Figure 8-4. Pad events

The Suspend Interrupt bit in the Device Global Interrupt register (UDINT.SUSP) is set and the Wakeup Interrupt (UDINT.WAKEUP) bit is cleared when a USB Suspend state has been detected on the USB bus. This event automatically puts the USB pad in the Idle state. The detection of a non-idle event sets WAKEUP, clears SUSP, and wakes the USB pad.

The pad goes to the Idle state if the module is disabled or if UDCON.DETACH is written to one. It returns to the Active state when USBCON.USBE is written to one and DETACH is written to zero.

8.7.1.2	General	eral Status Register				
Register Na	me:	USBSTA				
Access Typ	e:	Read-Only				
Offset:		0x0804				
Reset Value):	0x0000000				

31	30	29	28	27	26	25	24
-	-	-	-	-	-	-	-
23	22	21	20	19	18	17	16
-	-	-	-	-	-	-	-
15	14	13	12	11	10	9	8
-	CLKUSABLE	SPE	SPEED		-	-	-
7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	-

• CLKUSABLE: Generic Clock Usable

This bit is cleared when the USB generic clock is not usable.

This bit is set when the USB generic clock (that should be 48 Mhz) is usable.

• SPEED: Speed Status

This field is set according to the controller speed mode.

SPEED	Speed Status
00	full-speed mode
01	Reserved
10	low-speed mode
11	Reserved

8.7.1.8	e Register 1				
Register Na	me:	UNAME1			
Access Typ	e:	Read-Only			
Offset:		0x0824			
Reset Value):	-			

31	30	29	28	27	26	25	24			
	UNAME1[31:24]									
23	22	21	20	19	18	17	16			
UNAME1[23:16]										
15	14	13	12	11	10	9	8			
UNAME1[15:8]										
7	6	5	4	3	2	1	0			
UNAME1[7:0]										

• UNAME1: IP Name Part One

This field indicates the first part of the ASCII-encoded name of the USBC IP.

Atmel

8.7.2.5 Device Global Interrupt Enable Register
Register Name: UDINTE
Access Type: Read-Only
Offset: 0x0010

Reset Value: 0x0000000

31	30	29	28	27	26	25	24
-	-	-	-	-	-	-	-
23	22	21	20	19	18	17	16
-	-	-	EP8INTE ⁽¹⁾	EP7INTE ⁽¹⁾	EP6INTE ⁽¹⁾	EP5INTE ⁽¹⁾	EP4INTE ⁽¹⁾
15	14	13	12	11	10	9	8
EP3INTE ⁽¹⁾	EP2INTE ⁽¹⁾	EP1INTE ⁽¹⁾	EP0INTE	-	-	-	-
7	6	5	4	3	2	1	0
-	UPRSME	EORSME	WAKEUPE	EORSTE	SOFE	-	SUSPE

Note: 1. EPnINTE bits are within the range from EP0INTE to EP6INTE.

0: The corresponding interrupt is disabled.

1: The corresponding interrupt is enabled.

A bit in this register is cleared when the corresponding bit in UDINTECLR is written to one.

A bit in this register is set when the corresponding bit in UDINTESET is written to one.

10.6.12 Remap Name:	Target Reg RTRn	gister n					
Access Type:	Read/\	Write					
Offset:	n*4						
Reset Value:	0x000	00000					
31	30	29	28	27	26	25	24
			RTR[31:24]			
23	22	21	20	19	18	17	16
			RTR[23:16]			
15	14	13	12	11	10	9	8
			RTR	[15:8]			
7	6	5	4	3	2	1	0
			RTR	[7:0]			

• RTR: Remap Target Address for Channel n

RTR[31:16] must have one of the following values, any other value will result in UNDEFINED behavior:

0xFFFC

0xFFFD

0xFFFE

0xFFFF

RTR[1:0] must be written to 00, any other value will result in UNDEFINED behavior.

Atmel

13.7.7 Clock Failure Detector Control Register

Name:	CFDCTRL
Access Type:	Read/Write
Offset:	0x054
Reset Value:	0x00000000

31	30	29	28	27	26	25	24
SFV	-	-	-	-	-	-	-
23	22	21	20	19	18	17	16
-	-	-	-	-	-	-	-
15	14	13	12	11	10	9	8
-	-	-	-	-	-	-	-
7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	CFDEN

• SFV: Store Final Value

0: The register is read/write

1: The register is read-only, to protect against further accidental writes.

• CFDEN: Clock Failure Detection Enable

0: Clock Failure Detector is disabled

1: Clock Failure Detector is enabled

Note that this register is protected by a lock. To write to this register the UNLOCK register has to be written first. Please refer to the UNLOCK register description for details.

Atmel

16.4.1 Power Management

When the WDT is enabled, the WDT remains clocked in all sleep modes. It is not possible to enter sleep modes where the source clock of CLK_CNT is stopped. Attempting to do so will result in the device entering the lowest sleep mode where the source clock is running, leaving the WDT operational. Please refer to the Power Manager chapter for details about sleep modes.

After a watchdog reset the WDT bit in the Reset Cause Register (RCAUSE) in the Power Manager will be set.

16.4.2 Clocks

The clock for the WDT bus interface (CLK_WDT) is generated by the Power Manager. This clock is enabled at reset, and can be disabled in the Power Manager. It is recommended to disable the WDT before disabling the clock, to avoid freezing the WDT in an undefined state.

There are two possible clock sources for the Watchdog Timer (CLK_CNT):

- System RC oscillator (RCSYS): This oscillator is always enabled when selected as clock source for the WDT. Please refer to the Power Manager chapter for details about the RCSYS and sleep modes. Please refer to the Electrical Characteristics chapter for the characteristic frequency of this oscillator.
- 32 KHz crystal oscillator (OSC32K): This oscillator has to be enabled in the System Control Interface before using it as clock source for the WDT. The WDT will not be able to detect if this clock is stopped.

16.4.3 Debug Operation

The WDT counter is frozen during debug operation, unless the Run In Debug bit in the Development Control Register is set and the bit corresponding to the WDT is set in the Peripheral Debug Register (PDBG). Please refer to the On-Chip Debug chapter in the AVR32UC Technical Reference Manual, and the OCD Module Configuration section, for details. If the WDT counter is not frozen during debug operation it will need periodically clearing to avoid a watchdog reset.

16.4.4 Fuses

The WDT can be enabled at reset. This is controlled by the WDTAUTO fuse, see Section 16.5.4 for details. Please refer to the Fuse Settings section in the Flash Controller chapter for details about WDTAUTO and how to program the fuses.

16.5 Functional Description

16.5.1 Basic Mode

16.5.1.1 WDT Control Register Access

To avoid accidental disabling of the watchdog, the Control Register (CTRL) must be written twice, first with the KEY field set to 0x55, then 0xAA without changing the other bits. Failure to do so will cause the write operation to be ignored, and the value in the CTRL Register will not be changed.

16.5.1.2 Changing CLK_CNT Clock Source

After any reset, except for watchdog reset, CLK_CNT will be enabled with the RCSYS as source.

17.7.7Edge RegisterName:EDGEAccess Type:Read/WriteOffset:0x018Reset Value:0x0000000

31	30	29	28	27	26	25	24
-	INT30	INT29	INT28	INT27	INT26	INT25	INT24
23	22	21	20	19	18	17	16
INT23	INT22	INT21	INT20	INT19	INT18	INT17	INT16
15	14	13	12	11	10	9	8
INT15	INT14	INT13	INT12	INT11	INT10	INT9	INT8
7	6	5	4	3	2	1	0
INT7	INT6	INT5	INT4	INT3	INT2	INT1	NMI

• INTn: External Interrupt n

0: The external interrupt triggers on falling edge.

1: The external interrupt triggers on rising edge.

Please refer to the Module Configuration section for the number of external interrupts.

• NMI: Non-Maskable Interrupt

0: The Non-Maskable Interrupt triggers on falling edge.

1: The Non-Maskable Interrupt triggers on rising edge.

18.6.10 Vers	Version Register					
Name:	VERSION					
Access Type:	Read-only					
Offset:	0x3FC					
Reset Value:	-					

31	30	29	28	27	26	25	24		
-	-	-	-	-	-	-	-		
23	22	21	20	19	18	17	16		
-	-	-	-	VARIANT					
15	14	13	12	11	10	9	8		
-	-	-	-	VERSION[11:8]					
7	6	5	4	3	2	1	0		
	VERSION[7:0]								

• VARIANT: Variant number

Reserved. No functionality associated.

• VERSION: Version number

Version number of the module. No functionality associated.

Atmel

0: The FIFO is not used in reception (only one character can be stored in the SPI).

MODFDIS: Mode Fault Detection

1: Mode fault detection is disabled. If the I/O controller does not have open-drain capability, mode fault detection **must** be disabled for proper operation of the SPI.

0: Mode fault detection is enabled.

PCSDEC: Chip Select Decode

0: The chip selects are directly connected to a peripheral device.

1: The four chip select lines are connected to a 4- to 16-bit decoder.

When PCSDEC equals one, up to 15 Chip Select signals can be generated with the four lines using an external 4- to 16-bit decoder. The CSRn registers define the characteristics of the 15 chip selects according to the following rules:

CSR0 defines peripheral chip select signals 0 to 3.

CSR1 defines peripheral chip select signals 4 to 7.

CSR2 defines peripheral chip select signals 8 to 11.

CSR3 defines peripheral chip select signals 12 to 14.

• PS: Peripheral Select

1: Variable Peripheral Select.

0: Fixed Peripheral Select.

MSTR: Master/Slave Mode

1: SPI is in master mode.

0: SPI is in slave mode.

Atmel

22.8 Functional Description

22.8.1 Transfer Format

The data put on the TWD line must be 8 bits long. Data is transferred MSB first; each byte must be followed by an acknowledgement. The number of bytes per transfer is unlimited (see Figure 22-4).

Each transfer begins with a START condition and terminates with a STOP condition (see Figure 22-4).

- A high-to-low transition on the TWD line while TWCK is high defines the START condition.
- A low-to-high transition on the TWD line while TWCK is high defines a STOP condition.

Figure 22-3. START and STOP Conditions

Figure 22-4. Transfer Format

22.8.2 Operation

The TWIM has two modes of operation:

- Master transmitter mode
- Master receiver mode

The master is the device which starts and stops a transfer and generates the TWCK clock. These modes are described in the following chapters.

ATUC64/128/256L3/4U

Figure 22-12. Combining a Write and Read Transfer

To generate this transfer:

- 1. Write CMDR with START=1, STOP=0, DADR, NBYTES=2 and READ=0.
- 2. Write NCMDR with START=1, STOP=1, DADR, NBYTES=2 and READ=1.
- 3. Wait until SR.TXRDY==1, then write first data byte to transfer to THR.
- 4. Wait until SR.TXRDY==1, then write second data byte to transfer to THR.
- 5. Wait until SR.RXRDY==1, then read first data byte received from RHR.
- 6. Wait until SR.RXRDY==1, then read second data byte received from RHR.

22.8.7.4 Read Followed by Write

Consider the following transfer:

START, DADR+R, DATA+A, DATA+NA, REPSTART, DADR+W, DATA+A, DATA+A, STOP.

To generate this transfer:

- 1. Write CMDR with START=1, STOP=0, DADR, NBYTES=2 and READ=1.
- 2. Write NCMDR with START=1, STOP=1, DADR, NBYTES=2 and READ=0.
- 3. Wait until SR.RXRDY==1, then read first data byte received from RHR.
- 4. Wait until SR.RXRDY==1, then read second data byte received from RHR.
- 5. Wait until SR.TXRDY==1, then write first data byte to transfer to THR.
- 6. Wait until SR.TXRDY==1, then write second data byte to transfer to THR.

25.7.9	Status Clear Register				
Name:		SCR			
Access T	ype:	Write-only			
Offset:		0x20			
Reset Val	ue:	0x00000000			

31	30	29	28	27	26	25	24
-	-	-	-	-	-	-	-
23	22	21	20	19	18	17	16
-	-	-	-	-	-	-	-
15	14	13	12	1	10	9	8
-	-	-	-	-	-	-	-
7	6	5	4	3	2	1	0
-	-	-	-	-	READY	-	TOFL

Writing a zero to a bit in this register has no effect.

Writing a one to a bit in this register will clear the corresponding bit in SR and the corresponding interrupt request. This register always reads as zero.

25.7.12	Top Value Register				
Name:		TVR			
Access Ty	/pe:	Read/Write			
Offset:		0x2C			
Reset Valu	ue:	0x0000000			

31	30	29	28	27	26	25	24
-	-	-	-	-	-	-	-
23	22	21	20	19	18	17	16
-	-	-	-	-	-	-	-
15	14	13	12	11	10	9	8
-	-	-	-	TOP[11:8]			
7	6	5	4	3	2	1	0
			TOP	[7:0]			

• TOP: Timebase Counter Top Value

The top value for the timebase counter. The value written to the CR.TOP field will automatically be written to the 8 least significant bits of this field while the 4 most significant bits will be 0. When this register is written, it will also automatically update the CR.TOP field with the 8 least significant bits.

The effective top value of the timebase counter is defined by both TVR.TOP and the CR.SPREAD. Refer to Section 25.6.2 for more information.

26.7.2 Channel Mode Register: Capture Mode

Name:	CMR
Access Type:	Read/Write
Offset:	0x04 + n * 0x40
Reset Value:	0x00000000

31	30	29	28	27	26	25	24
-	-	-	-	-	-	-	-
23	22	21	20	19	18	17	16
-	-	-	-	LD	RB	LDRA	
15	14	13	12	11	10	9	8
WAVE	CPCTRG	-	-	-	ABETRG	ETRGEDG	
7	6	5	4	3	2	1	0
LDBDIS	LDBSTOP	BUI	RST	CLKI		TCCLKS	

LDRB: RB Loading Selection

LDRB	Edge
0	none
1	rising edge of TIOA
2	falling edge of TIOA
3	each edge of TIOA

• LDRA: RA Loading Selection

LDRA	Edge
0	none
1	rising edge of TIOA
2	falling edge of TIOA
3	each edge of TIOA

• WAVE

1: Capture mode is disabled (Waveform mode is enabled).

0: Capture mode is enabled.

• CPCTRG: RC Compare Trigger Enable

1: RC Compare resets the counter and starts the counter clock.

0: RC Compare has no effect on the counter and its clock.

ABETRG: TIOA or TIOB External Trigger Selection

1: TIOA is used as an external trigger.

35.6.6 32 kHz RC Oscillator (RC32K) Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{OUT}	Output frequency ⁽¹⁾		20	32	44	kHz
I _{RC32K}	Current consumption			0.7		μA
t _{STARTUP}	Startup time ⁽¹⁾			100		μs

Table 35-16. 32kHz RC Oscillator Characteristics

Note: 1. These values are based on simulation and characterization of other AVR microcontrollers manufactured in the same process technology. These values are not covered by test limits in production.

35.6.7 System RC Oscillator (RCSYS) Characteristics

Table 35-17. System RC Oscillator Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{out}	Output frequency	Calibrated at 85°C	111.6	115	118.4	kHz

35.7 Flash Characteristics

Table 35-18 gives the device maximum operating frequency depending on the number of flash wait states and the flash read mode. The FSW bit in the FLASHCDW FSR register controls the number of wait states used when accessing the flash memory.

Table 35-18. Maximum Operating Frequency

Flash Wait States	Read Mode	Maximum Operating Frequency		
1	Ligh around road mode	50MHz		
0	High speed read mode	25MHz		
1	Normal road made	30MHz		
0	Normai read mode	15MHz		

 Table 35-19.
 Flash Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{FPP}	Page programming time			5		
t _{FPE}	Page erase time	f 50MU-		5		
t _{FFP}	Fuse programming time	$I_{CLK_{HSB}} = 50101HZ$		1		ms
t _{FEA}	Full chip erase time (EA)			6		
t _{FCE}	JTAG chip erase time (CHIP_ERASE)	f _{CLK_HSB} = 115kHz		310		

The flash programming time is now:

	Table 38-1.	Flash Characteristics
--	-------------	-----------------------

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{FPP}	Page programming time			7.5		-
T _{FPE}	Page erase time	6 COMU-		7.5		
T _{FFP}	Fuse programming time	I _{CLK_HSB} = 5010Hz		1		ms
T _{FEA}	Full chip erase time (EA)			9		me
T _{FCE}	JTAG chip erase time (CHIP_ERASE)	f _{CLK_HSB} = 115kHz		250		

Fix/Workaround

None.

4. Power Manager

5. Clock Failure Detector (CFD) can be issued while turning off the CFD

While turning off the CFD, the CFD bit in the Status Register (SR) can be set. This will change the main clock source to RCSYS.

Fix/Workaround

Solution 1: Enable CFD interrupt. If CFD interrupt is issues after turning off the CFD, switch back to original main clock source.

Solution 2: Only turn off the CFD while running the main clock on RCSYS.

6. Sleepwalking in idle and frozen sleep mode will mask all other PB clocks

If the CPU is in idle or frozen sleep mode and a module is in a state that triggers sleep walking, all PB clocks will be masked except the PB clock to the sleepwalking module. **Fix/Workaround**

Mask all clock requests in the PM.PPCR register before going into idle or frozen mode.

4. Unused PB clocks are running

Three unused PBA clocks are enabled by default and will cause increased active power consumption.

Fix/Workaround

Disable the clocks by writing zeroes to bits [27:25] in the PBA clock mask register.

38.5.3 SCIF

1. The RC32K output on PA20 is not always permanently disabled

The RC32K output on PA20 may sometimes re-appear.

Fix/Workaround

Before using RC32K for other purposes, the following procedure has to be followed in order to properly disable it:

- Run the CPU on RCSYS
- Disable the output to PA20 by writing a zero to PM.PPCR.RC32OUT

- Enable RC32K by writing a one to SCIF.RC32KCR.EN, and wait for this bit to be read as one

- Disable RC32K by writing a zero to SCIF.RC32KCR.EN, and wait for this bit to be read as zero.

2. PLL lock might not clear after disable

ATUC64/128/256L3/4U

	15.7	Module Configuration	351
16	Watch	dog Timer (WDT)	352
	16.1	Features	352
	16.2	Overview	352
	16.3	Block Diagram	352
	16.4	Product Dependencies	352
	16.5	Functional Description	353
	16.6	User Interface	358
	16.7	Module Configuration	
17	Extern	al Interrupt Controller (EIC)	365
	17.1	Features	
	17.2	Overview	
	17.3	Block Diagram	
	17.4	I/O Lines Description	
	17.5	Product Dependencies	
	17.6	Functional Description	
	17.7	User Interface	
	17.8	Module Configuration	
18	Freque	ency Meter (FREQM)	387
	18.1	Features	
	18.2	Overview	
	18.3	Block Diagram	
	18.4	Product Dependencies	
	18.5	Functional Description	
	18.6	User Interface	
	18.7	Module Configuration	401
19	Genera	al-Purpose Input/Output Controller (GPIO)	403
	19.1	Features	403
	19.2	Overview	403
	19.3	Block Diagram	403
	19.4	I/O Lines Description	404
	19.5	Product Dependencies	404
	19.6	Functional Description	405
	19.7	User Interface	410
	19.8	Module Configuration	433

