

100000

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	AVR
Core Size	32-Bit Single-Core
Speed	50MHz
Connectivity	I ² C, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	36
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.62V ~ 3.6V
Data Converters	A/D 8x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-UFLGA Exposed Pad
Supplier Device Package	48-TLLGA (5.5x5.5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atuc64l4u-d3ht

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

address exception. Doubleword-sized accesses with word-aligned pointers will automatically be performed as two word-sized accesses.

The following table shows the instructions with support for unaligned addresses. All other instructions require aligned addresses.

Table 4-1.	Instructions with	Unaligned	Reference Su	pport

Instruction	Supported Alignment
ld.d	Word
st.d	Word

4.3.2.5 Unimplemented Instructions

The following instructions are unimplemented in AVR32UC, and will cause an Unimplemented Instruction Exception if executed:

- All SIMD instructions
- All coprocessor instructions if no coprocessors are present
- retj, incjosp, popjc, pushjc
- tlbr, tlbs, tlbw
- cache

4.3.2.6 CPU and Architecture Revision

Three major revisions of the AVR32UC CPU currently exist. The device described in this datasheet uses CPU revision 3.

The Architecture Revision field in the CONFIG0 system register identifies which architecture revision is implemented in a specific device.

AVR32UC CPU revision 3 is fully backward-compatible with revisions 1 and 2, ie. code compiled for revision 1 or 2 is binary-compatible with revision 3 CPUs.

Atmel

ATUC64/128/256L3/4U

Priority	Handler Address	Name	Event source	Stored Return Address
1	0x80000000	Reset	External input	Undefined
2	Provided by OCD system	OCD Stop CPU	OCD system	First non-completed instruction
3	EVBA+0x00	Unrecoverable exception	Internal	PC of offending instruction
4	EVBA+0x04	TLB multiple hit	MPU	PC of offending instruction
5	EVBA+0x08	Bus error data fetch	Data bus	First non-completed instruction
6	EVBA+0x0C	Bus error instruction fetch	Data bus	First non-completed instruction
7	EVBA+0x10	NMI	External input	First non-completed instruction
8	Autovectored	Interrupt 3 request	External input	First non-completed instruction
9	Autovectored	Interrupt 2 request	External input	First non-completed instruction
10	Autovectored	Interrupt 1 request	External input	First non-completed instruction
11	Autovectored	Interrupt 0 request	External input	First non-completed instruction
12	EVBA+0x14	Instruction Address	CPU	PC of offending instruction
13	EVBA+0x50	ITLB Miss	MPU	PC of offending instruction
14	EVBA+0x18	ITLB Protection	MPU	PC of offending instruction
15	EVBA+0x1C	Breakpoint	OCD system	First non-completed instruction
16	EVBA+0x20	Illegal Opcode	Instruction	PC of offending instruction
17	EVBA+0x24	Unimplemented instruction	Instruction	PC of offending instruction
18	EVBA+0x28	Privilege violation	Instruction	PC of offending instruction
19	EVBA+0x2C	Floating-point	UNUSED	
20	EVBA+0x30	Coprocessor absent	Instruction	PC of offending instruction
21	EVBA+0x100	Supervisor call	Instruction	PC(Supervisor Call) +2
22	EVBA+0x34	Data Address (Read)	CPU	PC of offending instruction
23	EVBA+0x38	Data Address (Write)	CPU	PC of offending instruction
24	EVBA+0x60	DTLB Miss (Read)	MPU	PC of offending instruction
25	EVBA+0x70	DTLB Miss (Write)	MPU	PC of offending instruction
26	EVBA+0x3C	DTLB Protection (Read)	MPU	PC of offending instruction
27	EVBA+0x40	DTLB Protection (Write)	MPU	PC of offending instruction
28	EVBA+0x44	DTLB Modified	UNUSED	

 Table 4-4.
 Priority and Handler Addresses for Events

Atmel

7.7.21 Perform Name:	mance Cha PWDA	nnel 0 Write D a TA0	ata Cycles				
Access Type:	Read-c	only					
Offset:	0x810						
Reset Value:	0x0000	0000					
31	30	29	28	27	26	25	24
			DATA[31:24]			
23	22	21	20	19	18	17	16
			DATA[23:16]			
15	14	13	12	11	10	9	8
			DATA	[15:8]			
7	6	5	4	3	2	1	0
			DATA	A[7:0]			

DATA: Data Cycles Counted Since Last Reset

Clock cycles are counted using the CLK_PDCA_HSB clock

Atmel

8.7.1.6	Features Register				
Register N	ame:	UFEATURES			
Access Ty	pe:	Read-Only			
Offset:		0x081C			
Reset Valu	le:	-			

31	30	29	28	27	26	25	24
-	-	-	-	-	-	-	-
23	22	21	20	19	18	17	16
-	-	-	-	-	-	-	-
15	14	13	12	11	10	9	8
-	-	-	-	-	-	-	-
7	6	5	4	3	2	1	0
-	-	-	-	EPTNBRMAX			

• EPTNBRMAX: Maximal Number of pipes/endpoints

This field indicates the number of hardware-implemented pipes/endpoints:

Atmel

11.5.5 Name:	Special Fu	nction Registe SFR0SFR15	ers					
Access T	ype:	Read/Write						
Offset:		0x110 - 0x14C	0x110 - 0x14C					
Reset Val	Reset Value: -							
31	(30	29	28	27	26	25	24
				SFR				
23	2	22	21	20	19	18	17	16
				SFR				
15		14	13	12	11	10	9	8
SFR								
7		6	5	4	3	2	1	0
1				JEN				

• SFR: Special Function Register Fields

Those registers are not a HMATRIX specific register. The field of those will be defined where they are used.

Atmel

1: Power-on Reset 3.3V is masked.

• POR33STATUS: Power-on Reset 3.3V Status

0: Power-on Reset is disabled.

1: Power-on Reset is enabled.

This bit is read-only. Writing to this bit has no effect.

• POR33EN: Power-on Reset 3.3V Enable

0: Writing a zero to this bit disables the POR33 detector.

1: Writing a one to this bit enables the POR33 detector.

DEEPDIS: Disable Regulator Deep Mode

- 0: Regulator will enter deep mode in low-power sleep modes for lower power consumption.
- 1: Regulator will stay in full-power mode in all sleep modes for shorter start-up time.

• FCD: Flash Calibration Done

- 0: The flash calibration will be redone after any reset.
- 1: The flash calibration will only be redone after a Power-on Reset.

This bit is cleared after a Power-on Reset.

This bit is set when the CALIB field has been updated by flash calibration after a reset.

• CALIB: Calibration Value

Calibration value for Voltage Regulator. This is calibrated during production and should not be changed.

ON: Voltage Regulator On Status

0: The voltage regulator is currently disabled.

1: The voltage regulator is currently enabled.

This bit is read-only. Writing to this bit has no effect.

• VREGOK: Voltage Regulator OK Status

0: The voltage regulator is disabled or has not yet reached a stable output voltage.

1: The voltage regulator has reached the output voltage threshold level after being enabled.

This bit is read-only. Writing to this bit has no effect.

- EN: Enable
 - 0: The voltage regulator is disabled.
 - 1: The voltage regulator is enabled.

Note: This bit is set after a Power-on Reset (POR).

• SELVDD: Select VDD

Output voltage of the Voltage Regulator. The default value of this bit corresponds to an output voltage of 1.8V.

Note that this register is protected by a lock. To write to this register the UNLOCK register has to be written first. Please refer to the UNLOCK register description for details.

14.6.21 120MHz RC Oscillator Configuration Register

Name: RC120MCR

Access Type: Read/Write

Reset Value: 0x0000000

31	30	29	28	27	26	25	24
-	-	-	-	-	-	-	-
23	22	21	20	19	18	17	16
-	-	-	-	-	-	-	-
15	14	13	12	11	10	9	8
-	-	-	-	-	-	-	-
7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	EN

• EN: RC120M Enable

0: The 120 MHz RC oscillator is disabled.

1: The 120 MHz RC oscillator is enabled.

Note that this register is protected by a lock. To write to this register the UNLOCK register has to be written first. Please refer to the UNLOCK register description for details.

Figure 20-28. Master Node Configuration, NACT=SUBSCRIBE

Figure 20-29. Master Node Configuration, NACT=IGNORE

20.6.7.2 Slave Node Configuration

This is identical to the master node configuration above, except for:

- LIN mode selected in MR.MODE is slave
- When the baud rate is configured, wait until CSR.LINID is a one, then;
- Check for LINISFE and LINPE errors, clear errors and LINIDby writing a one to RSTSTA
- Read IDCHR
- Configure the frame transfer by writing to NACT, PARDIS, CHKDIS, CHKTYPE, DLCM, and DLC in LINMR

IMPORTANT: if NACT=PUBLISH, and this field is already correct, the LINMR register must still be written with this value in order to set TXRDY, and to request the corresponding Peripheral DMA Controller write transfer.

The different NACT settings result in the same procedure as for the master node, see page 455.

21. Serial Peripheral Interface (SPI)

Rev: 2.1.1.3

21.1 Features

- Compatible with an embedded 32-bit microcontroller
- Supports communication with serial external devices
 - Four chip selects with external decoder support allow communication with up to 15 peripherals
 - Serial memories, such as DataFlash and 3-wire EEPROMs
 - Serial peripherals, such as ADCs, DACs, LCD controllers, CAN controllers and Sensors
 - External co-processors
- Master or Slave Serial Peripheral Bus Interface
 - 4 to 16-bit programmable data length per chip select
 - Programmable phase and polarity per chip select
 - Programmable transfer delays between consecutive transfers and between clock and data per chip select
 - Programmable delay between consecutive transfers
 - Selectable mode fault detection
- Connection to Peripheral DMA Controller channel capabilities optimizes data transfers
 - One channel for the receiver, one channel for the transmitter
 - Next buffer support
 - Four character FIFO in reception

21.2 Overview

The Serial Peripheral Interface (SPI) circuit is a synchronous serial data link that provides communication with external devices in Master or Slave mode. It also enables communication between processors if an external processor is connected to the system.

The Serial Peripheral Interface is essentially a shift register that serially transmits data bits to other SPIs. During a data transfer, one SPI system acts as the "master" which controls the data flow, while the other devices act as "slaves" which have data shifted into and out by the master. Different CPUs can take turn being masters (Multiple Master Protocol opposite to Single Master Protocol where one CPU is always the master while all of the others are always slaves) and one master may simultaneously shift data into multiple slaves. However, only one slave may drive its output to write data back to the master at any given time.

A slave device is selected when the master asserts its NSS signal. If multiple slave devices exist, the master generates a separate slave select signal for each slave (NPCS).

The SPI system consists of two data lines and two control lines:

- Master Out Slave In (MOSI): this data line supplies the output data from the master shifted into the input(s) of the slave(s).
- Master In Slave Out (MISO): this data line supplies the output data from a slave to the input of the master. There may be no more than one slave transmitting data during any particular transfer.
- Serial Clock (SPCK): this control line is driven by the master and regulates the flow of the data bits. The master may transmit data at a variety of baud rates; the SPCK line cycles once for each bit that is transmitted.
- Slave Select (NSS): this control line allows slaves to be turned on and off by hardware.

21.8.9	Chip Select Register 0				
Name:		CSR0			
Access	Гуре:	Read/Write			
Offset:		0x30			
Reset Va	alue:	0x00000000			

31	30	29	28	27	26	25	24
			DLY	ВСТ			
23	22	21	20	19	18	17	16
			DL	/BS			
15	14	13	12	11	10	9	8
			SC	BR			
7	6	5	4	3	2	1	0
	BIT	S		CSAAT	CSNAAT	NCPHA	CPOL

• DLYBCT: Delay Between Consecutive Transfers

This field defines the delay between two consecutive transfers with the same peripheral without removing the chip select. The delay is always inserted after each transfer and before removing the chip select if needed.

When DLYBCT equals zero, no delay between consecutive transfers is inserted and the clock keeps its duty cycle over the character transfers.

Otherwise, the following equation determines the delay:

Delay Between Consecutive Transfers = $\frac{32 \times DLYBCT}{CLKSPI}$

• DLYBS: Delay Before SPCK

This field defines the delay from NPCS valid to the first valid SPCK transition. When DLYBS equals zero, the NPCS valid to SPCK transition is 1/2 the SPCK clock period. Otherwise, the following equations determine the delay:

Delay Before SPCK =
$$\frac{DLYBS}{CLKSPI}$$

• SCBR: Serial Clock Baud Rate

In Master Mode, the SPI Interface uses a modulus counter to derive the SPCK baud rate from the CLK_SPI. The Baud rate is selected by writing a value from 1 to 255 in the SCBR field. The following equations determine the SPCK baud rate:

SPCK Baudrate =
$$\frac{CLKSPI}{SCBR}$$

Writing the SCBR field to zero is forbidden. Triggering a transfer while SCBR is zero can lead to unpredictable results.

At reset, SCBR is zero and the user has to write it to a valid value before performing the first transfer.

If a clock divider (SCBRn) field is set to one and the other SCBR fields differ from one, access on CSn is correct but no correct access will be possible on other CS.

24.9 Module configuration

The specific configuration for each IISC instance is listed in the following tables. The module bus clocks listed here are connected to the system bus clocks. Please refer to the Power Manager chapter for details.

Table 24-7. IISC Clocks

Clock Name Description			
CLK_IISC	Clock for the IISC bus interface		
GCLK	The generic clock used for the IISC is GCLK6		

Table 24-8.Register Reset Values

Register	Reset Value
VERSION	0x00000100

30.5.4 Interrupts

The ACIFB interrupt request line is connected to the interrupt controller. Using the ACIFB interrupt requires the interrupt controller to be programmed first.

30.5.5 Peripheral Events

The ACIFB peripheral events are connected via the Peripheral Event System. Refer to the Peripheral Event System chapter for details.

30.5.6 Debug Operation

When an external debugger forces the CPU into debug mode, the ACIFB continues normal operation. If the ACIFB is configured in a way that requires it to be periodically serviced by the CPU through interrupts or similar, improper operation or data loss may result during debugging.

30.6 Functional Description

The ACIFB is enabled by writing a one to the Control Register Enable bit (CTRL.EN). Additionally, the comparators must be individually enabled by programming the MODE field in the AC Configuration Register (CONFn.MODE).

The results from the individual comparators can either be used directly (normal mode), or the results from two comparators can be grouped to generate a comparison window (window mode). All comparators need not be in the same mode, some comparators may be in normal mode, while others are in window mode. There are restrictions on which AC channels that can be grouped together in a window pair, see Section 30.6.5.

30.6.1 Analog Comparator Operation

Each AC channel can be in one of four different modes, determined by CONFn.MODE:

- Off
- Continuous Measurement Mode (CM)
- User Triggered Single Measurement Mode (UT)
- Event Triggered Single Measurement Mode (ET)

After being enabled, a startup time defined in CTRL.SUT is required before the result of the comparison is ready. The GCLK is used for measuring the startup time of a comparator,

During the startup time the AC output is not available. When the ACn Ready bit in the Status Register (SR.ACRDYn) is one, the output of ACn is ready. In window mode the result is available when both the comparator outputs are ready (SR.ACRDYn=1 and SR.ACRDYn+1=1).

30.6.1.1 Continuous Measurement Mode

In CM, the Analog Comparator is continuously enabled and performing comparisons. This ensures that the result of the latest comparison is always available in the ACn Current Comparison Status bit in the Status Register (SR.ACCSn). Comparisons are done on every positive edge of GCLK.

CM is enabled by writing CONFn.MODE to 1. After the startup time has passed, a comparison is done and SR is updated. Appropriate peripheral events and interrupts are also generated. New comparisons are performed continuously until the CONFn.MODE field is written to 0.

ATUC64/128/256L3/4U

30.9 User Interface

Table 30-4. ACIFB Register Memory Map

Offset	Register	Register Name	Access	Reset
0x00	Control Register	CTRL	Read/Write	0x00000000
0x04	Status Register	SR	Read-only	0x00000000
0x10	Interrupt Enable Register	IER	Write-only	0x00000000
0x14	Interrupt Disable Register	IDR	Write-only	0x00000000
0x18	Interrupt Mask Register	IMR	Read-only	0x00000000
0x1C	Interrupt Status Register	ISR	Read-only	0x00000000
0x20	Interrupt Status Clear Register	ICR	Write-only	0x00000000
0x24	Test Register	TR	Read/Write	0x00000000
0x30	Parameter Register	PARAMETER	Read-only	_(1)
0x34	Version Register	VERSION	Read-only	_(1)
0x80	Window0 Configuration Register	CONFW0	Read/Write	0x00000000
0x84	Window1 Configuration Register	CONFW1	Read/Write	0x00000000
0x88	Window2 Configuration Register	CONFW2	Read/Write	0x00000000
0x8C	Window3 Configuration Register	CONFW3	Read/Write	0x00000000
0xD0	AC0 Configuration Register	CONF0	Read/Write	0x00000000
0xD4	AC1 Configuration Register	CONF1	Read/Write	0x00000000
0xD8	AC2 Configuration Register	CONF2	Read/Write	0x00000000
0xDC	AC3 Configuration Register	CONF3	Read/Write	0x00000000
0xE0	AC4 Configuration Register	CONF4	Read/Write	0x00000000
0xE4	AC5 Configuration Register	CONF5	Read/Write	0x00000000
0xE8	AC6 Configuration Register	CONF6	Read/Write	0x00000000
0xEC	AC7 Configuration Register	CONF7	Read/Write	0x00000000

Note: 1. The reset values for these registers are device specific. Please refer to the Module Configuration section at the end of this chapter.

Atmel

32. Glue Logic Controller (GLOC)

Rev: 1.0.0.0

32.1 Features

- Glue logic for general purpose PCB design
- Programmable lookup table
- Up to four inputs supported per lookup table
- Optional filtering of output

32.2 Overview

The Glue Logic Controller (GLOC) contains programmable logic which can be connected to the device pins. This allows the user to eliminate logic gates for simple glue logic functions on the PCB.

The GLOC consists of a number of lookup table (LUT) units. Each LUT can generate an output as a user programmable logic expression with four inputs. Inputs can be individually masked.

The output can be combinatorially generated from the inputs, or filtered to remove spikes.

32.3 Block Diagram

Figure 32-1. GLOC Block Diagram

34.6.3 Block Diagram

Figure 34-8. aWire Debug Interface Block Diagram

34.6.4 I/O Lines Description

Table 34-29.	I/O Lines Description
--------------	-----------------------

Name	Description	Туре
DATA	aWire data multiplexed with the RESET_N pin.	Input/Output
DATAOUT	aWire data output in 2-pin mode.	Output

Atmel

34.6.5 Product Dependencies

In order to use this module, other parts of the system must be configured correctly, as described below.

34.6.7 aWire Command Summary

The implemented aWire commands are shown in the table below. The responses from the AW are listed in Section 34.6.8.

Table 34-31.	aWire	Command	Summar	y
--------------	-------	---------	--------	---

COMMAND	Instruction	Description
0x01	AYA	"Are you alive".
0x02	JTAG_ID	Asks AW to return the JTAG IDCODE.
0x03	STATUS_REQUEST	Request a status message from the AW.
0x04	TUNE	Tell the AW to report the current baud rate.
0x05	MEMORY_SPEED_REQUEST	Reports the speed difference between the aWire control and the SAB clock domains.
0x06	CHIP_ERASE	Erases the flash and all volatile memories.
0x07	DISABLE	Disables the AW.
0x08	2_PIN_MODE	Enables the DATAOUT pin and puts the aWire in 2-pin mode, where all responses are sent on the DATAOUT pin.
0x80	MEMORY_WRITE	Writes words, halfwords, or bytes to the SAB.
0x81	MEMORY_READ	Reads words, halfwords, or bytes from the SAB.
0x82	HALT	Issues a halt command to the device.
0x83	RESET	Issues a reset to the Reset Controller.
0x84	SET_GUARD_TIME	Sets the guard time for the AW.

All aWire commands are described below, with a summary in table form.

Table 34-32. Command/Response Description Notation

Command/Response	Description
Command/Response value	Shows the command/response value to put into the command/response field of the packet.
Additional data	Shows the format of the optional data field if applicable.
Possible responses	Shows the possible responses for this command.

34.6.7.1 AYA

This command asks the AW: "Are you alive", where the AW should respond with an acknowledge.

Table 34-33. AYA Details

Command	Details
Command value	0x01
Additional data	N/A
Possible responses	0x40: ACK (Section 34.6.8.1) 0x41: NACK (Section 34.6.8.2)

- 1. The size of the data field: 7 (size and starting address + read length indicator) in the length field.
- 2. The size of the transfer: Words, halfwords, or bytes.
- 3. The starting address of the transfer.
- 4. The number of **bytes** to read (max 65532).

The 4 MSB of the 36 bit SAB address are submitted together with the size field (2 bits). The 4 remaining address bytes are submitted before the number of bytes to read. The size of the transfer is specified using the values from the following table:

Table 34-43. Size Field Decoding

Size field	Description
00	Byte transfer
01	Halfword transfer
10	Word transfer
11	Reserved

Below is an example read command:

- 1. 0x55 (sync)
- 2. 0x81 (command)
- 3. 0x00 (length MSB)
- 4. 0x07 (length LSB)
- 5. 0x25 (size and address MSB, the two MSB of this byte are unused and set to zero)
- 6. 0x00
- 7. 0x00
- 8. 0x00
- 9. 0x04 (address LSB)
- 10. 0x00
- 11. 0x04
- 12. 0xXX (CRC MSB)
- 13. 0xXX (CRC LSB)

The length field is set to 0x0007 because there are 7 bytes of additional data: 5 bytes of address and size and 2 bytes with the number of bytes to read. The address and size field indicates one word (four bytes) should be read from address 0x500000004.

Table 34-44.	MEMORY_	_READ Details
--------------	---------	---------------

Atmel

Command	Details
Command value	0x81
Additional data	Size, Address and Length
Possible responses	0xC1: MEMDATA (Section 34.6.8.4) 0xC2: MEMORY_READWRITE_STATUS (Section 34.6.8.5) 0x41: NACK (Section 34.6.8.2)

35. Electrical Characteristics

35.1 Absolute Maximum Ratings*

Table 35-1. Absolute Maximum Ratings

Operating temperature40°C to +85°C
Storage temperature
Voltage on input pins (except for 5V pins) with respect to ground 0.3V to V _{VDD} ⁽²⁾ +0.3V
Voltage on 5V tolerant ⁽¹⁾ pins with respect to ground0.3V to 5.5V
Total DC output current on all I/O pins - VDDIO, 64-pin package 141 mA
Total DC output current on all I/O pins - VDDIN, 64-pin package
Total DC output current on all I/O pins - VDDIO, 48-pin package
Total DC output current on all I/O pins - VDDIN, 48-pin package
Maximum operating voltage VDDCORE 1.98V
Maximum operating voltage VDDIO, VDDIN

*NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Notes: 1. 5V tolerant pins, see Section "Peripheral Multiplexing on I/O lines" on page 10

2. V_{VDD} corresponds to either V_{VDDIN} or V_{VDDIO} , depending on the supply for the pin. Refer to Section on page 10 for details.

35.2 Supply Characteristics

The following characteristics are applicable to the operating temperature range: $T_A = -40^{\circ}C$ to 85°C, unless otherwise specified and are valid for a junction temperature up to $T_J = 100^{\circ}C$. Please refer to Section 6. "Supply and Startup Considerations" on page 39.

Table 35-2.	Supply Characteristics
-------------	------------------------

		Voltage		
Symbol	Parameter	Min	Max	Unit
V _{VDDIO}	DC supply peripheral I/Os	1.62	3.6	V
	DC supply peripheral I/Os, 1.8V single supply mode	1.62	1.98	V
V _{VDDIN}	DC supply peripheral I/Os and internal regulator, 3.3V supply mode	1.98	3.6	V
V _{VDDCORE}	DC supply core	1.62	1.98	V
V _{VDDANA}	Analog supply voltage	1.62	1.98	V

Table of Contents

	Featur	res	1
1	Descr	iption	3
2	Overv	iew	5
	2.1	Block Diagram	5
	2.2	Configuration Summary	6
3	Packa	ge and Pinout	7
	3.1	- Package	7
	3.2	See Section 3.3 for a description of the various peripheral signals	12
	3.3	Signal Descriptions	15
	3.4	I/O Line Considerations	18
4	Proces	ssor and Architecture	
	4.1	Features	21
	4.2	AVR32 Architecture	21
	4.3	The AVR32UC CPU	22
	4.4	Programming Model	26
	4.5	Exceptions and Interrupts	30
5	Мето	ries	35
	5.1	Embedded Memories	35
	5.2	Physical Memory Map	35
	5.3	Peripheral Address Map	
	5.4	CPU Local Bus Mapping	37
6	Suppl	y and Startup Considerations	39
	6.1	Supply Considerations	
	6.2	Startup Considerations	44
7	Periph	neral DMA Controller (PDCA)	45
	7.1	Features	45
	7.2	Overview	45
	7.3	Block Diagram	46
	7.4	Product Dependencies	46
	7.5	Functional Description	47
	7.6	Performance Monitors	49
	7.7	User Interface	51

ATUC64/128/256L3/4U

	30.9	User Interface	755		
	30.10	Module Configuration			
31	Capaci	tive Touch Module (CAT)	770		
	31.1	Features	770		
	31.2	Overview	770		
	31.3	Block Diagram	771		
	31.4	I/O Lines Description	771		
	31.5	Product Dependencies	772		
	31.6	Functional Description	774		
	31.7	User Interface			
	31.8	Module Configuration	816		
32	Glue Lo	Glue Logic Controller (GLOC)			
	32.1	Features	817		
	32.2	Overview	817		
	32.3	Block Diagram	817		
	32.4	I/O Lines Description	818		
	32.5	Product Dependencies	818		
	32.6	Functional Description			
	32.7	User Interface			
	32.8	Module Configuration			
33	aWire U	UART (AW)	826		
	33.1	Features			
	33.2	Overview			
	33.3	Block Diagram			
	33.4	I/O Lines Description			
	33.5	Product Dependencies			
	33.6	Functional Description			
	33.7	User Interface			
	33.8	Module Configuration			
34	Progra	mming and Debugging	844		
	34.1	Overview			
	34.2	Service Access Bus			
	34.3	On-Chip Debug			
	34.4	JTAG and Boundary-scan (JTAG)	855		
	34.5	JTAG Instruction Summary			

