
Atmel - ATUC64L3U-Z3UT Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor AVR

Core Size 32-Bit Single-Core

Speed 50MHz

Connectivity I²C, SPI, UART/USART, USB

Peripherals Brown-out Detect/Reset, DMA, POR, PWM, WDT

Number of I/O 51

Program Memory Size 64KB (64K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 16K x 8

Voltage - Supply (Vcc/Vdd) 1.62V ~ 3.6V

Data Converters A/D 8x12b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 64-VFQFN Exposed Pad

Supplier Device Package 64-QFN (9x9)

Purchase URL https://www.e-xfl.com/product-detail/atmel/atuc64l3u-z3ut

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/atuc64l3u-z3ut-4382768
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

28
32142D–06/2013

ATUC64/128/256L3/4U

Debug state can be entered as described in the AVR32UC Technical Reference Manual.

Debug state is exited by the retd instruction.

4.4.3.3 Secure State
The AVR32 can be set in a secure state, that allows a part of the code to execute in a state with
higher security levels. The rest of the code can not access resources reserved for this secure
code. Secure State is used to implement FlashVault technology. Refer to the AVR32UC Techni-
cal Reference Manual for details.

4.4.4 System Registers
The system registers are placed outside of the virtual memory space, and are only accessible
using the privileged mfsr and mtsr instructions. The table below lists the system registers speci-
fied in the AVR32 architecture, some of which are unused in AVR32UC. The programmer is
responsible for maintaining correct sequencing of any instructions following a mtsr instruction.
For detail on the system registers, refer to the AVR32UC Technical Reference Manual.

Table 4-3. System Registers

Reg # Address Name Function

0 0 SR Status Register

1 4 EVBA Exception Vector Base Address

2 8 ACBA Application Call Base Address

3 12 CPUCR CPU Control Register

4 16 ECR Exception Cause Register

5 20 RSR_SUP Unused in AVR32UC

6 24 RSR_INT0 Unused in AVR32UC

7 28 RSR_INT1 Unused in AVR32UC

8 32 RSR_INT2 Unused in AVR32UC

9 36 RSR_INT3 Unused in AVR32UC

10 40 RSR_EX Unused in AVR32UC

11 44 RSR_NMI Unused in AVR32UC

12 48 RSR_DBG Return Status Register for Debug mode

13 52 RAR_SUP Unused in AVR32UC

14 56 RAR_INT0 Unused in AVR32UC

15 60 RAR_INT1 Unused in AVR32UC

16 64 RAR_INT2 Unused in AVR32UC

17 68 RAR_INT3 Unused in AVR32UC

18 72 RAR_EX Unused in AVR32UC

19 76 RAR_NMI Unused in AVR32UC

20 80 RAR_DBG Return Address Register for Debug mode

21 84 JECR Unused in AVR32UC

22 88 JOSP Unused in AVR32UC

23 92 JAVA_LV0 Unused in AVR32UC

48
32142D–06/2013

ATUC64/128/256L3/4U

If TCR is zero when writing to TCRR, the TCR and MAR are automatically updated with the
value written in TCRR and MARR.

7.5.5 Ring Buffer
When Ring Buffer mode is enabled the TCRR and MARR registers will not be cleared when
TCR and MAR registers reload. This allows the PDCA to read or write to the same memory
region over and over again until the transfer is actively stopped by the user. Ring Buffer mode is
enabled by writing a one to the Ring Buffer bit in the Mode Register (MR.RING).

7.5.6 Peripheral Selection
The Peripheral Select Register (PSR) decides which peripheral should be connected to the
PDCA channel. A peripheral is selected by writing the corresponding Peripheral Identity (PID) to
the PID field in the PSR register. Writing the PID will both select the direction of the transfer
(memory to peripheral or peripheral to memory), which handshake interface to use, and the
address of the peripheral holding register. Refer to the Peripheral Identity (PID) table in the Mod-
ule Configuration section for the peripheral PID values.

7.5.7 Transfer Size
The transfer size can be set individually for each channel to be either byte, halfword or word (8-
bit, 16-bit or 32-bit respectively). Transfer size is set by writing the desired value to the Transfer
Size field in the Mode Register (MR.SIZE).

When the PDCA moves data between peripherals and memory, data is automatically sized and
aligned. When memory is accessed, the size specified in MR.SIZE and system alignment is
used. When a peripheral register is accessed the data to be transferred is converted to a word
where bit n in the data corresponds to bit n in the peripheral register. If the transfer size is byte or
halfword, bits greater than 8 and16 respectively are set to zero.

Refer to the Module Configuration section for information regarding what peripheral registers are
used for the different peripherals and then to the peripheral specific chapter for information
about the size option available for the different registers.

7.5.8 Enabling and Disabling
Each DMA channel is enabled by writing a one to the Transfer Enable bit in the Control Register
(CR.TEN) and disabled by writing a one to the Transfer Disable bit (CR.TDIS). The current sta-
tus can be read from the Status Register (SR).

While the PDCA channel is enabled all DMA request will be handled as long the TCR and TCRR
is not zero.

7.5.9 Interrupts
Interrupts can be enabled by writing a one to the corresponding bit in the Interrupt Enable Regis-
ter (IER) and disabled by writing a one to the corresponding bit in the Interrupt Disable Register
(IDR). The Interrupt Mask Register (IMR) can be read to see whether an interrupt is enabled or
not. The current status of an interrupt source can be read through the Interrupt Status Register
(ISR).

The PDCA has three interrupt sources:

• Reload Counter Zero - The TCRR register is zero.

• Transfer Finished - Both the TCR and TCRR registers are zero.

• Transfer Error - An error has occurred in accessing memory.

67
32142D–06/2013

ATUC64/128/256L3/4U

7.7.19 Performance Channel 0 Read Stall Cycles
Name: PRSTALL0

Access Type: Read-only

Offset: 0x808

Reset Value: 0x00000000

• STALL: Stall Cycles Counted Since Last Reset
Clock cycles are counted using the CLK_PDCA_HSB clock

31 30 29 28 27 26 25 24

STALL[31:24]

23 22 21 20 19 18 17 16

STALL[23:16]

15 14 13 12 11 10 9 8

STALL[15:8]

7 6 5 4 3 2 1 0

STALL[7:0]

124
32142D–06/2013

ATUC64/128/256L3/4U

This field is cleared upon receiving a USB reset (except for the endpoint 0).

• EPBK: Endpoint Banks
This bit selects the number of banks for the endpoint:

0: single-bank endpoint

1: double-bank endpoint
For control endpoints, a single-bank endpoint shall be selected.

This field is cleared upon receiving a USB reset (except for the endpoint 0).

1 0 1 256 bytes

1 1 0 512 bytes

1 1 1 1024 bytes

EPSIZE Endpoint Size

134
32142D–06/2013

ATUC64/128/256L3/4U

8.8 Module Configuration
The specific configuration for each USBC instance is listed in the following tables. The module
bus clocks listed here are connected to the system bus clocks. Please refer to the Power Man-
ager chapter for details.

Table 8-6. USBC Clocks

Clock Name Description

CLK_USBC_PB Clock for the USBC PB interface

CLK_USBC_HSB Clock for the USBC HSB interface

GCLK_USBC The generic clock used for the USBC is GCLK7

Table 8-7. Register Reset Values

Register Reset Value

UVERS 0x00000200

UFEATURES 0x00000007

UADDRSIZE 0x00001000

UNAME1 0x48555342

UNAME2 0x00000000

153
32142D–06/2013

ATUC64/128/256L3/4U

• FSZ: Flash Size
The size of the flash. Not all device families will provide all flash sizes indicated in the table.

Table 9-10. Flash Size

FSZ Flash Size FSZ Flash Size

0 4 Kbyte 8 192 Kbyte

1 8 Kbyte 9 256 Kbyte

2 16 Kbyte 10 384 Kbyte

3 32 Kbyte 11 512 Kbyte

4 48 Kbyte 12 768 Kbyte

5 64 Kbyte 13 1024 Kbyte

6 96 Kbyte 14 2048 Kbyte

7 128 Kbyte 15 Reserved

178
32142D–06/2013

ATUC64/128/256L3/4U

10.6.9 Interrupt Clear Register
Name: ICR

Access Type: Write-only

Offset: 0x20

Reset Value: 0x00000000

Writing a zero to a bit in this register has no effect.
Writing a one to a bit in this register will clear the corresponding bit in SR and any corresponding interrupt request.

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - - -

7 6 5 4 3 2 1 0

RTRADR MBERROR URES URKEY URREAD CAU CAS EXP

227
32142D–06/2013

ATUC64/128/256L3/4U

13.7.6 PBA Divided Mask

Name: PBADIVMASK

Access Type: Read/Write

Offset: 0x040

Reset Value: 0x0000007F

• MASK: Clock Mask
If bit n is written to zero, the clock divided by 2(n+1) is stopped. If bit n is written to one, the clock divided by 2(n+1) is enabled
according to the current power mode. Table 13-10 shows what clocks are affected by the different MASK bits.

Note that this register is protected by a lock. To write to this register the UNLOCK register has to be written first. Please
refer to the UNLOCK register description for details.

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - -

15 14 13 12 11 10 9 8

- - - - - - - -

7 6 5 4 3 2 1 0

- MASK[6:0]

Table 13-10. Divided Clock Mask

Bit USART0 USART1 USART2 USART3 TC0 TC1

0 - - - - TIMER_CLOCK2 TIMER_CLOCK2

1 - - - - - -

2
CLK_USART/

DIV
CLK_USART/

DIV
CLK_USART/

DIV
CLK_USART/

DIV
TIMER_CLOCK3 TIMER_CLOCK3

3 - - - - - -

4 - - - - TIMER_CLOCK4 TIMER_CLOCK4

5 - - - - - -

6 - - - - TIMER_CLOCK5 TIMER_CLOCK5

291
32142D–06/2013

ATUC64/128/256L3/4U

14.6.20 Temperature Sensor Configuration Register

Name: TSENS

Access Type: Read/Write

Reset Value: 0x00000000

• EN: Temperature Sensor Enable
0: The Temperature Sensor is disabled.

1: The Temperature Sensor is enabled.

Note that this register is protected by a lock. To write to this register the UNLOCK register has to be written first. Please
refer to the UNLOCK register description for details.

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - - -

7 6 5 4 3 2 1 0

- - - - - EN

299
32142D–06/2013

ATUC64/128/256L3/4U

14.6.27 Fractional Prescaler Control Register

Name: FPCR

Access Type: Read/Write

Reset Value: 0x00000000

• CKSEL: Clock input selection
This field selects the Clock input for the prescaler. See the “FP clock sources” table in the SCIF Module Configuration section for

details. It must not be changed if the FPEN is one.
• FPEN: High Resolution Prescaler Enable

0: The Fractional Prescaler is disabled.
1: The Fractional Prescaler is enabled.

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - - -

7 6 5 4 3 2 1 0

- - - - CKSEL FPEN

304
32142D–06/2013

ATUC64/128/256L3/4U

14.6.32 PLL Version Register

Name: PLLVERSION

Access Type: Read-only

Offset: 0x03C4

Reset Value: -

• VARIANT: Variant number
Reserved. No functionality associated.

• VERSION: Version number
Version number of the module. No functionality associated.

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - VARIANT

15 14 13 12 11 10 9 8

- - - - VERSION[11:8]

7 6 5 4 3 2 1 0

VERSION[7:0]

312
32142D–06/2013

ATUC64/128/256L3/4U

14.6.40 Temperature Sensor Version Register

Name: TSENSIFAVERSION

Access Type: Read-only

Offset: 0x03E4

Reset Value: -

• VARIANT: Variant number
Reserved. No functionality associated.

• VERSION: Version number
Version number of the module. No functionality associated.

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - VARIANT

15 14 13 12 11 10 9 8

- - - - VERSION[11:8]

7 6 5 4 3 2 1 0

VERSION[7:0]

357
32142D–06/2013

ATUC64/128/256L3/4U

16.5.3 Disabling the WDT
The WDT is disabled by writing a zero to the CTRL.EN bit. When disabling the WDT no other
bits in the CTRL Register should be changed until the CTRL.EN bit reads back as zero. If the
CTRL.CEN bit is written to zero, the CTRL.EN bit will never read back as zero if changing the
value from one to zero.

16.5.4 Flash Calibration
The WDT can be enabled at reset. This is controlled by the WDTAUTO fuse. The WDT will be
set in basic mode, RCSYS is set as source for CLK_CNT, and PSEL will be set to a value giving
Tpsel above 100 ms. Please refer to the Fuse Settings chapter for details about WDTAUTO and
how to program the fuses.

If the Flash Calibration Done (FCD) bit in the CTRL Register is zero at a watchdog reset the
flash calibration will be redone, and the CTRL.FCD bit will be set when the calibration is done. If
CTRL.FCD is one at a watchdog reset, the configuration of the WDT will not be changed during
flash calibration. After any other reset the flash calibration will always be done, and the
CTRL.FCD bit will be set when the calibration is done.

16.5.5 Special Considerations
Care must be taken when selecting the PSEL/TBAN values so that the timeout period is greater
than the startup time of the device. Otherwise a watchdog reset will reset the device before any
code has been run. This can also be avoided by writing the CTRL.DAR bit to one when configur-
ing the WDT.

If the Store Final Value (SFV) bit in the CTRL Register is one, the CTRL Register is locked for
further write accesses. All writes to the CTRL Register will be ignored. Once the CTRL Register
is locked, it can only be unlocked by a reset (e.g. POR, OCD, and WDT).

The CTRL.MODE bit can only be changed when the WDT is disabled (CTRL.EN=0).

358
32142D–06/2013

ATUC64/128/256L3/4U

16.6 User Interface

Note: 1. The reset value for this register is device specific. Please refer to the Module Configuration section at the end of this chapter.

Table 16-1. WDT Register Memory Map

Offset Register Register Name Access Reset

0x000 Control Register CTRL Read/Write 0x00010080

0x004 Clear Register CLR Write-only 0x00000000

0x008 Status Register SR Read-only 0x00000003

0x3FC Version Register VERSION Read-only -(1)

417
32142D–06/2013

ATUC64/128/256L3/4U

19.7.7 Peripheral Mux Register 2
Name: PMR2

Access: Read/Write, Set, Clear, Toggle

Offset: 0x030, 0x034, 0x038, 0x03C

Reset Value: -

• P0-31: Peripheral Multiplexer Select bit 2

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

{PMR2, PMR1, PMR0} Selected Peripheral Function
000 A

001 B
010 C

011 D

100 E
101 F

110 G

111 H

455
32142D–06/2013

ATUC64/128/256L3/4U

• TFrame_Maximum = 1.4 x (THeader_Nominal + TResponse_Nominal + 1)(Note:)

Note: The term “+1” leads to an integer result for TFrame_Max (LIN Specification 1.3)

If the Checksum is sent (CHKDIS=0):

• TResponse_Nominal = 10 x (NData + 1)

• TFrame_Maximum = 1.4 x (34 + 10 x (DLC + 1 + 1) + 1)

• TFrame_Maximum = 77 + 14 x DLC

If the Checksum is not sent (CHKDIS=1):

• TResponse_Nominal = 10 x NData

• TFrame_Maximum = 1.4 x (34 + 10 x (DLC + 1) + 1)

• TFrame_Maximum = 63 + 14 x DLC

20.6.6 LIN Errors
These error bits are cleared by writing a one to CSR.RSTSTA.

20.6.6.1 Slave Not Responding Error (CSR.LINSNRE)
This error is generated if no valid message appears within the TFrame_Maximum time frame
slot, while the USART is expecting a response from another node (NACT=SUBSCRIBE).

20.6.6.2 Checksum Error (CSR.LINCE)
This error is generated if the received checksum is wrong. This error can only be generated if the
checksum feature is enabled (CHKDIS=0).

20.6.6.3 Identifier Parity Error (CSR.LINIPE)
This error is generated if the identifier parity is wrong. This error can only be generated if parity is
enabled (PARDIS=0).

20.6.6.4 Inconsistent Sync Field Error (CSR.LINISFE)
This error is generated in slave mode if the Sync Field character received is not 0x55. Synchro-
nization procedure is aborted.

20.6.6.5 Bit Error (CSR.LINBE)
This error is generated if the value transmitted by the USART on Tx differs from the value sam-
pled on Rx. If a bit error is detected, the transmission is aborted at the next byte border.

20.6.7 LIN Frame Handling

20.6.7.1 Master Node Configuration

• Write a one to CR.TXEN and CR.RXEN to enable both transmitter and receiver

• Select LIN mode and master node by writing to MR.MODE

• Configure the baud rate by writing to CD and FP in BRGR

• Configure the frame transfer by writing to NACT, PARDIS, CHKDIS, CHKTYPE, DLCM,
FSDIS, and DLC in LINMR

• Check that CSR.TXRDY is one

• Send the header by writing to LINIR.IDCHR

The following procedure depends on the NACT setting:

516
32142D–06/2013

ATUC64/128/256L3/4U

• BITS: Bits Per Transfer
The BITS field determines the number of data bits transferred. Reserved values should not be used.

• CSAAT: Chip Select Active After Transfer
1: The Peripheral Chip Select does not rise after the last transfer is achieved. It remains active until a new transfer is requested

on a different chip select.
0: The Peripheral Chip Select Line rises as soon as the last transfer is achieved.

• CSNAAT: Chip Select Not Active After Transfer (Ignored if CSAAT = 1)
0: The Peripheral Chip Select does not rise between two transfers if the TDR is reloaded before the end of the first transfer and

if the two transfers occur on the same Chip Select.

1: The Peripheral Chip Select rises systematically between each transfer performed on the same slave for a minimal duration of:

(if DLYBCT field is different from 0)

(if DLYBCT field equals 0)

• NCPHA: Clock Phase
1: Data is captured after the leading (inactive-to-active) edge of SPCK and changed on the trailing (active-to-inactive) edge of

SPCK.
0: Data is changed on the leading (inactive-to-active) edge of SPCK and captured after the trailing (active-to-inactive) edge of

SPCK.

NCPHA determines which edge of SPCK causes data to change and which edge causes data to be captured. NCPHA is used

with CPOL to produce the required clock/data relationship between master and slave devices.
• CPOL: Clock Polarity

1: The inactive state value of SPCK is logic level one.
0: The inactive state value of SPCK is logic level zero.

BITS Bits Per Transfer

0000 8

0001 9

0010 10

0011 11

0100 12

0101 13

0110 14

0111 15

1000 16

1001 4

1010 5

1011 6

1100 7

1101 Reserved

1110 Reserved

1111 Reserved

DLYBCS
CLKSPI

DLYBCS 1+

CLKSPI

577
32142D–06/2013

ATUC64/128/256L3/4U

23.9.2 NBYTES Register
Name: NBYTES

Access Type: Read/Write

Offset: 0x04

Reset Value: 0x00000000

• NBYTES: Number of Bytes to Transfer
Writing to this field updates the NBYTES counter. The field can also be read to learn the progress of the transfer. NBYTES can

be incremented or decremented automatically by hardware.

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - - -

7 6 5 4 3 2 1 0

NBYTES

741
32142D–06/2013

ATUC64/128/256L3/4U

29.9.14 Version Register
Name: VERSION

Access Type: Read-only

Offset: 0x34

Reset Value: 0x00000000

• VARIANT: Variant Number
Reserved. No functionality associated.

• VERSION: Version Number
Version number of the Module. No functionality associated.

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - VARIANT

15 14 13 12 11 10 9 8

- - - - VERSION[11:8]

7 6 5 4 3 2 1 0

VERSION[7:0]

861
32142D–06/2013

ATUC64/128/256L3/4U

which is linked to the JTAG through a bus master module, which also handles synchronization
between the TCK and SAB clocks.

For more information about the SAB and a list of SAB slaves see the Service Access Bus
chapter.

34.4.11.1 SAB Address Mode
The MEMORY_SIZED_ACCESS instruction allows a sized read or write to any 36-bit address
on the bus. MEMORY_WORD_ACCESS is a shorthand instruction for 32-bit accesses to any
36-bit address, while the NEXUS_ACCESS instruction is a Nexus-compliant shorthand instruc-
tion for accessing the 32-bit OCD registers in the 7-bit address space reserved for these. These
instructions require two passes through the Shift-DR TAP state: one for the address and control
information, and one for data.

34.4.11.2 Block Transfer
To increase the transfer rate, consecutive memory accesses can be accomplished by the
MEMORY_BLOCK_ACCESS instruction, which only requires a single pass through Shift-DR for
data transfer only. The address is automatically incremented according to the size of the last
SAB transfer.

34.4.11.3 Canceling a SAB Access
It is possible to abort an ongoing SAB access by the CANCEL_ACCESS instruction, to avoid
hanging the bus due to an extremely slow slave.

34.4.11.4 Busy Reporting
As the time taken to perform an access may vary depending on system activity and current chip
frequency, all the SAB access JTAG instructions can return a busy indicator. This indicates
whether a delay needs to be inserted, or an operation needs to be repeated in order to be suc-
cessful. If a new access is requested while the SAB is busy, the request is ignored.

The SAB becomes busy when:

• Entering Update-DR in the address phase of any read operation, e.g., after scanning in a
NEXUS_ACCESS address with the read bit set.

• Entering Update-DR in the data phase of any write operation, e.g., after scanning in data for
a NEXUS_ACCESS write.

• Entering Update-DR during a MEMORY_BLOCK_ACCESS.

• Entering Update-DR after scanning in a counter value for SYNC.

• Entering Update-IR after scanning in a MEMORY_BLOCK_ACCESS if the previous access
was a read and data was scanned after scanning the address.

The SAB becomes ready again when:

• A read or write operation completes.

• A SYNC countdown completed.

• A operation is cancelled by the CANCEL_ACCESS instruction.

What to do if the busy bit is set:

• During Shift-IR: The new instruction is selected, but the previous operation has not yet
completed and will continue (unless the new instruction is CANCEL_ACCESS). You may

