E ·) (Frenesas Electronics America Inc - <u>UPD70F3025AGC-33-8EU-A Datasheet</u>

Welcome to E-XFL.COM

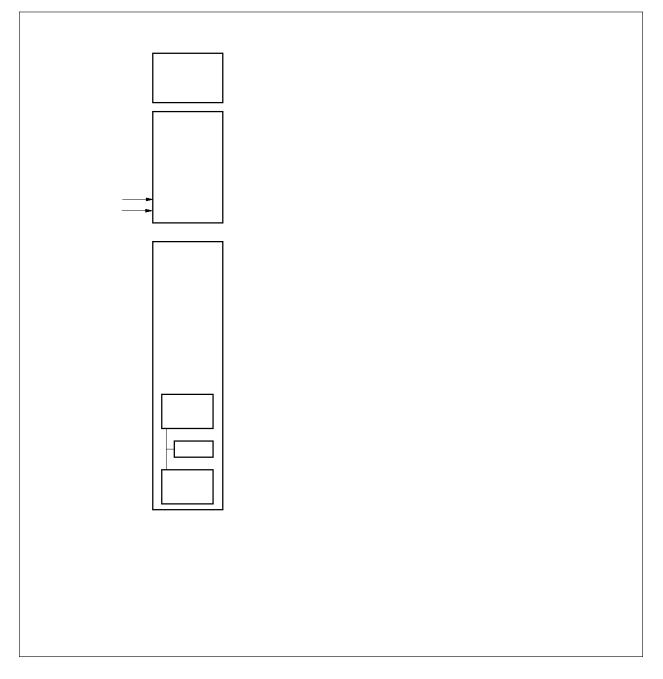
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	V850ES
Core Size	32-Bit Single-Core
Speed	33MHz
Connectivity	CSI, EBI/EMI, UART/USART
Peripherals	PWM
Number of I/O	67
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 8x10b; D/A 2x8b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/upd70f3025agc-33-8eu-a


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

INTERNAL BLOCK DIAGRAM

CONTENTS

1. DIFFERENCES BETWEEN PRODUCTS

Item	µPD703003A	µPD703004A	µPD703025A	µPD703003A(A)	µPD703025A(A)	µPD70F3003A	µPD70F3025A	µPD70F3003A(A)	
Internal ROM	Mask ROM	1		Flash memo	Flash memory				
	128 KB	96 KB	256 KB	128 KB	256 KB	128 KB	256 KB	128 KB	
Internal RAM	4 KB		8 KB	4 KB	8 KB	4 KB	8 KB	4 KB	
Flash memory programming mode	None	None Provided							
V _{PP} pin	None					Provided			
Quality grade	Standard			Special		Standard		Special	
Electrical specifications	Current co	nsumption, e	tc. differs. (I	Refer to each	n product da	ta sheets).			
Others	Noise imm	unity and noi	ise radiation	differ becau	se circuit sca	ale and mask	alayout diffe	r.	

Caution There are differences in noise immunity and noise radiation between the flash memory version and mask ROM version. When pre-producing an application set with the flash memory version and then mass-producing it with the mask ROM version, be sure to conduct sufficient evaluation for commercial samples (not engineering samples) of the mask ROM version.

			(2/2)
Pin Name	I/O	Function	Alternate Function
P60 to P63	I/O	Port 6	A16 to A19
		4-bit I/O port.	
		Input/output can be specified in 1-bit units.	
P70 to P77	Input	Port 7	ANI0 to ANI7
		8-bit input port.	
P90	I/O	Port 9	LBEN
P91		7-bit I/O port.	UBEN
P92		Input/output can be specified in 1-bit units.	R/W
P93			DSTB
P94	_		ASTB
P95			HLDAK
P96			HLDRQ
P110	I/O	Port 11	TO140
P111	_	8-bit I/O port.	TO141
P112		Input/output can be specified in 1-bit units.	TCLR14
P113			TI14
P114	1		INTP140
P115			INTP141
P116			INTP142
P117	-		INTP143

Capacitance (T A = 25°C, VDD = Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input capacitance	С	fc = 1 MHz			15	pF
I/O capacitance	Сю	Pins other than tested pin: 0 V			15	pF
Output capacitance	Co				15	pF

Operating Conditions

Operation Mode	Internal System Clock Frequency ()	Operating Temperature (TA)	Supply Voltage (VDD)
Direct mode,	2 to 33 MHz ^{Note 1}	Ð40 to +85℃	5.0 V ±10%
PLL mode	5 to 33 MHz ^{Note 2}	Ð40 to +85℃	5.0 V ±10%

Notes 1. When A/D converter not used.

2. When A/D converter used.

Recommended Oscillator

- Caution For the resonator selection and oscillator constant of the μ PD70F3003A(A), customers are requested to apply to the resonator manufacturer for evaluation.
- (1) Ceramic resonator connection (T A = D40 to +85°C)
 - (a) *µ*PD70F3003A

X1 X2 Rd Rd C1 C2 TT C2 TT									
Manufacturer	Part Number	Oscillation	Re	ecommend	ed	Oscil	lation	Oscillation	
		Frequency	Cir	cuit Consta	ant	Voltage	Range	Stabilization Time	
		fxx (MHz)	C1 (pF)	C2 (pF)	Rd (W)	MIN. (V)	MAX. (V)	(MAX.) Tost (ms)	
Kyocera	PBRC4.00HR	4.0	On-chip	On-chip	Ñ	4.5	5.5	0.10	
Corporation	PBRC5.00HR	5.0	On-chip	On-chip	Ñ	4.5	5.5	0.08	
	PBRC6.00HR	6.0	On-chip	On-chip	Ñ	4.5	5.5	0.08	
	PBRC6.60HR	6.6	On-chip	On-chip	Ñ	4.5	5.5	0.08	
TDK	FCR4.0MC5	4.0	On-chip	On-chip	Ñ	4.5	5.5	0.14	
	FCR5.0MC5	5.0	On-chip	On-chip	Ñ	4.5	5.5	0.14	
	FCR6.0MC5	6.0	On-chip	On-chip	Ñ	4.5	5.5	0.11	
Murata Mfg.	CSTS0400MG06	4.0	On-chip	On-chip	Ñ	4.5	5.5	0.12	
Co., Ltd	CSTCR4M00G05	4.0	On-chip	On-chip	Ñ	4.5	5.5	0.14	
	CSTS0600MG06	6.0	On-chip	On-chip	Ñ	4.5	5.5	0.14	
	CSTCR6M00G55-R0	6.0	On-chip	On-chip	Ñ	4.5	5.5	0.18	

Cautions 1. Connect the oscillator as closely to the X1 and X2 pins as possible.

2. Do not wire any other signal lines in the area indicated by the broken lines.

3. Thoroughly evaluate the matching between the μ PD70F3003A and the resonator.

						(1/
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input voltage, high	Vін	Except X1 and Note	2.2		Vdd + 0.3	V
		Note	0.8Vdd		VDD + 0.3	V
Input voltage, low	VIL	Except X1 and Note	Đ0.5		+0.8	V
		Note	Đ0.5		0.2Vpp	V
Clock input voltage, high	Vхн	X1	0.8Vdd		Vdd + 0.5	V
Clock input voltage, low	VxL	X1	Đ0.5		0.6	V
Schmitt trigger input threshold voltage	VT ⁺	Note, rising		3.0		V
	VT ^Đ	Note, falling		2.0		V
Schmitt trigger input hysteresis width	VT ⁺ Đ VT ^Đ	Note	0.5			V
Output voltage, high	Vон	Іон = Ð2.5 mA	0.7Vdd			V
		Іон = Ð100 µА	Vdd Đ 0.4			V
Output voltage, low	Vol	loc = 2.5 mA			0.45	V
Input leakage current, high	Іцн	Vi = Vdd			10	μA
Input leakage current, low	Ilie	$V_I = 0 V$			Ð10	μA
Output leakage current, high	Ігон	Vo = Vdd			10	μA
Output leakage current, low	Ilol	Vo = 0 V			Ð10	μA
Software pull-up resistor	R	P35/INTP131/SO3, P36/INTP132/SI3, P37/INTP133/SCK3	15	40	90	k

DC Characteristics (T $_{\rm A}$ = Đ40 to +85°C, V_{DD} = 5.0 V ±10%, Vss = 0 V)

Note P02 to P07, P12 to P17, P23, P24, P26, P27, P32 to P37, P112 to P117, RESET, NMI, MODE, and their alternate-function pins.

Remark TYP. values are reference values for when $T_A = 25^{\circ}C$ and $V_{DD} = 5.0$ V.

Parameter	Symbol	(Conditions	MIN.	TYP.	MAX.	Unit
Data hold voltage	Vdddr	STOP mode	STOP mode			5.5	V
Data hold current	IDDDR	µPD70F3003A,	CESEL = 0, Note 1		0.4Vdddr	50	μA
		70F3003A(A)	CESEL = 0, Note 2		0.4Vdddr	200	μA
			CESEL = 1, Note 1		6Vdddr	200	μA
			CESEL = 1, Note 2		6Vdddr	500	μA
		µPD70F3025A	CESEL = 0, Note 1		0.4Vdddr	50	μA
			CESEL = 0, Note 2		0.4Vdddr	200	μA
			CESEL = 1, Note 1		12Vdddr	300	μA
			CESEL = 1, Note 2		12Vdddr	500	μA
Supply voltage rise time	t rvd			200			μs
Supply voltage fall time	tevd			200			μs
Supply voltage hold time (vs. STOP mode setting)	t hvd			0			ms
STOP mode release signal input time	t drel			0			ns
Data hold input voltage, high	Vihdr	Note 3		0.9Vdddr		Vdddr	V
Data hold input voltage, low	Vildr	Note 3		0		0.1Vdddr	V

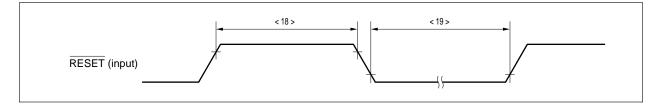
Data Retention Characteristics (T A = D40 to +85°C, VDD = VDDDR)

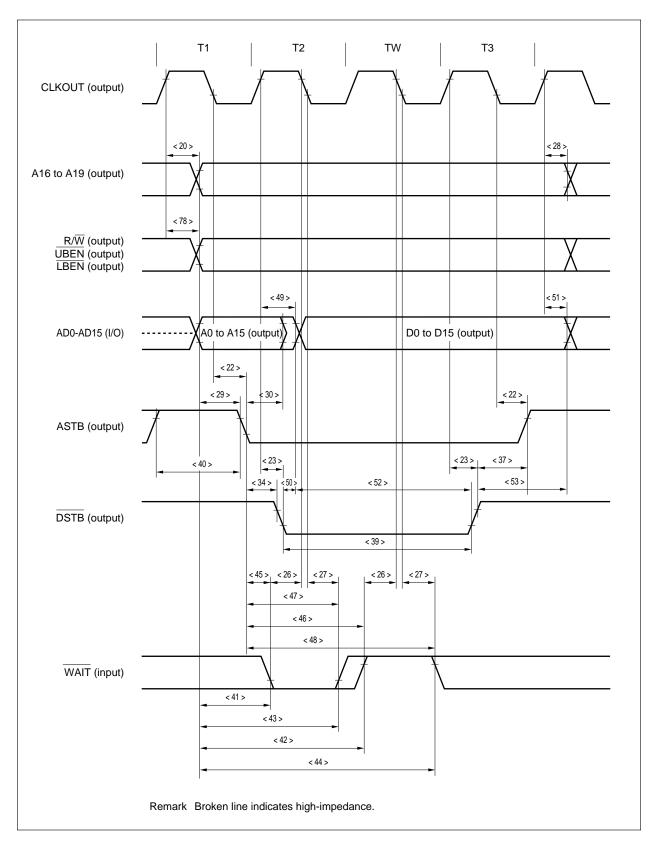
Notes 1. Đ40°C T_A +50°C

2. 50°C <TA 85°C

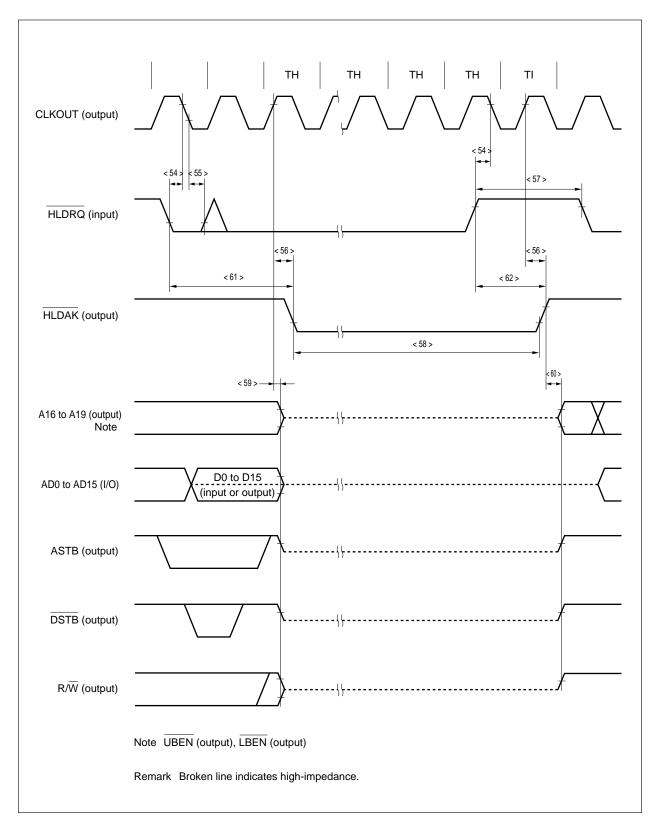
- 3. P02 to P07, P12 to P17, P23, P24, P26, P27, P32 to P37, P112 to P117, RESET, NMI, MODE, X1, and their alternate-function pins.
- Remark TYP. values are reference values for when $T_A = 25^{\circ}C$ (except for the conditions in Note 2) and $V_{DD} = 5.0 \text{ V}$.

(3) Output wave (other than CLKOUT)

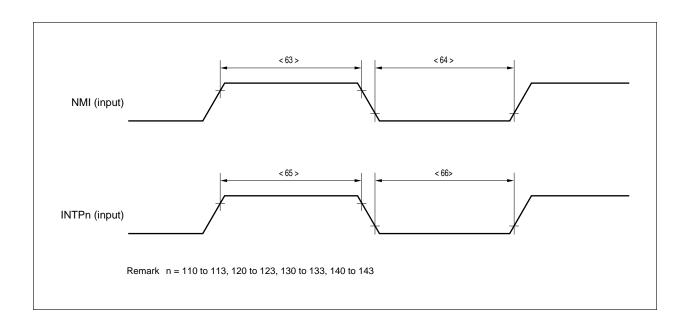

Parameter	Symbol		Conditions	MIN.	MAX.	Unit
Output rise time	<16>	tor			10	ns
Output fall time	<17>	tof			10	ns


(4) Reset timing

Parameter	Sy	/mbol	Conditions	MIN.	MAX.	Unit
RESET width, high	<18>	twrsh		500		ns
RESET width, low	<19>	twrsl	On power appli- cation, or on releasing STOP mode	500 + Тозт		ns
			Except on power application, or except on releas- ing STOP mode	500		ns


Remark Tost: Oscillation stabilization time

(6) Write timing (2/2): 1 wait


(7) Bus hold timing (2/2)

(8) Interrupt timing

Parameter	Sy	/mbol	Conditions	MIN.	MAX.	Unit
NMI width, high	<63>	twnih		500		ns
NMI width, low	<64>	twnil		500		ns
INTPn width, high	<65>	twiтн	n = 110 to 113, 120 to 123, 130 to 133, 140 to 143	3 T + 10		ns
INTPn width, low	<66>	twi⊤∟	n = 110 to 113, 120 to 123, 130 to 133, 140 to 143	3 T + 10		ns

Remark T = tcyk

(9) CSI timing (1/2)

- (a) Master mode
 - (i) CSI0 to CSI2 timing

Parameter	Sy	/mbol	Conditions	MIN.	MAX.	Unit
SCKn cycle	<67>	tcysk1	Output	120		ns
SCKn high-level width	<68>	twsĸн1	Output	0.5 tсүзкт Ð 20		ns
SCKn low-level width	<69>	twskl1	Output	0.5 tсүзк1 Ð 20		ns
SIn setup time (to SCKn)	<70>	tssiski		30		ns
SIn hold time (from SCKn)	<71>	thsksi1		0		ns
SOn output delay time (from SCKn)	<72>	tDSKSO1			18	ns
SOn output hold time (from SCKn)	<73>	thskso1		0.5 tсүзкт Ð 5		ns

Remark n = 0 to 2

(ii) CSI3 timing

Parameter	Sy	/mbol	Conditions		MIN.	MAX.	Unit
SCK3 cycle	<67>	tсүзкз	Output RL = 1.5		500		ns
SCK3 high-level width	<68>	twsкнз	Output	k C∟ = 50	0.5 tсүзкз Ð 70		ns
SCK3 low-level width	<69>	twsĸL3	Output pF		0.5 tсүзкз Ð 70		ns
SI3 setup time (to SCK3)	<70>	tssเรหง			100		ns
SI3 hold time (from SCK3)	<71>	tнsкsіз			50		ns
SO3 output delay time (from SCK3)	<72>	tdskso3	R∟ = 1.5 K			150	ns
			C∟ = 50 pF				
SO3 output hold time (from $\overline{\text{SCK3}}$)	<73>	tнsкsoз			0.5 tсүзкз Ð 5		ns

Remark RL and CL are the load resistance and load capacitance respectively of the SCK3 and SO3 output lines.

(b) Slave mode

(i) CSI0 to CSI2 timing

Parameter	Symbol		Conditions	MIN.	MAX.	Unit
SCKn cycle	<67>	tcysk2	Input	120		ns
SCKn high-level width	<68>	twsĸн2	Input	30		ns
SCKn low-level width	<69>	twskl2	Input	30		ns
SIn setup time (to SCKn)	<70>	tssisk2		10		ns
SIn hold time (from SCKn)	<71>	tHSKSI2		10		ns
SOn output delay time (from SCKn)	<72>	tDSKSO2			30	ns
SOn output hold time (from SCKn)	<73>	thskso2		twskh2		ns

Remark n = 0 to 2

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution	Ñ		8	8	8	bit
Overall error	Ñ	Load conditions: 2 M , 30 pF AV _{REF2} = V _{DD} AV _{REF3} = 0			0.8	%
	Ñ	Load conditions: 2 M , 30 pF AV _{REF2} = 0.75 V _{DD} AV _{REF3} = 0.25 V _{DD}			1.0	%
	Ñ	Load conditions: 4 M , 30 pF AV _{REF2} = V _{DD} AV _{REF3} = 0			0.6	%
	Ñ	Load conditions: 4 M , 30 pF AVREF2 = 0.75 VDD AVREF3 = 0.25 VDD			0.8	%
Settling time	Ñ	Load conditions: 2 M , 30 pF			10	μs
Output resistance	RO			8		k
AVREF2 input voltage	AV _{REF2}		0.75Vdd		Vdd	V
AVREF3 input voltage	AV _{REF3}		0		0.25Vdd	V
Resistance between AVREF2 and AVREF3	Rairef	DACS0, DACS1 = 55H	2	4		k

D/A Converter Characteristics (T A = D40 to +85°C, VDD = AVDD = 5 V ±10%, Vss = AVss = 0 V)

3.2 Flash Memory Programming Mode

Basic Characteristics (T A = 10 to 40 °C (when rewriting), T A = D40 to +85 °C (when not rewriting), V $DD = AVDD = 5 V \pm 10\%$, Vss = AVss = 0 V))

(1) µPD70F3003A (all ranks), 70F3025A (except K, E, P, X rank)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Operating frequency			10		33	MHz
VPP supply voltage	Vpp1	During flash memory programming	9.7	10.3	10.6	V
	Vppl	VPP low-level detection	Đ0.5		0.2Vbb	V
	Vppm	VPP, VDD level detection	0.8Vdd		1.2VDD	V
	Vpph	VPP high-voltage level detection	9.7	10.3	10.6	V
VDD supply current	Іро	Vpp = Vpp1			3.0 × + 25	mA
VPP supply current	IPP	VPP = 10.3 V			200	mA
Step erase time	ter	Note 1		0.2		S
Overall erase time per area	tera	When the step erase time = 0.2 s, Note 2			40	s/area
Write-back time	twв	Note 3		5		ms
Number of write-backs per write-back command	Сwв	When the write-back time = 5 ms, Note 4			50	Count/write- back command
Number of erase/write-backs	Cerwb				16	Count
Step writing time	twт	Note 5		50		μs
Overall writing time per word	twтw	When the step writing time = 50 μ s (1 word = 4 bytes), Note 6	50		500	µs/word
Number of rewrites per area	Cerwr	1 erase + 1 write after erase = 1 rewrite, Note 7	20		Count/area	

Notes 1. The recommended setting value of the step erase time is 0.2 s.

- 2. The prewrite time prior to erasure and the erase verify time (write-back time) are not included.
- 3. The recommended setting value of the step erase time is 5 ms.
- 4. Write-back is executed once by the issuance of the write-back command. Therefore, the retry count must be the maximum value minus the number of commands issued.
- 5. The recommended setting value of the step writing time is 50 μ s.
- 6. 100 μ s is added to the actual writing time per word. The internal verify time during and after the writing is not included.
- 7. When writing initially to shipped products, it is counted as one rewrite for both Òerase to writeÓ and Òwrite onlyÓ.

Example (P: Write, E: Erase)

Shipped product -		Ρ	Е	Ρ	Е	P: 3 rewrites
Shipped product	Е	Ρ	Е	Ρ	Е	P: 3 rewrites

Cautions 1. V $_{\text{PP}}$ pull-down resistance value (RV $_{\text{PP}}$) is recommended to be in the range 5 k $\,$ to 15 k $\,$.

Set the transfer rate between programmer and device as follows.
CSI0: 0.2 to 1 MHz
UART0: 4,800 to 76,800 bps

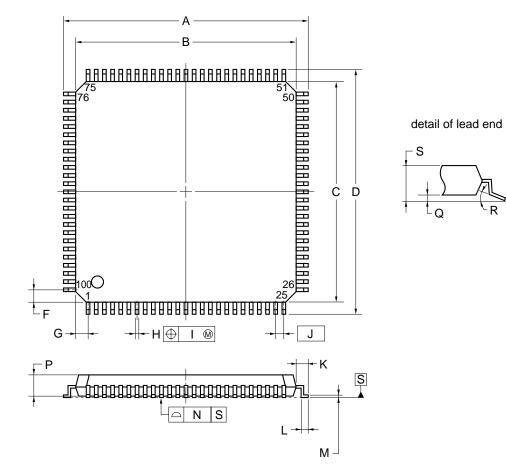
- Remarks 1. When the PG-FP3 is used, a time parameter required for writing/erasing by downloading parameter files is automatically set. Do not change the settings unless otherwise specified.
 - Area 0 = 00000H to 1FFFFH, area 1 = 20000H to 3FFFFH (area 1 is provided in the µPD70F3025A only)
 - 3. The rank is indicated by the 5th character from the left in the lot number.
 - 4. The I rank applies to engineering samples (ES) only. The operation of an ES is not guaranteed.
 - 5. : Internal system clock frequency

(2) µPD70F3025A (X rank)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Operating frequency		Note 1	10		33	MHz
VPP supply voltage	V _{PP1}	During flash memory programming	9.7	10.3	10.6	V
	Vppl	VPP low-level detection	Đ0.5		0.2Vdd	V
	Vppm	VPP, VDD level detection	0.8Vdd		1.2VDD	V
	Vpph	VPP high-voltage level detection	9.7	10.3	10.6	V
VDD supply current	loo	Vpp= Vpp1			3.0 × + 25	mA
VPP supply current	Ірр	Vpp= 10.3 V			200	mA
Step erase time	ter	Note 1		2		S
Overall erase time per area	tera	When the step erase time = 2 s, Note 2			40	s/area
Step writing time	twт	Note 3		200		μs
Overall writing time per word	twтw	When the step writing time = 200 μ s (1 word = 4 bytes), Note 4	200		2000	µs/word
Number of rewrites per area	Cerwr	1 erase + 1 write after erase = 1 rewrite, Note 5		20	,	Count/area

Notes 1. The recommended setting value of the step erase time is 2 s.

- 2. The prewrite time prior to erasure and the erase verify time (write-back time) are not included.
- 3. The recommended setting value of the step writing time is 200 μ s.
- 4. 100 μ s is added to the actual writing time per word. The internal verify time during and after the writing is not included.
- 5. When writing initially to shipped products, it is counted as one rewrite for both Òerase to writeÓ and Òwrite onlyÓ.

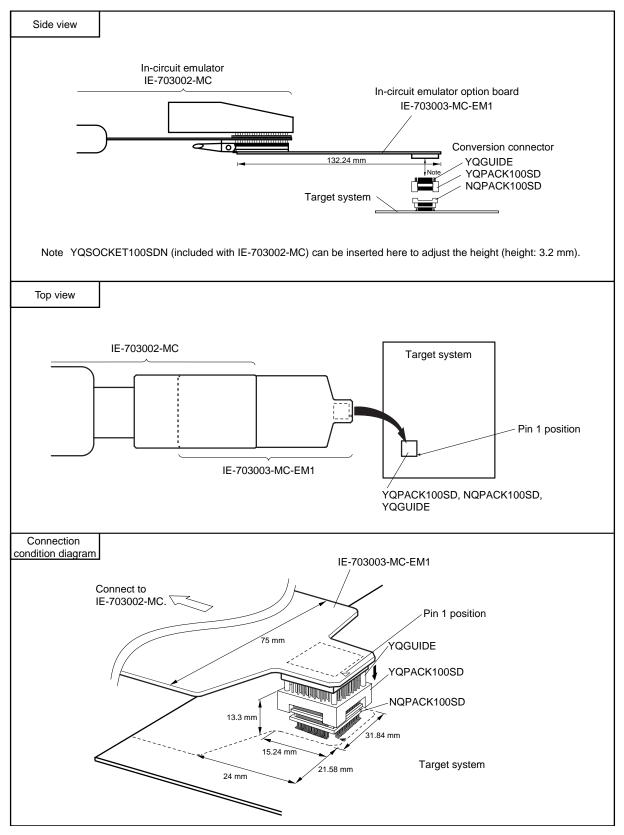

Example (P: Write, E: Erase)

Shipped product -		Ρ	Е	Ρ	Е	P: 3 rewrites
Shipped product	Е	Ρ	Е	Ρ	Е	P: 3 rewrites

- Cautions 1. V $_{\text{PP}}$ pull-down resistance value (RV $_{\text{PP}}$) is recommended to be in the range 5 k $\,$ to 15 k $\,$.
 - Set the transfer rate between programmer and device as follows. CSI0: 0.2 to 1 MHz
 - UART0: 4,800 to 76,800 bps
- Remarks 1. When the PG-FP3 is used, a time parameter required for writing/erasing by downloading parameter files is automatically set. Do not change the settings unless otherwise specified.
 - 2. Area 0 = 00000H to 1FFFFH, area 1 = 20000H to 3FFFFH
 - 3. The rank is indicated by the 5th character from the left in the lot number.
 - 4. The K, E, P, and X rank products do not support handshake mode. The I rank applies to engineering samples (ES) only. The operation of an ES is not guaranteed.
 - 5. : Internal system clock frequency

★ 4. PACKAGE DRAWING

100-PIN PLASTIC LQFP (FINE PITCH) (14x14)


NOTE

Each lead centerline is located within 0.08 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS				
А	16.00±0.20				
В	14.00±0.20				
С	14.00±0.20				
D	16.00±0.20				
F	1.00				
G	1.00				
н	0.22 ^{+0.05} \$0.04				
I	0.08				
J	0.50 (T.P.)				
К	1.00±0.20				
L	0.50±0.20				
М	0.17 ^{+0.03} \$0.07				
N	0.08				
Р	1.40±0.05				
Q	0.10±0.05				
R	3° 1 7° S3°				
S	1.60 MAX.				
S100GC-50-8EU, 8EA-2					

★ APPENDIX NOTES ON TARGET SYSTEM DESIGN

The following shows a diagram of the connection conditions between the in-circuit emulator option board and conversion connector. Design your system making allowances for conditions such as the form of parts mounted on the target system as shown below.

NOTES FOR CMOS DEVICES -

1 VOLTAGE APPLICATION WAVEFORM AT INPUT PIN

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V_{IL} (MAX) and V_{IH} (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between V_{IL} (MAX) and V_{IH} (MIN).

2 HANDLING OF UNUSED INPUT PINS

Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.

③ PRECAUTION AGAINST ESD

A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.

④ STATUS BEFORE INITIALIZATION

Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.

5 POWER ON/OFF SEQUENCE

In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current.

The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.

(6) INPUT OF SIGNAL DURING POWER OFF STATE

Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.