

Welcome to <u>E-XFL.COM</u>

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	AVR
Core Size	32-Bit Single-Core
Speed	50MHz
Connectivity	I ² C, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	36
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.62V ~ 3.6V
Data Converters	A/D 8x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-VFQFN Exposed Pad
Supplier Device Package	48-QFN (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/atmel/atuc256l4u-zaut

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2. Overview

2.1 Block Diagram

B0	Channel 0 Line B	I/O		
B1	Channel 1 Line B	I/O		
B2	Channel 2 Line B	I/O		
CLK0	Channel 0 External Clock Input	Input		
CLK1	Channel 1 External Clock Input	Input		
CLK2	Channel 2 External Clock Input	Input		
	Two-wire Interface - TW	/IMS0, TWIM	S1	
TWALM	SMBus SMBALERT	I/O	Low	
ТѠСК	Two-wire Serial Clock	I/O		
TWD	Two-wire Serial Data	I/O		
Universal S	ynchronous Asynchronous Receiver Trans	smitter - USA	RT0, USART	1, USART2, USART3
CLK	Clock	I/O		
CTS	Clear To Send	Input	Low	
RTS	Request To Send	Output	Low	
RXD	Receive Data	Input		
TXD	Transmit Data	Output		

Table 3-7.Signal Descriptions List

Note: 1. ADCIFB: AD3 does not exist.

Table 3-8.	Signal Description List, Continued
------------	------------------------------------

Signal Name	Function	Туре	Active Level	Comments		
	Power					
VDDCORE	Core Power Supply / Voltage Regulator Output	Power Input/Output		1.62V to 1.98V		
VDDIO	I/O Power Supply	Power Input		1.62V to 3.6V. VDDIO should always be equal to or lower than VDDIN.		
VDDANA	Analog Power Supply	Power Input		1.62V to 1.98V		
ADVREFP	Analog Reference Voltage	Power Input		1.62V to 1.98V		
VDDIN	Voltage Regulator Input	Power Input		1.62V to 3.6V ⁽¹⁾		
GNDANA	Analog Ground	Ground				
GND	Ground	Ground				
Auxiliary Port - AUX						
МСКО	Trace Data Output Clock	Output				
MDO5 - MDO0	Trace Data Output	Output				

Debug state can be entered as described in the AVR32UC Technical Reference Manual.

Debug state is exited by the *retd* instruction.

4.4.3.3 Secure State

The AVR32 can be set in a secure state, that allows a part of the code to execute in a state with higher security levels. The rest of the code can not access resources reserved for this secure code. Secure State is used to implement FlashVault technology. Refer to the *AVR32UC Technical Reference Manual* for details.

4.4.4 System Registers

The system registers are placed outside of the virtual memory space, and are only accessible using the privileged *mfsr* and *mtsr* instructions. The table below lists the system registers specified in the AVR32 architecture, some of which are unused in AVR32UC. The programmer is responsible for maintaining correct sequencing of any instructions following a *mtsr* instruction. For detail on the system registers, refer to the *AVR32UC Technical Reference Manual*.

Reg #	Address	Name	Function
0	0	SR	Status Register
1	4	EVBA	Exception Vector Base Address
2	8	ACBA	Application Call Base Address
3	12	CPUCR	CPU Control Register
4	16	ECR	Exception Cause Register
5	20	RSR_SUP	Unused in AVR32UC
6	24	RSR_INT0	Unused in AVR32UC
7	28	RSR_INT1	Unused in AVR32UC
8	32	RSR_INT2	Unused in AVR32UC
9	36	RSR_INT3	Unused in AVR32UC
10	40	RSR_EX	Unused in AVR32UC
11	44	RSR_NMI	Unused in AVR32UC
12	48	RSR_DBG	Return Status Register for Debug mode
13	52	RAR_SUP	Unused in AVR32UC
14	56	RAR_INT0	Unused in AVR32UC
15	60	RAR_INT1	Unused in AVR32UC
16	64	RAR_INT2	Unused in AVR32UC
17	68	RAR_INT3	Unused in AVR32UC
18	72	RAR_EX	Unused in AVR32UC
19	76	RAR_NMI	Unused in AVR32UC
20	80	RAR_DBG	Return Address Register for Debug mode
21	84	JECR	Unused in AVR32UC
22	88	JOSP	Unused in AVR32UC
23	92	JAVA_LV0	Unused in AVR32UC

Table 4-3. System Registers

7.7.20 Perf Name:	ormance Char PRLAT	n nel 0 Read M 0	ax Latency				
Access Type:	Read/W	Vrite					
Offset:	0x80C						
Reset Value:	0x0000	0000					
31	30	29	28	27	26	25	24
-	-	-	-	-	-	-	-
23	22	21	20	19	18	17	16
-	-	-	-	-	-	-	-
15	14	13	12	11	10	9	8
LAT[15:8]							
7	6	5	4	3	2	1	0
			LAT	[7:0]			

LAT: Maximum Transfer Initiation Cycles Counted Since Last Reset

Clock cycles are counted using the CLK_PDCA_HSB clock

This counter is saturating. The register is reset only when PCONTROL.CH0RES is written to one.

Atmel

7.7.21 Perform Name:	mance Cha PWDA	nnel 0 Write D a TA0	ata Cycles				
Access Type:	Read-c	only					
Offset:	0x810						
Reset Value:	0x0000	0000					
31	30	29	28	27	26	25	24
			DATA[31:24]			
23	22	21	20	19	18	17	16
			DATA[23:16]			
15	14	13	12	11	10	9	8
			DATA	[15:8]			
7	6	5	4	3	2	1	0
			DATA	A[7:0]			

DATA: Data Cycles Counted Since Last Reset

Clock cycles are counted using the CLK_PDCA_HSB clock

Atmel

Figure 8-4. Pad events

The Suspend Interrupt bit in the Device Global Interrupt register (UDINT.SUSP) is set and the Wakeup Interrupt (UDINT.WAKEUP) bit is cleared when a USB Suspend state has been detected on the USB bus. This event automatically puts the USB pad in the Idle state. The detection of a non-idle event sets WAKEUP, clears SUSP, and wakes the USB pad.

The pad goes to the Idle state if the module is disabled or if UDCON.DETACH is written to one. It returns to the Active state when USBCON.USBE is written to one and DETACH is written to zero.

Atmel

EPSIZE			Endpoint Size
1	0	1	256 bytes
1	1	0	512 bytes
1	1	1	1024 bytes

This field is cleared upon receiving a USB reset (except for the endpoint 0).

• EPBK: Endpoint Banks

This bit selects the number of banks for the endpoint:

0: single-bank endpoint

1: double-bank endpoint

For control endpoints, a single-bank endpoint shall be selected.

This field is cleared upon receiving a USB reset (except for the endpoint 0).

ATUC64/128/256L3/4U

	IMATTIX negister memory map (cont	indea)		
Offset	Register	Name	Access	Reset Value
0x012C	Special Function Register 7	SFR7	Read/Write	-
0x0130	Special Function Register 8	SFR8	Read/Write	_
0x0134	Special Function Register 9	SFR9	Read/Write	_
0x0138	Special Function Register 10	SFR10	Read/Write	_
0x013C	Special Function Register 11	SFR11	Read/Write	_
0x0140	Special Function Register 12	SFR12	Read/Write	_
0x0144	Special Function Register 13	SFR13	Read/Write	_
0x0148	Special Function Register 14	SFR14	Read/Write	_
0x014C	Special Function Register 15	SFR15	Read/Write	_

Table 11-1. HMATRIX Register Memory Map (Continued)

Atmel

13.7.7 Clock Failure Detector Control Register

Name:	CFDCTRL
Access Type:	Read/Write
Offset:	0x054
Reset Value:	0x00000000

31	30	29	28	27	26	25	24
SFV	-	-	-	-	-	-	-
23	22	21	20	19	18	17	16
-	-	-	-	-	-	-	-
15	14	13	12	11	10	9	8
-	-	-	-	-	-	-	-
7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	CFDEN

• SFV: Store Final Value

0: The register is read/write

1: The register is read-only, to protect against further accidental writes.

• CFDEN: Clock Failure Detection Enable

0: Clock Failure Detector is disabled

1: Clock Failure Detector is enabled

Note that this register is protected by a lock. To write to this register the UNLOCK register has to be written first. Please refer to the UNLOCK register description for details.

Atmel

14.6.2 Interrupt Disable Register

Name:	IDR
Access Type:	Write-only
Offset:	0x0004
Reset Value:	0x0000000

31	30	29	28	27	26	25	24
AE	-	-	-	-	-	-	-
00	00	04	00	10	10	47	10
23	22	21	20	19	18	17	16
-	-	-	-	-	PLLLOCKLO ST0	PLLLOCK0	BRIFARDY
15	14	13	12	11	10	9	8
DFLLORCS	DFLLORDY	DFLL0LOCK LOSTA	DFLL0LOCK LOSTF	DFLL0LOCK LOSTC	DFLL0LOCK A	DFLL0LOCK F	DFLL0LOCK C
7	6	5	4	3	2	1	0
BODDET	SM33DET	VREGOK	-	-	-	OSC0RDY	OSC32RDY

Writing a zero to a bit in this register has no effect.

Writing a one to a bit in this register will clear the corresponding bit in IMR.

Atmel

15.6.11 Periodic Interval Register 0

Name:	PIRU
Access Type:	Read/Write
Offset:	0x30
Reset Value:	0x00000000

31	30	29	28	27	26	25	24
-	-	-	-	-	-	-	-
23	22	21	20	10	18	17	16
20		21	20	10	10	17	10
-	-	-	-	-	-	-	-
15	14	13	12	11	10	9	8
-	-	-	-	-	-	-	-
7	6	5	4	3	2	1	0
-	-	-			INSEL		

When the SR.BUSY bit is set writes to this register will be discarded and this register will read as zero.

• INSEL: Interval Select

The PER0 bit in SR will be set when the INSEL bit in the prescaler has a 0-to-1 transition.

17.7.14 Control Register

Name:	CTRL
Access Type:	Read-only
Offset:	0x038
Reset Value:	0x00000000

31	30	29	28	27	26	25	24
-	INT30	INT29	INT28	INT27	INT26	INT25	INT24
23	22	21	20	19	18	17	16
INT23	INT22	INT21	INT20	INT19	INT18	INT17	INT16
15	14	13	12	11	10	9	8
INT15	INT14	INT13	INT12	INT11	INT10	INT9	INT8
7	6	5	4	3	2	1	0
INT7	INT6	INT5	INT4	INT3	INT2	INT1	NMI

• INTn: External Interrupt n

0: The corresponding external interrupt is disabled.

1: The corresponding external interrupt is enabled.

Please refer to the Module Configuration section for the number of external interrupts.

• NMI: Non-Maskable Interrupt

0: The Non-Maskable Interrupt is disabled.

1: The Non-Maskable Interrupt is enabled.

Atmel

18.6.6 Interrupt Disable Register

Name:	IDR
Access Type:	Write-only
Offset:	0x014
Reset Value:	0x00000000

31	30	29	28	27	26	25	24
-	-	-	-	-	-	-	-
23	22	21	20	19	18	17	16
-	-	-	-	-	-	-	-
15	14	13	12	11	10	9	8
-	-	-	-	-	-	-	-
7	6	5	4	3	2	1	0
-	-	-	-	-	-	RCLKRDY	DONE

Writing a zero to a bit in this register has no effect.

Writing a one to a bit in this register will clear the corresponding bit in IMR.

Atmel

21.8.4 Transmit Data Register

Name:	IDR
Access Type:	Write-only
Offset:	0x0C
Reset Value:	0x00000000

...

31	30	29	28	27	26	25	24
-	-	-	-	-	-	-	LASTXFER
23	22	21	20	19	18	17	16
-	-	-	-		PC	S	
15	14	13	12	11	10	9	8
			TD[⁻	15:8]			
7	6	5	4	3	2	1	0
	TD[7:0]						

• LASTXFER: Last Transfer

1: The current NPCS will be deasserted after the character written in TD has been transferred. When CSRn.CSAAT is one, this allows to close the communication with the current serial peripheral by raising the corresponding NPCS line as soon as TD transfer has completed.

0: Writing a zero to this bit has no effect.

This field is only used if Variable Peripheral Select is active (MR.PS = 1).

• PCS: Peripheral Chip Select

If PCSDEC = 0: PCS = xxx0NPCS[3:0] = 1110PCS = xx01NPCS[3:0] = 1101PCS = x011NPCS[3:0] = 1011PCS = 0111NPCS[3:0] = 0111PCS = 1111forbidden (no peripheral is selected) (x = don't care) If PCSDEC = 1: NPCS[3:0] output signals = PCS

This field is only used if Variable Peripheral Select is active (MR.PS = 1).

• TD: Transmit Data

Data to be transmitted by the SPI Interface is stored in this register. Information to be transmitted must be written to the TDR register in a right-justified format.

Event	Effect
Start+Sadr on bus, current slave is addressed, corresponding address match enable bit in CR set, SR.STREN and SR.SOAM are set.	Correct address match bit in SR is set. SR.TRA updated according to transfer direction (updating is done one CLK_TWIS cycle after address match bit is set). Slave stretches TWCK immediately after transmitting the address ACK bit. TWCK remains stretched until all address match bits in SR have been cleared. Slave enters appropriate transfer direction mode and data transfer can commence.
Repeated Start received after being addressed	SR.REP set. SR.TCOMP unchanged.
Stop received after being addressed	SR.STO set. SR.TCOMP set.
Start, Repeated Start, or Stop received in illegal position on bus	SR.BUSERR set. SR.STO and SR.TCOMP may or may not be set depending on the exact position of an illegal stop.
Data is to be received in slave receiver mode, SR.STREN is set, and RHR is full	TWCK is stretched until RHR has been read.
Data is to be transmitted in slave receiver mode, SR.STREN is set, and THR is empty	TWCK is stretched until THR has been written.
Data is to be received in slave receiver mode, SR.STREN is cleared, and RHR is full	TWCK is not stretched, read data is discarded. SR.ORUN is set.
Data is to be transmitted in slave receiver mode, SR.STREN is cleared, and THR is empty	TWCK is not stretched, previous contents of THR is written to bus. SR.URUN is set.
SMBus timeout received	SR.SMBTOUT is set. TWCK and TWD are immediately released.
Slave transmitter in SMBus PEC mode has transmitted a PEC byte, that was not identical to the PEC calculated by the master receiver.	Master receiver will transmit a NAK as usual after the last byte of a master receiver transfer. Master receiver will retry the transfer at a later time.
Slave receiver discovers SMBus PEC Error	SR.SMBPECERR is set. NAK returned after the data byte.

Table 23-5. Bus Events

Atmel

23.9 User Interface

Offset	Register	Register Name	Access	Reset
0x00	Control Register	CR	Read/Write	0x00000000
0x04	NBYTES Register	NBYTES	Read/Write	0x00000000
0x08	Timing Register	TR	Read/Write	0x00000000
0x0C	Receive Holding Register	RHR	Read-only	0x0000000
0x10	Transmit Holding Register	THR	Write-only	0x00000000
0x14	Packet Error Check Register	PECR	Read-only	0x00000000
0x18	Status Register	SR	Read-only	0x0000002
0x1C	Interrupt Enable Register	IER	Write-only	0x00000000
0x20	Interrupt Disable Register	IDR	Write-only	0x00000000
0x24	Interrupt Mask Register	IMR	Read-only	0x00000000
0x28	Status Clear Register	SCR	Write-only	0x00000000
0x2C	Parameter Register	PR	Read-only	_(1)
0x30	Version Register	VR	Read-only	_(1)

Table 23-6. TWIS Register Memory Map

Note: 1. The reset values for these registers are device specific. Please refer to the Module Configuration section at the end of this chapter.

ATUC64/128/256L3/4U

ATUC64/128/256L3/4U

- RB Compare Effect on TIOB (CMRn.BCPB)
- RC Compare Effect on TIOA (CMRn.ACPC)
- RA Compare Effect on TIOA (CMRn.ACPA)

SDR1) before $1/F_S$ second, or an underrun will occur, as indicated by the Underrun Interrupt bit in SR (SR.TXUR). The interrupt bits in SR are cleared by writing a one to the corresponding bit in the Status Clear Register (SCR).

28.6.12 Frequency Response

Figure 28-4 to Figure 28-7 show the frequency response for the system. The sampling frequency used is 48kHz, but the response will be the same for other sampling frequencies, always having the first zero at F_s .

- 7. Go to Update-DR and re-enter Select-DR Scan.
- 8. In Shift-DR: For a read operation, scan out the contents of the addressed register. For a write operation, scan in the new contents of the register.
- 9. Return to Run-Test/Idle.

For any operation, the full 7 bits of the address must be provided. For write operations, 32 data bits must be provided, or the result will be undefined. For read operations, shifting may be terminated once the required number of bits have been acquired.

Instructions	Details
IR input value	10100 (0x14)
IR output value	peb01
DR Size	34 bits
DR input value (Address phase)	aaaaaaar xxxxxxxx xxxxxxx xxxxxxx xx
DR input value (Data read phase)	XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XX
DR input value (Data write phase)	ddddddd ddddddd ddddddd xx
DR output value (Address phase)	xx xxxxxxx xxxxxxx xxxxxxx xxxxxxeb
DR output value (Data read phase)	eb ddddddd ddddddd ddddddd ddddddd
DR output value (Data write phase)	xx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxeb

Table 34-18. MEMORY_SERVICE Details

34.5.3.3 MEMORY_SIZED_ACCESS

This instruction allows access to the entire Service Access Bus data area. Data is accessed through a 36-bit byte index, a 2-bit size, a direction bit, and 8, 16, or 32 bits of data. Not all units mapped on the SAB bus may support all sizes of accesses, e.g., some may only support word accesses.

The data register is alternately interpreted by the SAB as an address register and a data register. The SAB starts in address mode after the MEMORY_SIZED_ACCESS instruction is selected, and toggles between address and data mode each time a data scan completes with the busy bit cleared.

Atmel