
Microchip Technology - AT91M55800A-33AU Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor ARM7®

Core Size 16/32-Bit

Speed 33MHz

Connectivity EBI/EMI, SPI, UART/USART

Peripherals POR, WDT

Number of I/O 58

Program Memory Size -

Program Memory Type ROMless

EEPROM Size -

RAM Size 8K x 8

Voltage - Supply (Vcc/Vdd) 2.7V ~ 3.6V

Data Converters A/D 8x10b; D/A 2x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 176-LQFP

Supplier Device Package 176-LQFP (24x24)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/at91m55800a-33au

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/at91m55800a-33au-4386736
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

Edition 2014-10
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2014 Infineon Technologies AG
All Rights Reserved.

Legal Disclaimer
The information given in this document shall in no event be regarded as a guarantee of conditions or
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any
information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties
and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights
of any third party.

Information
For further information on technology, delivery terms and conditions and prices, please contact the nearest
Infineon Technologies Office (www.infineon.com).

Warnings
Due to technical requirements, components may contain dangerous substances. For information on the types in
question, please contact the nearest Infineon Technologies Office.
Infineon Technologies components may be used in life-support devices or systems only with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure
of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support
devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may
be endangered.

http://www.infineon.com

Errata Sheet
V1.6 2014-10

Microcontrol lers

16-Bit
Architecture

XE166 Derivatives
16-Bit Single-Chip
Real Time Signal Controller
XE166 Family / Alpha Line

XE166 Derivatives
XE166 Family / Alpha Line

Errata Sheet 4 V1.6, 2014-10

XE166 Derivatives
XE166 Family / Alpha Line

MultiCAN_TC.032 . 35
MultiCAN_TC.035 . 36
MultiCAN_TC.037 . 37
MultiCAN_TC.038 . 38
OCDS_X.003 . 38
RESET_X.002 . 39
RESET_X.003 . 39
RESET_X.004 . 40
RTC_X.003 . 40
USIC_AI.003 . 41
USIC_AI.004 . 41
USIC_AI.005 . 41
USIC_AI.016 . 42
USIC_AI.018 . 42

5.2 Deviations from Electrical- and Timing Specification 44
SWD_X.P002 . 44

5.3 Application Hints . 45
ADC_AI.H002 . 45
CAPCOM12_X.H001 . 45
CC6_X.H001 . 46
GPT12_AI.H001 . 47
GPT12E_X.H002 . 47
INT_X.H002 . 48
INT_X.H004 . 49
JTAG_X.H001 . 49
LXBUS_X.H001 . 50
MultiCAN_AI.H005 . 50
MultiCAN_AI.H006 . 51
MultiCAN_AI.H007 . 51
MultiCAN_AI.H008 . 51
MultiCAN_TC.H002 . 52
MultiCAN_TC.H003 . 52
MultiCAN_TC.H004 . 52
OCDS_X.H002 . 53
PVC_X.H001 . 54
RESET_X.H003 . 55
RTC_X.H003 . 55
StartUp_X.H002 . 55
USIC_AI.H001 . 56
USIC_AI.H002 . 56
USIC_AI.H003 . 57

5.4 Documentation Updates . 58
EBC_X.D001 . 58
Errata Sheet 6 V1.6, 2014-10

XE166 Derivatives
XE166 Family / Alpha Line

Current Documentation

Errata Sheet 10 V1.6, 2014-10

3 Current Documentation
The Infineon XE166 Family comprises device types from the XE164 Series and the
XE167 Series.

Device XE164x, XE167x

Marking/Step AB, AC

Package PG-LQFP-100, PG-LQFP-144

This Errata Sheet refers to the following documentation:
• XE166 Derivatives User’s Manual
• XE164 Data Sheet
• XE167 Data Sheet
• Documentation Addendum (if applicable)

Make sure you always use the corresponding documentation for this device available in
category 'Documents' at www.infineon.com/xe166 .

The specific test conditions for EES and ES are documented in a separate Status Sheet.

Note: Devices marked with EES or ES are engineering samples which may not be
completely tested in all functional and electrical characteristics, therefore they
should be used for evaluation only.

XE166 Derivatives
XE166 Family / Alpha Line

Short Errata Description
MultiCAN_AI.042 Clear MSGVAL during transmit acceptance
filtering

29

MultiCAN_AI.043 Dealloc Previous Obj 29
MultiCAN_AI.044 RxFIFO Base SDT 30
MultiCAN_AI.045 OVIE Unexpected Interrupt 30
MultiCAN_AI.046 Transmit FIFO base Object position 31
MultiCAN_TC.025 RXUPD behavior 31
MultiCAN_TC.026 MultiCAN Timestamp Function 32
MultiCAN_TC.027 MultiCAN Tx Filter Data Remote 32
MultiCAN_TC.028 SDT behavior 32
MultiCAN_TC.029 Tx FIFO overflow interrupt not generated 33
MultiCAN_TC.030 Wrong transmit order when CAN error at start

of CRC transmission
34

MultiCAN_TC.031 List Object Error wrongly triggered 35
MultiCAN_TC.032 MSGVAL wrongly cleared in SDT mode 35
MultiCAN_TC.035 Different bit timing modes 36
MultiCAN_TC.037 Clear MSGVAL 37
MultiCAN_TC.038 Cancel TXRQ 38
OCDS_X.003 Peripheral Debug Mode Settings cleared by

Reset
38

RESET_X.002 Startup Mode Selection is not Valid in
SCU_STSTAT.HWCFG

39

RESET_X.003 P2.[2:0] and P10.[12:0] Switch to Input 39
RESET_X.004 Sticky “Register Access Trap” forces device

into power-save mode after reset.
40

RTC_X.003 Interrupt Generation in Asynchronous Mode 40
USIC_AI.003 TCSRL.SOF and TCSRL.EOF not cleared after a

transmission is started
41

USIC_AI.004 Receive shifter baudrate limitation 41
USIC_AI.005 Only 7 data bits are generated in IIC mode when

TBUF is loaded in SDA hold time
41

Table 2 Functional Deviations (cont’d)

Functional
Deviation

Short Description Chg Pg
Errata Sheet 12 V1.6, 2014-10

XE166 Derivatives
XE166 Family / Alpha Line

Short Errata Description
USIC_AI.H002 Configuration of USIC Port Pins 56
USIC_AI.H003 PSR.RXIDLE Cleared by Software 57

Table 4 Application Hints (cont’d)

Hint Short Description Chg Pg
Errata Sheet 16 V1.6, 2014-10

XE166 Derivatives
XE166 Family / Alpha Line

Short Errata Description
4.4 Documentation Updates
Table 5 gives a short description of the documentation updates.

Table 5 Documentation Updates
Documentation
Updates

Short Description Chg Pg

EBC_X.D001 Visibility of Internal LXBus Cycles on External
Address Bus

58

ID_X.D001 Identification Register 58
RESET_X.D001 Reset Types of Trap Registers 59
SCU_X.D007 SCU Interrupts Enabled After Reset 59
StartUp_X.D002 External Start-Up Mode Selection by

Configuration Pins
59

USIC_X.D003 USIC0 Channel 1 Connection DX0D and DOUT 60
XTAL_X.D001 Input Voltage Amplitude VAX1 on XTAL1 60
Errata Sheet 17 V1.6, 2014-10

XE166 Derivatives
XE166 Family / Alpha Line

Detailed Errata Description
Figure 1 Critical application reset sequence

Workaround
• Initialize SCU_RSTCONx registers by user software after any reset, or
• assure that a second application reset request with an ESR pin does not occur during

the critical time window.

FLASH_X.008 Flash Read after Flash Erase Command

Under certain conditions all Flash erase commands do not work correctly. After erasing,
all erased bits must be programmed with new data or with all-zero data before reading
any data from the addressed sector is allowed.

Workarounds
1. Erase a range of Flash memory and program it completely with new data before

reading. This is the fastest solution.
Additional hint: A Flash driver could implement a programming function that performs
first an “Erase Page” and uses directly thereafter “Program Page” to program the
data of this page. The Flash driver wouldn’t need any separate erase function.

2. Erase a range of Flash memory and program it completely with all-zero data. Only
after this the range may be read. Data can be programmed later1).

1) Please note: only in order to implement this workaround for the noted device steps it is allowed to execute two
program commands before erasing it.

Reset
by ESRy pin

Application
Reset tcritical window

SSW Start of
SSW

Write
RSTCON

Application
Software

Application
Runs

Start of
SSW

End of
SSW

Application
Runs

ESR_X.004 Fig. 1
Errata Sheet 21 V1.6, 2014-10

XE166 Derivatives
XE166 Family / Alpha Line

Detailed Errata Description
GPT12E_X.001 T5/T6 in Counter Mode with BPS2 = 1XB

When T5 and/or T6 are configured for counter mode (bit field TxM = 001B in register
GPT12E_TxCON, x = 5, 6), and bit field BPS2 = 1XB in register GPT12E_T6CON, then
edge detection for the following count input and control signals does not work correctly:
T5IN, T6IN, T5EUD, T6EUD.
Note: The configuration where T5 counts the overflow/underflow events of T6 is not

affected by this problem.

Workaround
Do not set bit field BPS2 = 1XB in register GPT12E_T6CON when T5 and/or T6 are
configured for counter mode. Use only settings BPS2 = 0XB when T5 and/or T6 are
configured for counter mode.

GPT12E_X.002 Effects of GPT Module Microarchitecture

The present GPT module implementation provides some enhanced features (e.g. block
prescalers BPS1, BPS2) while still maintaining timing and functional compatibility with the
original implementation in the C166 Family of microcontrollers.
Both of the GPT1 and GPT2 blocks use a finite state machine to control the actions
within each block. Since multiple interactions are possible between the timers (T2 .. T6)
and register CAPREL, these elements are processed sequentially within each block in
different states. However, all actions are normally completed within one basic clock
cycle.
The GPT2 state machine has 4 states (2 states when BPS2 = 01B) and processes T6
before T5. The GPT1 state machine has 8 states (4 states when BPS1 = 01B) and
processes the timers in the order T3 - T2 (all actions except capture) - T4 - T2 (capture).
In the following, two effects of the internal module microarchitecture that may require
special consideration in an application are described in more detail.

1.) Reading T3 by Software with T2/T4 in Reload Mode
When T2 or T4 are used to reload T3 on overflow/underflow, and T3 is read by software
on the fly, the following unexpected values may be read from T3:
• when T3 is counting up, 0000H or 0001H may be read from T3 directly after an

overflow, although the reload value in T2/T4 is higher (0001H may be read in
particular if BPS1 = 01B and T3I = 000B),
Errata Sheet 22 V1.6, 2014-10

XE166 Derivatives
XE166 Family / Alpha Line

Detailed Errata Description
Workaround 2
Do not use local register banks, use only global register banks.

Workaround 3
Locate the system stack in a memory other than the DPRAM, e.g. in DSRAM.

INT_X.008 HW Trap during Context Switch in Routine using a Local Bank

When a hardware trap occurs under specific conditions in a routine using a local register
bank, the CPU may stall, preventing further code execution. Recovery from this condition
can only be made through a hardware or watchdog reset.
All of the following conditions must be present for this problem to occur:
• The routine that is interrupted by the hardware trap is using one of the local register

banks (bit field PSW.BANK = 10B or 11B)
• The system stack is located in the internal dual-ported RAM (DPRAM, locations

0F600H ... 0FDFFH)
• The hardware trap occurs in the second half (load phase) of a context switch

operation triggered by one of the following actions:
– a) Execution of the IDLE instruction, or
– b) Execution of an instruction writing to the Context Pointer register CP (untypical

case, because this would mean that the routine using one of the local banks
modifies the CP contents of a global bank)

Workaround 1
Locate the system stack in a memory other than the DPRAM, e.g. in DSRAM.

Workaround 2
Do not use local register banks, use only global register banks.

Workaround 3
Condition b) (writing to CP while a local register bank context is selected) is not typical
for most applications. If the application implementation already eliminates the possibility
for condition b), then only a workaround for condition a) is required.
The workaround for condition a) is to make sure that the IDLE instruction is executed
within a code sequence that uses a global register bank context.
Errata Sheet 25 V1.6, 2014-10

XE166 Derivatives
XE166 Family / Alpha Line

Detailed Errata Description
Figure 2 Example for Case 2: Interrupt Service for Task C delayed

Workaround for Case 1
Do not write to the CP register (i.e. modify the context of a global bank) while a local
register bank context is selected.

Workaround for Case 2
When using both local and global register banks via the bank selection registers
BNKSEL0...3 for interrupts on levels ≥12, ensure that there is no interrupt using a global
register bank that has a higher priority than an interrupt using a local register bank.
Example 1:
Local bank interrupts are used on levels 14 and 15, no local bank interrupts on level 12
and 13. In this case, global bank interrupts on level 15 must not be used.
Example 2:
Local bank interrupts are used on level 12. In this case, no global bank interrupts must
be used on levels 13, 14, 15.

INT_X.010 HW Traps and Interrupts may get postponed

Under the special conditions described below, a hardware trap (HWTx) and subsequent
interrupts, PEC transfers, OCDS service requests (on priority level < 11H) or class B and
class A traps (if HWTx also was class A) may get postponed until the next RETI
instruction is executed. If no RETI is executed, these requests may get postponed
infinitely.

Task B
Interrupt

Register Bank
Validation,

interrupted...

SCXT
CP

Task A
Global Bank

Task B
Local Bank

Task C
Interrupt

Task C
Global Bank

RETI
Task C

RETI
Task B

Task A
Global Bank

Task C Delayed!

Register Bank
Validation,
… finished
Errata Sheet 27 V1.6, 2014-10

XE166 Derivatives
XE166 Family / Alpha Line

Detailed Errata Description
Both of the following conditions must be fulfilled at the same time when the trigger for the
hardware trap HWTx occurs in order to cause the problem:
1. The pipeline is cancelled due to one of the following reasons:

a) a multiply or divide instruction is followed by a mispredicted conditional (zero-
cycle) jump.

b) a class A hardware trap is triggered quasi-simultaneously with the request for a
class B trap (= HWTx), i.e. the trigger for the class A trap arrives before the
previously injected TRAP instruction for the class B trap has reached the Execute
stage of the pipeline.
In this case, the class A trap is entered, but when the RETI instruction at the end
of the class A trap routine is executed, the pending class B trap (HWTx) is not
entered, and subsequent interrupts/PECs/class B traps are postponed until the
next RETI.

c) a break is requested by the debugger.
2. The pipeline is stalled in the Execute or Write Back stage due to consecutive writes,

or due to a multi-cycle write that is performed to a memory area with wait states
(PSRAM, external memory).

Workaround
Disable overrun of pipeline bubbles by setting bit OVRUN (CPUCON2.4) = 0.

MultiCAN_AI.040 Remote frame transmit acceptance filtering error

Correct behaviour:
Assume the MultiCAN message object receives a remote frame that leads to a valid
transmit request in the same message object (request of remote answer), then the
MultiCAN module prepares for an immediate answer of the remote request. The answer
message is arbitrated against the winner of transmit acceptance filtering (without the
remote answer) with a respect to the priority class (MOARn.PRI).

Wrong behaviour:
Assume the MultiCAN message object receives a remote frame that leads to a valid
transmit request in the same message object (request of remote answer), then the
MultiCAN module prepares for an immediate answer of the remote request. The answer
message is arbitrated against the winner of transmit acceptance filtering (without the
remote answer) with a respect to the CAN arbitration rules and not taking the PRI values
into account.
If the remote answer is not sent out immediately, then it is subject to further transmit
acceptance filtering runs, which are performed correctly.
Errata Sheet 28 V1.6, 2014-10

XE166 Derivatives
XE166 Family / Alpha Line

Detailed Errata Description
Workaround
Set MOFCRn.FRREN=1B and MOFGPRn.CUR to this message object to disable the
immediate remote answering.

MultiCAN_AI.041 Dealloc Last Obj

When the last message object is deallocated from a list, then a false list object error can
be indicated.

Workaround
• Ignore the list object error indication that occurs after the deallocation of the last

message object.
or
• Avoid deallocating the last message object of a list.

MultiCAN_AI.042 Clear MSGVAL during transmit acceptance filtering

Assume all CAN nodes are idle and no writes to MOCTRn of any other message object
are performed. When bit MOCTRn.MSGVAL of a message object with valid transmit
request is cleared by software, then MultiCAN may not start transmitting even if there are
other message objects with valid request pending in the same list.

Workaround
• Do not clear MOCTRn.MSGVAL of any message object during CAN operation. Use

bits MOCTRn.RXEN, MOCTRn.TXEN0 instead to disable/reenable reception and
transmission of message objects.

or
• Take a dummy message object, that is not allocated to any CAN node. Whenever a

transmit request is cleared, set MOCTRm.TXRQ of the dummy message object
thereafter. This retriggers the transmit acceptance filtering process.

MultiCAN_AI.043 Dealloc Previous Obj

Assume two message objects m and n (message object n = MOCTRm.PNEXT, i.e. n is the
successor of object m in the list) are allocated. If message m is reallocated to another
list or to another position while the transmit or receive acceptance filtering run is
Errata Sheet 29 V1.6, 2014-10

XE166 Derivatives
XE166 Family / Alpha Line

Detailed Errata Description
MultiCAN_TC.026 MultiCAN Timestamp Function

The timestamp functionality does not work correctly.

Workaround
Do not use timestamp.

MultiCAN_TC.027 MultiCAN Tx Filter Data Remote

Message objects of priority class 2 (MOAR.PRI = 2) are transmitted in the order as given
by the CAN arbitration rules. This implies that for 2 message objects which have the
same CAN identifier, but different DIR bit, the one with DIR = 1 (send data frame) shall
be transmitted before the message object with DIR = 0, which sends a remote frame.
The transmit filtering logic of the MultiCAN leads to a reverse order, i.e the remote frame
is transmitted first. Message objects with different identifiers are handled correctly.

Workaround
None.

MultiCAN_TC.028 SDT behavior

Correct behavior
Standard message objects:
MultiCAN clears bit MOCTR.MSGVAL after the successful reception/transmission of a
CAN frame if bit MOFCR.SDT is set.
Transmit Fifo slave object:
MultiCAN clears bit MOCTR.MSGVAL after the successful reception/transmission of a
CAN frame if bit MOFCR.SDT is set. After a transmission, MultiCAN also looks at the
respective transmit FIFO base object and clears bit MSGVAL in the base object if bit SDT
is set in the base object and pointer MOFGPR.CUR points to MOFGPR.SEL (after the
pointer update).
Gateway Destination/Fifo slave object:
MultiCAN clears bit MOCTR.MSGVAL after the storage of a CAN frame into the object
(gateway/FIFO action) or after the successful transmission of a CAN frame if bit
MOFCR.SDT is set. After a reception, MultiCAN also looks at the respective FIFO
base/Gateway source object and clears bit MSGVAL in the base object if bit SDT is set in
Errata Sheet 32 V1.6, 2014-10

XE166 Derivatives
XE166 Family / Alpha Line

Detailed Errata Description
Workaround
If Tx FIFO overflow interrupt needed, take the FIFO base object out of the circular list of
the Tx message objects. That is to say, just use the FIFO base object for FIFO control,
but not to store a Tx message.

Figure 3 FIFO structure

MultiCAN_TC.030 Wrong transmit order when CAN error at start of CRC
transmission

The priority order defined by acceptance filtering, specified in the message objects,
define the sequential order in which these messages are sent on the CAN bus. If an error
occurs on the CAN bus, the transmissions are delayed due to the destruction of the
message on the bus, but the transmission order is kept. However, if a CAN error occurs
when starting to transmit the CRC field, the arbitration order for the corresponding CAN
node is disturbed, because the faulty message is not retransmitted directly, but after the
next transmission of the CAN node.

Figure 4

base object:
MO s

List X

MO c

MO z

MO a

MO l

MO n

TxFiFo

TO
P

B
O

TTO
M

crc
field

error

CAN
bus
Errata Sheet 34 V1.6, 2014-10

XE166 Derivatives
XE166 Family / Alpha Line

Detailed Errata Description
INT_X.H004 SCU Interrupts Enabled After Reset

Following a reset, the SCU interrupts are enabled by default (register SCU_INTDIS =
0000H). This may lead to interrupt requests being triggered in the SCU immediately,
even before user software has begun to execute. In the SCU, multiple interrupt sources
are `ORed` to a common interrupt node of the CPU interrupt controller. Due to the
“ORing” of multiple interrupt sources, only one interrupt request to the interrupt controller
will be generated if multiple sources at the input of this OR gate are active at the same
time. If user software enables an interrupt in the interrupt controller (SCU_xIC) which
shares the same node as the SCU interrupt request active after reset, it may lead to the
effect of suppressing the intended interrupt source. So, for all SCU interrupt sources
which will not be used, make sure to disable the interrupt source (SCU_INTDIS) and
clear any pending request flags (SCU_xIC.IR) before enabling interrupts in interrupt
controller.

JTAG_X.H001 JTAG Pin Routing

In the current device, the pins connected to the JTAG interface can be selected by
software (write to register DBGPRR). After a reset, the JTAG interface is connected to
position A (see Table 8). If connected to these pins, the debugger will work without any
restrictions.

To use other pins for the JTAG interface, the following sequence of steps must be
executed:
• TRST must be high at the rising edge of PORST. Usually debuggers provide that.
• Debuggers must be set to do a so called `hot attach`. This is connecting the

microcontroller without executing a reset.
• Execute a write to DBGPRR register with the desired selection of pins to be used with

one of the first instructions out of Flash.

Table 8 JTAG Position A
Pin
LQFP-100

Pin
LQFP-144

Symbol Signal

23 34 P5.2 TDI_A
6 8 P7.0 TDO_A
57 82 P2.9 TCK_A
28 39 P5.4 TMS_A
5 6 TRST TRST
Errata Sheet 49 V1.6, 2014-10

XE166 Derivatives
XE166 Family / Alpha Line

Detailed Errata Description
RAM and most of the MultiCAN registers are no longer supported. A normal continuation
when the suspend mode is left may not always be possible and may require a reset (e.g.
depending on error counters).

PVC_X.H001 PVC Threshold Level 2

The Power Validation Circuits (PVCM, PVC1) compare the supply voltage of the
respective domain (DMP_M, DMP_1) with programmable levels (LEV1V and LEV2V in
register SCU_PVCMCON0 or SCU_PVC1CON0).
The default value of LEV1V is used to generate a reset request in the case of low core
voltage.
LEV2V can generate an interrupt request at a higher voltage, to be used as a warning.
Due to variations of the tolerance of both the Embedded Voltage Regulators (EVR) and
the PVC levels, this interrupt can be triggered inadvertently, even though the core
voltage is within the normal range. It is, therefore, recommended not to use this warning
level.
LEV2V can be disabled by executing the following sequence:
1. Disable the PVC level threshold 2 interrupt request SCU_PVCMCON0.L2INTEN and

SCU_ PVC1CON0.L2INTEN.
2. Disable the PVC interrupt request flag source SCU_INTDIS.PVCMI2 and

SCU_INTDIS.PVC1I2.
3. Clear the PVC interrupt request flag source SCU_DMPMITCLR.PVCMI2 and SCU_

DMPMITCLR.PVC1I2.
4. Clear the PVC interrupt request flag by writing to SCU_INTCLR.PVCMI2 and

SCU_INTCLR.PVC1I2.
5. Clear the selected SCU request flag (default is SCU_1IC.IR).
The Power Validation Circuits (PVCM) compare the supply voltage of the respective
domain (DMP_M) with programmable levels (LEV1V and LEV2V in register
SCU_PVCMCON0).
The default value of LEV1V is used to generate a reset request in the case of low core
voltage.
LEV2V can generate an interrupt request at a higher voltage, to be used as a warning.
Due to variations of the tolerance of both the Embedded Voltage Regulators (EVR) and
the PVC levels, this interrupt can be triggered inadvertently, even though the core
voltage is within the normal range. It is, therefore, recommended not to use this warning
level.
LEV2V can be disabled by executing the following sequence:
1. Disable the PVC level threshold 2 interrupt request SCU_PVCMCON0.L2INTEN.
2. Disable the PVC interrupt request flag source SCU_INTDIS.PVCMI2.
Errata Sheet 54 V1.6, 2014-10

XE166 Derivatives
XE166 Family / Alpha Line

Detailed Errata Description
USIC_AI.H001 FIFO RAM Parity Error Handling

A false RAM parity error may be signalled by the USIC module, which may optionally
lead to a trap request (if enabled) for the USIC RAM, under the following conditions:
• a receive FIFO buffer is configured for the USIC module, and
• after the last power-up, less data elements than configured in bit field SIZE have

been received in the FIFO buffer, and
• the last data element is read from the receiver buffer output register OUTRL (i.e. the

buffer is empty after this read access).
Once the number of received data elements is greater than or equal to the receive buffer
size configured in bit field SIZE, the effect described above can no longer occur.
To avoid false parity errors, it is recommended to initialize the USIC RAM before using
the receive buffer FIFO. This can be achieved by configuring a 64-entry transmit FIFO
and writing 64 times the value 0x0 to the FIFO input register IN00 to fill the whole FIFO
RAM with 0x0.

USIC_AI.H002 Configuration of USIC Port Pins

Setting up alternate output functions of USIC port pins through Pn.IOCRy registers
before enabling the USIC protocol (CCR.MODE = 0001B, 0010B, 0011B or 0100B) might
lead to unintended spikes on these port pins. To avoid the unintended spikes, either of
the following two sequences can be used to enable the protocol:
• Sequence 1:

– Write the initial output value to the port pin through Pn_OMR
– Enable the output driver for the general purpose output through Pn_IOCRx
– Enable USIC protocol through CCR.MODE
– Select the USIC alternate output function through Pn_IOCRx

• Sequence 2:
– Enable USIC protocol through CCR.MODE
– Enable the output driver for the USIC alternate output function through Pn_IOCRx

Similarly, after the protocol is established, switching off the USIC channel by reseting
CCR.MODE directly might cause undesired transitions on the output pin. The following
sequence is recommended:
• Write the passive output value to the port pin through Pn_OMR
• Enable the output driver for the general purpose output through Pn_IOCRx
• Disable USIC protocol through CCR.MODE
Errata Sheet 56 V1.6, 2014-10

w w w . i n f i n e o n . c o m

Published by Infineon Technologies AG
03266AERRA

http://www.infineon.com

