items to transfer is written to the TCR register. If the PDCA channel is enabled, a transfer will start immediately after writing a non-zero value to TCR or the reload version of TCR, TCRR. After each transfer the TCR value is decreased by one. Both MAR and TCR can be read while the PDCA channel is active to monitor the DMA progress. See Section 7.5.3.

The channel must be enabled for a transfer to start. A channel is enable by writing a one to the EN bit in the Control Register (CR).

7.5.2 Memory Pointer

Each channel has a 32-bit Memory Address Register (MAR). This register holds the memory address for the next transfer to be performed. The register is automatically updated after each transfer. The address will be increased by either one, two or four depending on the size of the DMA transfer (byte, halfword or word). The MAR can be read at any time during transfer.

7.5.3 Transfer Counter

Each channel has a 16-bit Transfer Counter Register (TCR). This register must be written with the number of transfers to be performed. The TCR register should contain the number of data items to be transferred independently of the transfer size. The TCR can be read at any time during transfer to see the number of remaining transfers.

7.5.4 Reload Registers

Both the MAR and the TCR have a reload register, respectively Memory Address Reload Register (MARR) and Transfer Counter Reload Register (TCRR). These registers provide the possibility for the PDCA to work on two memory buffers for each channel. When one buffer has completed, MAR and TCR will be reloaded with the values in MARR and TCRR. The reload logic is always enabled and will trigger if the TCR reaches zero while TCRR holds a non-zero value. After reload, the MARR and TCRR registers are cleared.

If TCR is zero when writing to TCRR, the TCR and MAR are automatically updated with the value written in TCRR and MARR.

7.5.5 Ring Buffer

When Ring Buffer mode is enabled the TCRR and MARR registers will not be cleared when TCR and MAR registers reload. This allows the PDCA to read or write to the same memory region over and over again until the transfer is actively stopped by the user. Ring Buffer mode is enabled by writing a one to the Ring Buffer bit in the Mode Register (MR.RING).

7.5.6 Peripheral Selection

The Peripheral Select Register (PSR) decides which peripheral should be connected to the PDCA channel. A peripheral is selected by writing the corresponding Peripheral Identity (PID) to the PID field in the PSR register. Writing the PID will both select the direction of the transfer (memory to peripheral or peripheral to memory), which handshake interface to use, and the address of the peripheral holding register. Refer to the Peripheral Identity (PID) table in the Module Configuration section for the peripheral PID values.

7.5.7 Transfer Size

The transfer size can be set individually for each channel to be either byte, halfword or word (8bit, 16-bit or 32-bit respectively). Transfer size is set by writing the desired value to the Transfer Size field in the Mode Register (MR.SIZE).

When the PDCA moves data between peripherals and memory, data is automatically sized and aligned. When memory is accessed, the size specified in MR.SIZE and system alignment is used. When a peripheral register is accessed the data to be transferred is converted to a word where bit n in the data corresponds to bit n in the peripheral register. If the transfer size is byte or halfword, bits greater than 8 and16 respectively are set to zero.

Refer to the Module Configuration section for information regarding what peripheral registers are used for the different peripherals and then to the peripheral specific chapter for information about the size option available for the different registers.

7.5.8 Enabling and Disabling

Each DMA channel is enabled by writing a one to the Transfer Enable bit in the Control Register (CR.TEN) and disabled by writing a one to the Transfer Disable bit (CR.TDIS). The current status can be read from the Status Register (SR).

While the PDCA channel is enabled all DMA request will be handled as long the TCR and TCRR is not zero.

7.5.9 Interrupts

Interrupts can be enabled by writing a one to the corresponding bit in the Interrupt Enable Register (IER) and disabled by writing a one to the corresponding bit in the Interrupt Disable Register (IDR). The Interrupt Mask Register (IMR) can be read to see whether an interrupt is enabled or not. The current status of an interrupt source can be read through the Interrupt Status Register (ISR).

The PDCA has three interrupt sources:

- Reload Counter Zero The TCRR register is zero.
- Transfer Finished Both the TCR and TCRR registers are zero.
- Transfer Error An error has occurred in accessing memory.

7.7.29 Perf Name:	ormance Char PWLAT	nnel 1 Write M	ax Latency				
Access Type:	Read/W	Vrite					
Offset:	0x830						
Reset Value:	0x0000	0000					
31	30	29	28	27	26	25	24
-	-	-	-	-	-	-	-
23	22	21	20	19	18	17	16
-	-	-	-	-	-	-	-
15	14	13	12	11	10	9	8
			LAT[15:8]			
7	6	5	4	3	2	1	0
			LAT	[7:0]			

LAT: Maximum Transfer Initiation Cycles Counted Since Last Reset

Clock cycles are counted using the CLK_PDCA_HSB clock

This counter is saturating. The register is reset only when PCONTROL.CH1RES is written to one.

Atmel

8.7.1.11	USB D	escriptor Address
Register Na	ame:	UDESC
Access Typ	be:	Read-Write
Offset:		0x0830
Reset Value	e:	-

31	30	29	28	27	26	25	24		
	UDESCA[31:24]								
23	22	21	20	19	18	17	16		
UDESCA[23:16]									
15	14	13	12	11	10	9	8		
	UDESCA[15:8]								
7	6	5	4	3	2	1	0		
	UDESCA[7:0]								

• UDESCA: USB Descriptor Address

This field contains the address of the USB descriptor. The three least significant bits are always zero.

Atmel

rent transfer, if no other master request is pending, the slave remains connected to the last master that performed the access. Other non privileged masters still get one latency cycle if they want to access the same slave. This technique can be used for masters that mainly perform single accesses.

• Round-Robin Arbitration with Fixed Default Master

This is another biased round-robin algorithm. It allows the Bus Matrix arbiters to remove the one latency cycle for the fixed default master per slave. At the end of the current access, the slave remains connected to its fixed default master. Every request attempted by this fixed default master will not cause any latency whereas other non privileged masters will still get one latency cycle. This technique can be used for masters that mainly perform single accesses.

11.4.2.3 Fixed Priority Arbitration

This algorithm allows the Bus Matrix arbiters to dispatch the requests from different masters to the same slave by using the fixed priority defined by the user. If two or more master requests are active at the same time, the master with the highest priority number is serviced first. If two or more master requests with the same priority are active at the same time, the master with the highest number is serviced first.

For each slave, the priority of each master may be defined through the Priority Registers for Slaves (PRAS and PRBS).

11.4.3 Slave and Master assignation

The index number assigned to Bus Matrix slaves and masters are described in the Module Configuration section at the end of this chapter.

Atmel

11.5.3 Bus Matrix Priority Registers A For Slaves

Register Name:	PRAS0PRAS15
Access Type:	Read/Write
Offset:	-
Reset Value:	0x0000000

31	30	29	28	27	26	25	24
-	-	M7	'PR	-	-	M6	PR
23	22	21	20	19	18	17	16
-	-	M5PR		-	-	M4PR	
15	14	13	12	11	10	9	8
-	-	M3PR		-	-	M2	PR
7	6	5	4	3	2	1	0
-	-	M1	PR	-	-	MO	PR

• MxPR: Master x Priority

Fixed priority of Master x for accessing the selected slave. The higher the number, the higher the priority.

	0	Timer/Counter	TC10
26	1	Timer/Counter	TC11
	2	Timer/Counter	TC12
27	0	ADC Interface	ADCIFB
28	0	Analog Comparator Interface	ACIFB
29	0	Capacitive Touch Module	CAT
30	0	aWire	AW
31	0	Audio Bitstream DAC	ABDACB
32	0	USB 2.0 Interface	USBC
33	0	Inter-IC Sound (I2S) Controller	IISC

Table 12-3.Interrupt Request Signal Map

Atmel

14.6.1 Interrupt Enable Register

Name:	IER
Access Type:	Write-only
Offset:	0x0000
Reset Value:	0x00000000

31	30	29	28	27	26	25	24
AE	-	-	-	-	-	-	-
23	22	21	20	19	18	17	16
-	-	-	-	-	PLLLOCKLO ST0	PLLLOCK0	BRIFARDY
15	14	13	12	11	10	9	8
DFLL0RCS	DFLLORDY	DFLL0LOCK LOSTA	DFLL0LOCK LOSTF	DFLL0LOCK LOSTC	DFLL0LOCK A	DFLL0LOCK F	DFLL0LOCK C
7	6	5	4	3	2	1	0
BODDET	SM33DET	VREGOK	-	-	-	OSCORDY	OSC32RDY

Writing a zero to a bit in this register has no effect.

Writing a one to a bit in this register will set the corresponding bit in IMR.

Atmel

14.6.19 Supply Monitor 33 Calibration Register

Name:	SM33
Access Type:	Read/Write

Reset Value:

31	30	29	28	27	26	25	24
-	-	-	-		SAMPI	FREQ	
23	22	21	20	19	18	17	16
-	-	-	-	-	ONSM	SFV	FCD
15	14	13	12	11	10	9	8
-	-	-	-		CAL	_IB	
7	6	5	4	3	2	1	0
FS	-	-	-		CTI	RL	

• SAMPFREQ: Sampling Frequency

Selects the sampling mode frequency of the 3.3V supply monitor. In sampling mode, the SM33 performs a measurement every $2^{(SAMPFREQ+5)}$ cycles of the internal 32kHz RC oscillator.

• ONSM: Supply Monitor On Indicator

- 0: The supply monitor is disabled.
- 1: The supply monitor is enabled.

This bit is read-only. Writing to this bit has no effect.

• SFV: Store Final Value

- 0: The register is read/write
- 1: The register is read-only, to protect against further accidental writes.

This bit is cleared after a reset.

FCD: Flash Calibration Done

This bit is cleared after a reset.

This bit is set when CALIB field has been updated after a reset.

- CALIB: Calibration Value
 - Calibration Value for the SM33.

• FS: Force Sampling Mode

- 0: Sampling mode is enabled in DeepStop and Static mode only.
- 1: Sampling mode is always enabled.
- CTRL: Supply Monitor Control

14.6.27 Fractional Prescaler Control Register

Name:	FPCR
Access Type:	Read/Write
Reset Value:	0x0000000

31	30	29	28	27	26	25	24
-	-	-	-	-	-	-	-
23	22	21	20	19	18	17	16
-	-	-	-	-	-	-	-
15	14	13	12	11	10	9	8
-	-	-	-	-	-	-	-
7	6	5	4	3	2	1	0
-	-	-	-		CKSEL		FPEN

• CKSEL: Clock input selection

This field selects the Clock input for the prescaler. See the "FP clock sources" table in the SCIF Module Configuration section for details. It must not be changed if the FPEN is one.

• FPEN: High Resolution Prescaler Enable

0: The Fractional Prescaler is disabled.

1: The Fractional Prescaler is enabled.

Atmel

14.6.28 Fractional Prescaler Mul Register

Name:	FPMUL
Access Type:	Read/Write
Reset Value:	0x00000000

31	30	29	28	27	26	25	24	
-	-	-	-	-	-	-	-	
23	22	21	20	19	18	17	16	
-	-	-	-	-	-	-	-	
15	14	13	12	11	10	9	8	
FPMUL[15:8]								
7	6	5	4	3	2	1	0	
	FPMUL[7:0]							

• FPMUL: Fractional Prescaler Multiplication Factor

This field selects the multiplication factor for the prescaler.

Notice that FPMUL is always smaller than FPDIV. FPMUL can be written to dynamically in order to tune the FPCLK frequency on-the-go.

Atmel

15.6.9 Alarm	Alarm Register 0				
Name:	AR0				
Access Type:	Read/Write				
Offset:	0x20				
Reset Value:	0x0000000				

31	30	29	28	27	26	25	24
			VALUE	[31:24]			
23	22	21	20	19	18	17	16
	VALUE[23:16]						
15	14	13	12	11	10	9	8
	VALUE[15:8]						
7	6	5	4	3	2	1	0
	VALUE[7:0]						

When the SR.BUSY bit is set writes to this register will be discarded and this register will read as zero.

• VALUE: Alarm Value

When the counter reaches this value, an alarm is generated.

17.7.8Level RegisterName:LEVELAccess Type:Read/WriteOffset:0x01CReset Value:0x0000000

31	30	29	28	27	26	25	24
-	INT30	INT29	INT28	INT27	INT26	INT25	INT24
23	22	21	20	19	18	17	16
INT23	INT22	INT21	INT20	INT19	INT18	INT17	INT16
15	14	13	12	11	10	9	8
INT15	INT14	INT13	INT12	INT11	INT10	INT9	INT8
7	6	5	4	3	2	1	0
INT7	INT6	INT5	INT4	INT3	INT2	INT1	NMI

• INTn: External Interrupt n

0: The external interrupt triggers on low level.

1: The external interrupt triggers on high level.

Please refer to the Module Configuration section for the number of external interrupts.

• NMI: Non-Maskable Interrupt

0: The Non-Maskable Interrupt triggers on low level.

1: The Non-Maskable Interrupt triggers on high level.

Atmel

22.9.14 Vers Name:	sion Register (\ VR	/R)					
Access Type:	Read-o	nly					
Offset:	0x34						
Reset Value:	-						
31	30	29	28	27	26	25	24
-	-	-	-	-	-	-	-
23	22	21	20	19	18	17	16
-	-	-	-	VARIANT			
15	14	13	12	11	10	9	8
-	-	-	-	VERSION [11:8]			
7	6	5	4	3	2	1	0
			VERSI	ON [7:0]			

• VARIANT: Variant Number

Reserved. No functionality associated.

• VERSION: Version Number

Version number of the module. No functionality associated.

Atmel

24.8 User Interface

Offset	Register	Register Name	Access	Reset
0x00	Control Register	CR	Write-only	0x0000000
0x04	Mode Register	MR	Read/Write	0x0000000
0x08	Status Register	SR	Read-only	0x0000000
0x0C	Status Clear Register	SCR	Write-only	0x0000000
0x10	Status Set Register	SSR	Write-only	0x0000000
0x14	Interrupt Enable Register	IER	Write-only	0x0000000
0x18	Interrupt Disable Register	IDR	Write-only	0x0000000
0x1C	Interrupt Mask Register	IMR	Read-only	0x0000000
0x20	Receiver Holding Register	RHR	Read-only	0x0000000
0x24	Transmitter Holding Register	THR	Write-only	0x0000000
0x28	Version Register	VERSION	Read-only	_(1)
0x2C	Parameter Register	PARAMETER	Read-only	_(1)

Table 24-3. IISC Register Memory Map

Note: 1. The reset values for these registers are device specific. Please refer to the Module Configuration section at the end of this chapter.

ATUC64/128/256L3/4U

26.7 User Interface

Table 26-3. TC Register Memory Map

Offset	Register	Register Name	Access	Reset
0x00	Channel 0 Control Register	CCR0	Write-only	0x0000000
0x04	Channel 0 Mode Register	CMR0	Read/Write	0x0000000
0x10	Channel 0 Counter Value	CV0	Read-only	0x0000000
0x14	Channel 0 Register A	RA0	Read/Write ⁽¹⁾	0x0000000
0x18	Channel 0 Register B	RB0	Read/Write ⁽¹⁾	0x0000000
0x1C	Channel 0 Register C	RC0	Read/Write	0x0000000
0x20	Channel 0 Status Register	SR0	Read-only	0x0000000
0x24	Interrupt Enable Register	IER0	Write-only	0x0000000
0x28	Channel 0 Interrupt Disable Register	IDR0	Write-only	0x0000000
0x2C	Channel 0 Interrupt Mask Register	IMR0	Read-only	0x0000000
0x40	Channel 1 Control Register	CCR1	Write-only	0x0000000
0x44	Channel 1 Mode Register	CMR1	Read/Write	0x0000000
0x50	Channel 1 Counter Value	CV1	Read-only	0x0000000
0x54	Channel 1 Register A	RA1	Read/Write ⁽¹⁾	0x0000000
0x58	Channel 1 Register B	RB1	Read/Write ⁽¹⁾	0x0000000
0x5C	Channel 1 Register C	RC1	Read/Write	0x0000000
0x60	Channel 1 Status Register	SR1	Read-only	0x0000000
0x64	Channel 1 Interrupt Enable Register	IER1	Write-only	0x0000000
0x68	Channel 1 Interrupt Disable Register	IDR1	Write-only	0x0000000
0x6C	Channel 1 Interrupt Mask Register	IMR1	Read-only	0x0000000
0x80	Channel 2 Control Register	CCR2	Write-only	0x0000000
0x84	Channel 2 Mode Register	CMR2	Read/Write	0x0000000
0x90	Channel 2 Counter Value	CV2	Read-only	0x0000000
0x94	Channel 2 Register A	RA2	Read/Write ⁽¹⁾	0x0000000
0x98	Channel 2 Register B	RB2	Read/Write ⁽¹⁾	0x0000000
0x9C	Channel 2 Register C	RC2	Read/Write	0x0000000
0xA0	Channel 2 Status Register	SR2	Read-only	0x0000000
0xA4	Channel 2 Interrupt Enable Register	IER2	Write-only	0x0000000
0xA8	Channel 2 Interrupt Disable Register	IDR2	Write-only	0x0000000
0xAC	Channel 2 Interrupt Mask Register	IMR2	Read-only	0x0000000
0xC0	Block Control Register	BCR	Write-only	0x0000000
0xC4	Block Mode Register	BMR	Read/Write	0x00000000
0xF8	Features Register	FEATURES	Read-only	_(2)
0xFC	Version Register	VERSION	Read-only	_(2)

29. ADC Interface (ADCIFB)

Rev:1.0.1.1

29.1 Features

- Multi-channel Analog-to-Digital Converter with up to 12-bit resolution
- Enhanced Resolution Mode
 - 11-bit resolution obtained by interpolating 4 samples
 - 12-bit resolution obtained by interpolating 16 samples
 - Glueless interface with resistive touch screen panel, allowing
 - Resistive Touch Screen position measurement
 - Pen detection and pen loss detection
- Integrated enhanced sequencer
 - ADC Mode
 - Resistive Touch Screen Mode
- Numerous trigger sources
 - Software
 - Embedded 16-bit timer for periodic trigger
 - Pen detect trigger
 - Continuous trigger
 - External trigger, rising, falling, or any-edge trigger
 - Peripheral event trigger
- ADC Sleep Mode for low power ADC applications
- Programmable ADC timings
 - Programmable ADC clock
 - Programmable startup time

29.2 Overview

The ADC Interface (ADCIFB) converts analog input voltages to digital values. The ADCIFB is based on a Successive Approximation Register (SAR) 10-bit Analog-to-Digital Converter (ADC). The conversions extend from 0V to ADVREFP.

The ADCIFB supports 8-bit and 10-bit resolution mode, in addition to enhanced resolution mode with 11-bit and 12-bit resolution. Conversion results are reported in a common register for all channels.

The 11-bit and 12-bit resolution modes are obtained by interpolating multiple samples to acquire better accuracy. For 11-bit mode 4 samples are used, which gives an effective sample rate of 1/4 of the actual sample frequency. For 12-bit mode 16 samples are used, giving a effective sample rate of 1/16 of actual. This arrangement allows conversion speed to be traded for better accuracy.

Conversions can be started for all enabled channels, either by a software trigger, by detection of a level change on the external trigger pin (TRIGGER), or by an integrated programmable timer.

When the Resistive Touch Screen Mode is enabled, an integrated sequencer automatically configures the pad control signals and performs resistive touch screen conversions.

The ADCIFB also integrates an ADC Sleep Mode, a Pen-Detect Mode, and an Analog Compare Mode, and connects with one Peripheral DMA Controller channel. These features reduce both power consumption and processor intervention.

29.9.9 Interrupt Enable Register

Name.	1-11
Access Type:	Write-only
Offset:	0x20

Reset Value: 0x0000000

31	30	29	28	27	26	25	24
-	-	-	-	-	-	-	-
23	22	21	20	19	18	17	16
-	-	-	-	-	-	-	-
15	14	13	12	11	10	9	8
-	CELSE	CGT	CLT	-	-	BUSY	READY
7	6	5	4	3	2	1	0
-	-	NOCNT	PENCNT	-	-	OVRE	DRDY

Writing a zero to a bit in this register has no effect.

Writing a one to a bit in this register will set the corresponding bit in IMR.

Atmel

30.9.6 Interrupt Status Register

name.	ion		
Access Type:	Read-only		
Offset:	0x1C		
Reset Value:	0x0000000		

31	30	29	28	27	26	25	24
-	-	-	-	WFINT3	WFINT2	WFINT1	WFINT0
23	22	21	20	19	18	17	16
-	-	-	-	-	-	-	-
15	14	13	12	11	10	9	8
SUTINT7	ACINT7	SUTINT6	ACINT6	SUTINT5	ACINT5	SUTINT4	ACINT4
7	6	5	4	3	2	1	0
SUTINT3	ACINT3	SUTINT2	ACINT2	SUTINT1	ACINT1	SUTINT0	ACINT0

• WFINTn: Window Mode Interrupt Status

0: No Window Mode Interrupt is pending.

1: Window Mode Interrupt is pending.

This bit is cleared when the corresponding bit in ICR is written to one.

This bit is set when the corresponding channel pair operating in window mode generated an interrupt.

SUTINTn: ACn Startup Time Interrupt Status

0: No Startup Time Interrupt is pending.

1: Startup Time Interrupt is pending.

This bit is cleared when the corresponding bit in ICR is written to one.

This bit is set when the startup time of the corresponding AC has passed.

• ACINTn: ACn Interrupt Status

0: No Normal Mode Interrupt is pending.

1: Normal Mode Interrupt is pending.

This bit is cleared when the corresponding bit in ICR is written to one.

This bit is set when the corresponding channel generated an interrupt.