

#### Welcome to E-XFL.COM

#### **Understanding Embedded - Microprocessors**

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

#### Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

#### Details

ĿХF

| Product Status                  | Obsolete                                                  |
|---------------------------------|-----------------------------------------------------------|
| Core Processor                  | ARM926EJ-S                                                |
| Number of Cores/Bus Width       | 1 Core, 32-Bit                                            |
| Speed                           | 400MHz                                                    |
| Co-Processors/DSP               | -                                                         |
| RAM Controllers                 | LPDDR, DDR, DDR2                                          |
| Graphics Acceleration           | No                                                        |
| Display & Interface Controllers | Keypad, LCD, Touchscreen                                  |
| Ethernet                        | 10/100Mbps (1)                                            |
| SATA                            | -                                                         |
| USB                             | USB 2.0 + PHY (2)                                         |
| Voltage - I/O                   | 2.0V, 2.5V, 2.7V, 3.0V, 3.3V                              |
| Operating Temperature           | -20°C ~ 70°C (TA)                                         |
| Security Features               | -                                                         |
| Package / Case                  | 400-LFBGA                                                 |
| Supplier Device Package         | 400-LFBGA (17x17)                                         |
| Purchase URL                    | https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mcimx257dvm4 |
|                                 |                                                           |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



# Table 2 shows the functional differences between the different parts in the i.MX25 family. Table 2. i.MX25 Parts Functional Differences

| Features                   | MCIMX253    | MCIMX257    | MCIMX258    |
|----------------------------|-------------|-------------|-------------|
| Core                       | ARM 926EJ-S | ARM 926EJ-S | ARM 926EJ-S |
| CPU Speed                  | 400 MHz     | 400 MHz     | 400 MHz     |
| L1 I/D Cache               | 16K I/D     | 16K I/D     | 16K I/D     |
| On-chip SRAM               | 128 KB      | 128 KB      | 128 KB      |
| PATA/CE-ATA                | Yes         | Yes         | Yes         |
| LCD Controller             | Yes         | Yes         | Yes         |
| Touchscreen                | —           | Yes         | Yes         |
| CSI                        | —           | Yes         | Yes         |
| FlexCAN (2)                | —           | Yes         | Yes         |
| ESAI                       | —           | Yes         | Yes         |
| SIM (2)                    | —           | Yes         | Yes         |
| Security                   | —           | —           | Yes         |
| 10/100 Ethernet            | Yes         | Yes         | Yes         |
| HS USB 2.0 OTG + PHY       | Yes         | Yes         | Yes         |
| HS USB 2.0 Host + PHY      | Yes         | Yes         | Yes         |
| 12-bit ADC                 | Yes         | Yes         | Yes         |
| SD/SDIO/MMC (2)            | Yes         | Yes         | Yes         |
| External Memory Controller | Yes         | Yes         | Yes         |
| I <sup>2</sup> C (3)       | Yes         | Yes         | Yes         |
| SSI/I2S (2)                | Yes         | Yes         | Yes         |
| CSPI (2)                   | Yes         | Yes         | Yes         |
| UART (5)                   | Yes         | Yes         | Yes         |



| Parameter                                                                  | Symbol                                | Min.     | Тур.                | Max.                | Units |
|----------------------------------------------------------------------------|---------------------------------------|----------|---------------------|---------------------|-------|
| I/O supply voltage, GPIO<br>CRM,LCDC,JTAG,MISC                             | NV <sub>DD_GPIO2</sub>                | 3.0      | 3.3                 | 3.6                 | _     |
| I/O supply voltage DDR (Mobile DDR mode)<br>EMI1, EMI2                     | NV <sub>DD_MDDR</sub>                 | 1.75     |                     | 1.95                | V     |
| I/O supply voltage DDR (DDR2 mode)<br>EMI1,EMI2                            | NV <sub>DD_DDR2</sub>                 | 1.75     | _                   | 1.9                 | V     |
| I/O supply voltage DDR (SDRAM mode)<br>EMI1,EMI2                           | NV <sub>DD_SDRAM</sub>                | 1.75     |                     | 3.6                 | V     |
| Supply of USBPHY1 (HS)<br>USBPHY1_VDDA_BIAS, USBPHY1_UPLL_VDD,USBPHY1_VDDA | V <sub>DD_usbphy1</sub>               | 3.17     | 3.3                 | 3.43                | V     |
| Supply of USBPHY2 (FS)<br>USBPHY2_VDD                                      | V <sub>DD_usbphy2</sub>               | 3.0      | 3.3                 | 3.6                 | V     |
| Supply of OSC24M<br>OSC24M_VDD                                             | V <sub>DD_OSC24M</sub>                | 3.0      | 3.3                 | 3.6                 | V     |
| Supply of PLL<br>MPLL_VDD,UPLL_VDD                                         | V <sub>DD_PLL</sub>                   | 1.4      | —                   | 1.65                | V     |
| Supply of touchscreen ADC<br>NVCC_ADC                                      | V <sub>DD_tsc</sub>                   | 3.0      | 3.3                 | 3.6                 | V     |
| External reference of touchscreen ADC<br>Ref                               | Vref                                  | 2.5      | V <sub>DD_tsc</sub> | V <sub>DD_tsc</sub> | V     |
| Fusebox program supply voltage<br>FUSE_VDD <sup>2</sup>                    | FUSEV <sub>DD</sub><br>(program mode) | 3.3 ± 5% | _                   | 3.6                 | V     |
| Supply output <sup>3</sup><br>NVCC_DRYICE                                  | V <sub>DD</sub> _                     | 1.0      | —                   | 1.55                | V     |
| Operating ambient temperature                                              | T <sub>A</sub>                        | -40      | _                   | 85                  | °C    |

#### Table 6. DC Operating Conditions (continued)

<sup>1</sup> V<sub>DD\_BAT</sub> must always be powered by battery in security application. In non-security case, V<sub>DD\_BAT</sub> can be connected to QV<sub>DD</sub>.

<sup>2</sup> The fusebox read supply is connected to supply of the full speed USBPHY2\_VDD. FUSE\_VDD is only used for programming. It is recommended that FUSE\_VDD be connected to ground when not being used for programming. See Table 7 for current parameters.

<sup>3</sup> NVCC\_DRYICE is a supply output. An external capacitor no less than 4 µF must be connected to it. A 4.7 µF capacitor is recommended.



| Power Group | Power Supply | Voltage Setting | Typical Current Consumption |
|-------------|--------------|-----------------|-----------------------------|
| BAT_VDD     | BAT_VDD      | 1.15 V          | 9.95 μA                     |
|             |              | 1.55 V          | 12.6 μΑ                     |

Table 14. iMX25 Reduced Power Mode Current Consumption

# 3.2 Supply Power-Up/Power-Down Requirements and Restrictions

Any i.MX25 board design must comply with the power-up and power-down sequence guidelines given in this section to ensure reliable operation of the device. Recommended power-up and power-down sequences are given in the following subsections.

### CAUTION

Deviations from the guidelines in this section may result in the following situations:

- Excessive current during power-up phase
- Prevention of the device from booting
- Irreversible damage to the i.MX25 (worst-case scenario)

### NOTE

For security applications, the coin battery must be connected during both power-up and power-down sequences to ensure that security keys are not unintentionally erased.

# 3.2.1 Power-Up Sequence

For those users that are not using DryIce/SRTC, the following power-up sequence is recommended:

- 1. Assert power on reset (POR).
- 2. Turn on QVDD digital logic domain supplies.
- 3. Turn on NVCCx digital I/O power supplies after QVDD is stable.
- Turn on all other analog power supplies, including USBPHY1\_VDDA\_BIAS, USBPHY1\_UPLL\_VDD, USBPHY1\_VDDA, USBPHY2\_VDD, OSC24M\_VDD, MPPLL\_VDD, UPLL\_VDD, NVCC\_ADC, and FUSEVDD (FUSEVDD is tied to GND if fuses are not programmed), after all NVCCx digital I/O supplies are stable.
- 5. Negate the POR signal.



### NOTE

This is to guarantee that POR is stable already at NVCC\_CRM/QVDD power domain interface before QVDD is turned on, and POR instantly propagates to QVDD domain after QVDD is turned on.

- 4. Turn on other NVCCx digital I/O power supplies for not less than 1 ms and not more than 32 ms, after QVDD reaches 90% of 1.2 V.
- Turn on all other analog power supplies, including USBPHY1\_VDDA\_BIAS, USBPHY1\_UPLL\_VDD, USBPHY1\_VDDA, USBPHY2\_VDD, NVCC\_ADC, OSC24M\_VDD, MPPLL\_VDD, UPLL\_VDD, and FUSEVDD (FUSEVDD is tied to GND if fuses are not programmed) for not less than 1 ms and not more than 32 ms, after NVCCx reaches 90% of 3.3 V.

### NOTE

This is to guarantee that analog peripherals can get properly initialized (reset) values from QVDD domain and NVCCx domain.

6. Negate the POR signal for at least 90  $\mu$ s after all previous steps.

### NOTE

- This is to guarantee that both POR logic and clocks are stable inside the i.MX25 chip, before POR is removed.
- The dV/dT should be no faster than 0.25 V/us for all power supplies, to avoid triggering ESD circuit.

In addition, the following power-down sequence is recommended:

- 1. Turn off power for analog parts, including USBPHY1\_VDDA\_BIAS, USBPHY1\_UPLL\_VDD, USBPHY1\_VDDA, USBPHY2\_VDD, NVCC\_ADC, and FUSEVDD (FUSEVDD is tied to GND if fuses are not programmed).
- 2. Turn off QVDD.
- 3. Turn off NVCCx, PLL, OSC, and other powers.

### NOTE

The power-down steps can be executed simultaneously, or very shortly one after another.

# 3.3 **Power Characteristics**

Table 15 shows values representing maximum current numbers for the i.MX25 under worst case voltage and temperature conditions. These values are derived from the i.MX25 with core clock speed up to 400 MHz. Additionally, no power saving techniques such as clock gating were implemented when measuring these values. Common supplies are bundled according to the i.MX25 power-up sequence requirements. Peak numbers are provided for system designers so that the i.MX25 power supply requirements are satisfied during startup and transient conditions. Freescale recommends that system



| Parameter                                                                  | Symbol | Load<br>Condition | Min.<br>Rise/Fall      | Тур.                   | Max.<br>Rise/Fall      | Units |
|----------------------------------------------------------------------------|--------|-------------------|------------------------|------------------------|------------------------|-------|
| Output pad propagation delay <sup>1</sup> (high drive), 40%–60%            | tpo    | 15 pF<br>35 pF    | 1.04/1.09<br>1.63/1.56 | 1.73/1.83<br>2.43/2.52 | 2.69/2.62<br>3.79/3.62 | ns    |
| Output pad propagation delay <sup>1</sup> (standard drive), 40%–60%        | tpo    | 15 pF<br>35 pF    | 1.50/1.74<br>2.73/2.42 | 2.36/2.41<br>3.77/3.78 | 3.67/3.46<br>5.86/5.37 | ns    |
| Output enable to output valid delay <sup>1</sup> (max. drive), 50%–50%     | tpv    | 15 pF<br>35 pF    | 1.17/1.01<br>1.43/1.30 | 1.93/1.61<br>2.33/2.00 | 3.06/2.55<br>3.69/3.13 | ns    |
| Output enable to output valid delay <sup>1</sup> (high drive), 50%–50%     | tpv    | 15 pF<br>35 pF    | 1.38/1.28<br>1.97/1.92 | 2.25/1.99<br>3.16/2.86 | 3.58/3.10<br>5.01/4.39 | ns    |
| Output enable to output valid delay <sup>1</sup> (standard drive), 50%–50% | tpv    | 15 pF<br>35 pF    | 1.92/1.57<br>3.12/3.16 | 3.11/2.79<br>4.97/4.59 | 4.98/4.13<br>7.97/6.98 | ns    |
| Output enable to output valid delay <sup>1</sup> (max. drive), 40%–60%     | tpv    | 15 pF<br>35 pF    | 1.28/1.12<br>1.49/1.36 | 2.01/1.70<br>2.33/2.01 | 3.09/2.60<br>3.60/3.06 | ns    |
| Output enable to output valid delay <sup>1</sup> (high drive), 40%–60%     | tpv    | 15 pF<br>35 pF    | 1.43/1.33<br>1.90/1.84 | 2.24/1.99<br>2.96/2.68 | 3.47/3.02<br>4.59/4.03 | ns    |
| Output enable to output valid delay <sup>1</sup> (standard drive), 40%–60% | tpv    | 15 pF<br>35 pF    | 1.85/1.78<br>2.80/2.81 | 2.91/2.62<br>4.37/4.53 | 4.54/3.96<br>6.88/6.05 | ns    |
| Output pad slew rate <sup>2</sup> (max. drive)                             | tps    | 25 pF<br>50 pF    | 0.80/0.92<br>0.43/0.50 | 1.35/1.50<br>0.72/0.81 | 2.23/2.27<br>1.66/1.68 | V/ns  |
| Output pad slew rate <sup>2</sup> (high drive)                             | tps    | 25 pF<br>50 pF    | 0.37/0.43<br>0.19/0.23 | 0.62/0.70<br>0.33/0.37 | 1.03/1.05<br>0.75/0.77 | V/ns  |
| Output pad slew rate <sup>2</sup> (standard drive)                         | tps    | 25 pF<br>50 pF    | 0.18/0.22<br>0.10/0.12 | 0.31/0.35<br>0.16/0.18 | 0.51/0.53<br>0.38/0.39 | V/ns  |
| Output pad dl/dt <sup>3</sup> (max. drive)                                 | tdit   | 25 pF<br>50 pF    | 64<br>69               | 171<br>183             | 407<br>432             | mA/ns |
| Output pad dl/dt <sup>3</sup> (high drive)                                 | tdit   | 25 pF<br>50 pF    | 37<br>39               | 100<br>106             | 232<br>246             | mA/ns |
| Output pad di/dt <sup>3</sup> (standard drive)                             | tdit   | 25 pF<br>50 pF    | 18<br>20               | 50<br>52               | 116<br>123             | mA/ns |
| Input pad transition times <sup>4</sup>                                    | trfi   | 1.0 pF            | 0.07/0.08              | 0.11/0.13              | 0.16/0.20              | ns    |
| Input pad propagation delay, 50%–50% <sup>4</sup>                          | tpi    | 1.0 pF            | 0.77/1.00              | 1.22/1.45              | 1.89/2.21              | ns    |
| Input pad propagation delay, 40%–60% <sup>4</sup>                          | tpi    | 1.0 pF            | 1.59/1.82              | 2.04/2.27              | 2.69/3.01              | ns    |

#### Table 24. AC Parameters for Mobile DDR I/O (continued)

<sup>1</sup> Maximum condition for tpr, tpo, tpi, and tpv: wcs model, 1.1 V, I/O 1.65 V, and 105 °C. Minimum condition for tpr, tpo, and tpv: bcs model, 1.3 V, I/O 1.95 V and -40 °C. Input transition time from core is 1 ns (20%–80%).

<sup>2</sup> Minimum condition for tps: wcs model, 1.1 V, I/O 1.65 V, and 105 °C. tps is measured between VIL to VIH for rising edge and between VIH to VIL for falling edge.

<sup>3</sup> Maximum condition for tdit: bcs model, 1.3 V, I/O 1.95 V, and -40 °C.

<sup>4</sup> Maximum condition for tpi and trfi: wcs model, 1.1 V, I/O 1.65 V and 105 °C. Minimum condition for tpi and trfi: bcs model, 1.3 V, I/O 1.95 V and -40 °C. Input transition time from pad is 5 ns (20%–80%).





### Figure 30. Mobile DDR SDRAM DQ versus DQS and SDCLK Read Cycle Timing Diagram

| ID   | Parameter                                                                   | Symbol | Min. | Max. | Unit |
|------|-----------------------------------------------------------------------------|--------|------|------|------|
| SD21 | DQS – DQ Skew (defines the data valid window in read cycles related to DQS) | tDQSQ  |      | 0.85 | ns   |
| SD22 | DQS DQ HOLD time from DQS                                                   | tQH    | 2.3  | —    | ns   |
| SD23 | DQS output access time from SDCLK posedge                                   | tDQSCK | —    | 6.7  | ns   |

#### Table 49. Mobile DDR SDRAM Read Cycle Timing Parameters



|                      | DQS Single-Ended Slew Rate |     |     |     |     |     |     |     |     |     |     |      |      |      |      |      |      |      |      |
|----------------------|----------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|------|------|
|                      | 2.0                        | 188 | 188 | 167 | 146 | 125 | 63  | —   | —   | —   | —   | —    |      |      |      | —    |      |      |      |
|                      | 1.5                        | 146 | 167 | 125 | 125 | 83  | 42  | 81  | 43  | _   | _   |      | _    | —    | _    |      | _    | —    | —    |
|                      | 1.0                        | 63  | 125 | 42  | 83  | 0   | 0   | -2  | 1   | -7  | -13 | —    | _    | —    | _    | —    | _    | —    | —    |
|                      | 0.9                        | _   |     | 31  | 69  | -11 | -14 | -13 | -13 | -18 | -27 | -29  | -45  | —    | _    |      | _    | —    | —    |
| DQ Slew Rate<br>V/ns | 0.8                        | _   | —   | _   | _   | -25 | -31 | -27 | -30 | -32 | -44 | -43  | -62  | -60  | -86  | —    | —    | —    | —    |
|                      | 0.7                        | —   | —   | _   | _   | _   | —   | -45 | -53 | -50 | -67 | -61  | -85  | -78  | -109 | -108 | -152 | —    | —    |
|                      | 0.6                        |     | —   | _   | _   | _   | —   | _   |     | -74 | -96 | -85  | -114 | -102 | -138 | -132 | -181 | -183 | -246 |
|                      | 0.5                        | —   |     | —   | —   | —   | —   |     | —   | —   | —   | -128 | -156 | -145 | -180 | -175 | -223 | -226 | -288 |
|                      | 0.4                        |     |     | _   | _   | —   | _   | —   |     |     |     | _    | _    | -210 | -243 | -240 | -286 | -291 | -351 |

#### Table 53. AtDS1, AtDH1 Derating Values for DDR2-400, DDR2-533<sup>1,2,3</sup> (continued)

<sup>1</sup> All units in 'ps'.

<sup>2</sup> Test conditions are at capacitance=15pF for DDR PADS. Recommended drive strengths are medium for SDCLK and high for address and controls.

<sup>3</sup> SDRAM CLK and DQS related parameters are measured from the 50% point. That is, high is defined as 50% of the signal value, and low is defined as 50% of the signal value. DDR SDRAM CLK parameters are measured at the crossing point of SDCLK and SDCLK (inverted clock).



#### Figure 33. DDR2 SDRAM DQ vs. DQS and SDCLK READ Cycle Timing Diagram

#### Table 54. DDR2 SDRAM Read Cycle Parameter Table<sup>1,2</sup>

| ID    | Parameter                                                                   | Symbol        | DDR2 | Unit |      |
|-------|-----------------------------------------------------------------------------|---------------|------|------|------|
|       | i didileter                                                                 | Cymbol        | Min. | Max. | onne |
| DDR24 | DQS - DQ Skew (defines the Data valid window in read cycles related to DQS) | tDQSQ         | —    | 0.6  | ns   |
| DDR25 | DQS DQ in HOLD time from DQS <sup>3</sup>                                   | tqн           | 2.5  | —    | ns   |
| DDR26 | DQS output access time from SDCLK posedge                                   | <b>TDQSCK</b> | -0.5 | 0.5  | ns   |

Test conditions are at capacitance=15 pF for DDR PADS. Recommended drive strengths are medium for SDCLK and high for address and controls.

#### i.MX25 Applications Processor for Consumer and Industrial Products, Rev. 10

1



| ID   | Parameter                                                                                                      | Min.              | Max. | Unit |
|------|----------------------------------------------------------------------------------------------------------------|-------------------|------|------|
| WE8  | Clock rise/fall to RW valid                                                                                    | 8                 | 12   | ns   |
| WE9  | Clock rise/fall to RW invalid                                                                                  | 3                 | 8    | ns   |
| WE10 | Clock rise/fall to OE valid                                                                                    | 7                 | 12   | ns   |
| WE11 | Clock rise/fall to OE invalid                                                                                  | 3.6               | 5.5  | ns   |
| WE12 | Clock rise/fall to EB[y] valid                                                                                 | 6                 | 11.5 | ns   |
| WE13 | Clock rise/fall to EB[y] invalid                                                                               | 6                 | 10   | ns   |
| WE14 | Clock rise/fall to LBA valid                                                                                   | 17.5              | 20   | ns   |
| WE15 | Clock rise/fall to LBA invalid                                                                                 | 0                 | 1    | ns   |
| WE16 | Clock rise/fall to output data valid                                                                           | 5                 | 10   | ns   |
| WE17 | Clock rise to output data invalid                                                                              | 0                 | 2.5  | ns   |
| WE18 | Input data valid to clock rise, FCE=1                                                                          | 1                 | —    | ns   |
| WE19 | Input Data Valid to Clock rise, FCE=0 (in the case there is $\overline{\text{ECB}}$ asserted during access)    | 1/2 BCLK<br>+2.63 | —    | ns   |
|      | Input Data Valid to Clock rise, FCE=0 (in the case there is NO $\overline{\text{ECB}}$ asserted during access) | 6.9               | _    | ns   |
| WE20 | Clock rise to input data invalid, FCE=1                                                                        | 1                 | _    | ns   |
| WE21 | Clock rise to input data invalid, FCE=0                                                                        | 2.4               | _    | ns   |
| WE22 | ECB setup time, FCE=1                                                                                          | 5                 | —    | ns   |
| WE23 | ECB setup time, FCE=0                                                                                          | 7.2               | —    | ns   |
| WE24 | ECB hold time, FCE=1                                                                                           | 5                 | —    | ns   |
| WE25 | ECB hold time, FCE=0                                                                                           | 0                 | _    | ns   |
| WE26 | DTACK setup time                                                                                               | 5.4               | _    | ns   |
| WE27 | DTACK hold time                                                                                                | -3.2              |      | ns   |

### Table 56. WEIM Bus Timing Parameters<sup>1</sup> (continued)

<sup>1</sup> High is defined as 80% of signal value; low is defined as 20% of signal value.

<sup>2</sup> BCLK parameters are being measured from the 50% point. For example, high is defined as 50% of signal value and low is defined as 50% as signal value.

### NOTE

The test condition load capacitance was 25 pF. Recommended drive strength for all controls, address, and BCLK is maximum drive.

Recommended drive strength for all controls, address and BCLK is maximum drive.





Figure 41. Synchronous Memory Timing Diagram for Two Non-Sequential Read Accesses— WSC=2, SYNC=1, DOL=0



| No. | Characteristics <sup>1 2</sup>                                        | Symbol | Expression <sup>3</sup> | Min.         | Max.         | Condition      | Unit |
|-----|-----------------------------------------------------------------------|--------|-------------------------|--------------|--------------|----------------|------|
| 65  | SCKR rising edge to FSR out (bl) high                                 | _      | _                       | _            | 17.0<br>7.0  | x ck<br>i ck a | ns   |
| 66  | SCKR rising edge to FSR out (bl) low                                  | _      | —                       | _            | 17.0<br>7.0  | x ck<br>i ck a | ns   |
| 67  | SCKR rising edge to FSR out (wr) high <sup>5</sup>                    | _      | —                       | _            | 19.0<br>9.0  | x ck<br>i ck a | ns   |
| 68  | SCKR rising edge to FSR out (wr) low <sup>5</sup>                     | _      | —                       | _            | 19.0<br>9.0  | x ck<br>i ck a | ns   |
| 69  | SCKR rising edge to FSR out (wl) high                                 | _      | —                       | _            | 16.0<br>6.0  | x ck<br>i ck a | ns   |
| 70  | SCKR rising edge to FSR out (wl) low                                  | —      | _                       | _            | 17.0<br>7.0  | x ck<br>i ck a | ns   |
| 71  | Data in setup time before SCKR (SCK in synchronous mode) falling edge | _      |                         | 12.0<br>19.0 | _            | x ck<br>i ck   | ns   |
| 72  | Data in hold time after SCKR falling edge                             | _      | _                       | 3.5<br>9.0   | _            | x ck<br>i ck   | ns   |
| 73  | FSR input (bl, wr) high before SCKR falling edge <sup>5</sup>         | —      | _                       | 2.0<br>12.0  | _            | x ck<br>i ck a | ns   |
| 74  | FSR input (wl) high before SCKR falling edge                          | _      |                         | 2.0<br>12.0  | _            | x ck<br>i ck a | ns   |
| 75  | FSR input hold time after SCKR falling edge                           | —      | _                       | 2.5<br>8.5   | _            | x ck<br>i ck a | ns   |
| 76  | Flags input setup before SCKR falling edge                            | —      | _                       | 0.0<br>19.0  | _            | x ck<br>i ck s | ns   |
| 77  | Flags input hold time after SCKR falling edge                         | _      | —                       | 6.0<br>0.0   | —            | x ck<br>i ck s | ns   |
| 78  | SCKT rising edge to FST out (bl) high                                 | _      | —                       | _            | 18.0<br>8.0  | x ck<br>i ck   | ns   |
| 79  | SCKT rising edge to FST out (bl) low                                  | _      | —                       | _            | 20.0<br>10.0 | x ck<br>i ck   | ns   |
| 80  | SCKT rising edge to FST out (wr) high <sup>5</sup>                    | _      | —                       | _            | 20.0<br>10.0 | x ck<br>i ck   | ns   |
| 81  | SCKT rising edge to FST out (wr) low <sup>5</sup>                     | —      | _                       | _            | 22.0<br>12.0 | x ck<br>i ck   | ns   |
| 82  | SCKT rising edge to FST out (wl) high                                 | _      | _                       | _            | 19.0<br>9.0  | x ck<br>i ck   | ns   |
| 83  | SCKT rising edge to FST out (wl) low                                  | —      | _                       | _            | 20.0<br>10.0 | x ck<br>i ck   | ns   |
| 84  | SCKT rising edge to data out enable from high impedance               | —      |                         | _            | 22.0<br>17.0 | x ck<br>i ck   | ns   |
| 85  | SCKT rising edge to transmitter #0 drive<br>enable assertion          | —      | _                       | _            | 17.0<br>11.0 | x ck<br>i ck   | ns   |

### Table 60. ESAI General Timing Requirements (continued)



# 3.7.12 Liquid Crystal Display Controller (LCDC) Timing

Figure 65 and Figure 66 show LCDC timing in non-TFT and TFT mode respectively, and Table 71 and Table 72 list the timing parameters used in the associated figures.



Figure 65. LCDC Non-TFT Mode Timing Diagram

| Table 71. LCDC Non-TF | Г Mode Timing | Parameters |
|-----------------------|---------------|------------|
|-----------------------|---------------|------------|

| ID | Description                                  | Min. | Max. | Unit           |
|----|----------------------------------------------|------|------|----------------|
| T1 | Pixel clock period                           | 22.5 | 1000 | ns             |
| T2 | HSYNC width                                  | 1    | —    | T <sup>1</sup> |
| Т3 | LD setup time                                | 5    | —    | ns             |
| T4 | LD hold time                                 | 5    | —    | ns             |
| T5 | Wait between HSYNC and VSYNC rising edge     | 2    | —    | T <sup>1</sup> |
| Т6 | Wait between last data and HSYNC rising edge | 1    | —    | T <sup>1</sup> |

<sup>1</sup> T is pixel clock period





Figure 71. SmartCard Interface Power Down AC Timing

| Table 77. Timing Requirements for | Power-down Sequence |
|-----------------------------------|---------------------|
|-----------------------------------|---------------------|

| ID   | PARAMETER                            | SYMBOL               | Min.              | Max.              | Unit |
|------|--------------------------------------|----------------------|-------------------|-------------------|------|
| SI7  | SIM reset to SIM clock stop          | S <sub>rst2clk</sub> | 0.9 	imes 1/Fckil | 1.1 	imes 1/Fckil | ns   |
| SI8  | SIM reset to SIM Tx data low         | S <sub>rst2dat</sub> | 1.8 	imes 1/Fckil | 2.2 	imes 1/Fckil | ns   |
| SI9  | SIM reset to SIM voltage enable low  | S <sub>rst2ven</sub> | 2.7 	imes 1/Fckil | 3.3 	imes 1/Fckil | ns   |
| SI10 | SIM presence detect to SIM reset low | S <sub>pd2rst</sub>  | 0.9 	imes 1/Fckil | 1.1 × 1/Fckil     | ns   |

# 3.7.15 System JTAG Controller (SJC) Timing

Figure 72 through Figure 75 show respectively the test clock input, boundary scan, test access port, and TRST timings for the SJC. Table 78 describes the SJC timing parameters (SJ1–SJ13) indicated in the figures.



Figure 72. Test Clock Input Timing Diagram



# 3.7.17.2 SSI Receiver Timing with Internal Clock

Figure 79 shows the timing for the SSI receiver with internal clock. Table 82 describes the timing parameters (SS1–SS51) shown in the figure.



Figure 79. SSI Receiver Internal Clock Timing Diagram

| Table 82. SSI Receiver | Timing with | Internal Clock |
|------------------------|-------------|----------------|
|------------------------|-------------|----------------|

| ID                       | Parameter                          | Min.  | Max. | Unit |  |  |  |  |  |  |  |
|--------------------------|------------------------------------|-------|------|------|--|--|--|--|--|--|--|
| Internal Clock Operation |                                    |       |      |      |  |  |  |  |  |  |  |
| SS1                      | (Tx/Rx) CK clock period            | 81.4  | _    | ns   |  |  |  |  |  |  |  |
| SS2                      | (Tx/Rx) CK clock high period       | 36.0  | _    | ns   |  |  |  |  |  |  |  |
| SS3                      | (Tx/Rx) CK clock rise time         | —     | 6.0  | ns   |  |  |  |  |  |  |  |
| SS4                      | (Tx/Rx) CK clock low period        | 36.0  | _    | ns   |  |  |  |  |  |  |  |
| SS5                      | (Tx/Rx) CK clock fall time         | —     | 6.0  | ns   |  |  |  |  |  |  |  |
| SS7                      | (Rx) CK high to FS (bl) high       | —     | 15.0 | ns   |  |  |  |  |  |  |  |
| SS9                      | (Rx) CK high to FS (bl) low        | —     | 15.0 | ns   |  |  |  |  |  |  |  |
| SS11                     | (Rx) CK high to FS (wl) high       | —     | 15.0 | ns   |  |  |  |  |  |  |  |
| SS13                     | (Rx) CK high to FS (wl) low        | —     | 15.0 | ns   |  |  |  |  |  |  |  |
| SS20                     | SRXD setup time before (Rx) CK low | 10.0  | _    | ns   |  |  |  |  |  |  |  |
| SS21                     | SRXD hold time after (Rx) CK low   | 0.0   | _    | ns   |  |  |  |  |  |  |  |
|                          | Oversampling Clock Operation       |       |      |      |  |  |  |  |  |  |  |
| SS47                     | Oversampling clock period          | 15.04 | _    | ns   |  |  |  |  |  |  |  |



| ID   | Parameter                      | Min. | Max. | Unit |
|------|--------------------------------|------|------|------|
| SS48 | Oversampling clock high period | 6.0  | —    | ns   |
| SS49 | Oversampling clock rise time   | —    | 3.0  | ns   |
| SS50 | Oversampling clock low period  | 6.0  | —    | ns   |
| SS51 | Oversampling clock fall time   | —    | 3.0  | ns   |

#### Table 82. SSI Receiver Timing with Internal Clock (continued)

#### Note:

- All the timings for the SSI are given for a non-inverted serial clock polarity (TSCKP/RSCKP = 0) and a non-inverted frame sync (TFSI/RFSI = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timing remains valid by inverting the clock signal STCK/SRCK and/or the frame sync STFS/SRFS shown in the tables and in the figures.
- All timings are on pads when SSI is being used for a data transfer.
- "Tx" and "Rx" refer to the transmit and receive sections of the SSI.
- For internal frame sync operation using external clock, the FS timing is the same as that of Tx Data (for example, during AC97 mode of operation).

# 3.7.17.3 SSI Transmitter Timing with External Clock

Figure 80 shows the timing for the SSI transmitter with external clock. Table 83 describes the timing parameters (SS22-SS46) shown in the figure.



Figure 80. SSI Transmitter with External Clock Timing Diagram



| Parameter                               | Conditions                    | Min. | Тур.    | Max. | Unit |  |  |  |  |  |
|-----------------------------------------|-------------------------------|------|---------|------|------|--|--|--|--|--|
| Power-down current<br>NVCC_ADC          | wer-down current —<br>/CC_ADC |      |         |      |      |  |  |  |  |  |
| QV <sub>DD</sub>                        |                               |      |         |      |      |  |  |  |  |  |
| Touchscreen Interface                   |                               |      |         |      |      |  |  |  |  |  |
| Expected plate resistance               | _                             | 100  | _       | 1500 | Ω    |  |  |  |  |  |
| Switch drivers on resistance            | GND and VDD switches          | —    | —       | 10   | Ω    |  |  |  |  |  |
| Conversion Characteristics <sup>3</sup> |                               |      |         |      |      |  |  |  |  |  |
| DNL <sup>4</sup>                        | fin = 1 kHz                   | —    | +/-0.75 | _    | LSB  |  |  |  |  |  |
| INL <sup>4</sup>                        | fin = 1 kHz                   |      | +/-2.0  |      | LSB  |  |  |  |  |  |
| Gain + Offset Error                     | _                             | _    | —       | +/2  | %FS  |  |  |  |  |  |

#### Table 85. Touchscreen ADC Electrical Specifications (continued)

<sup>1</sup> This comprises only the required initial dummy conversion cycle. Additional power-up time depends on the *enadc*, *reset* and *soc* signals applied to the touchscreen controller.

<sup>2</sup> This value only includes the ADC and the driver switches, but it does not take into account the current consumption in the touchscreen plate. For example, if the plate resistance is 100 W, the total current consumption is about 33 mA.

<sup>3</sup> At avdd = 3.3 V, dvdd = 1.2 V, Tjunction = 50 °C, fclk = 1.75 MHz, any process corner, unless otherwise noted.

<sup>4</sup> Value measured with a –0.5 dBFS sinusoidal input signal and computed with the code density test.

# 3.7.18.2 ADC Timing Diagrams

Figure 82 represents the synchronization between the signals *clk*, *soc*, *eoc*, and the output bits in the usage of the internal ADC. After a conversion cycle *eoc* is asserted, a new conversion begins only when the



assertion of *soc* is detected. Thus, if the *soc* signal is continuously asserted, the ADC undergoes successive conversion cycles and achieves the maximum sampling rate. If *soc* is negated, no conversion is initiated.



Figure 82. Start-up Sequence

The output data can be read from *adcout11...adcout0*, and is available *tdata* nanoseconds after the rising edge of *eoc*. The *reset* signal and the digital signals controlling the analog switches (*ypsw, xpsw, ynsw, xnsw*) are totally asynchronous.

The following conditions are necessary to guarantee the correct operation of the ADC:

- The input multiplexer selection (*selin11...selin0*) is stable during both the last clock cycle (14<sup>th</sup>) and the first clock cycle (1<sup>st</sup>). The best way to guarantee this is to make the input multiplexer selection during clock cycles 2 to 13.
- The references are stable during clock cycle 1 to 13. The best way to guarantee this is to make the reference multiplexer selection (*selrefp* and *selrefn*) before issuing an *soc* pulse and changing it only after an *eoc* pulse has been acquired, during the last clock cycle (14).



# 3.7.20.1.3 VP\_VM Bidirectional Mode Timing

Table 94 defines the VP\_VM bidirectional mode signals.

#### Table 94. Signal Definitions—VP\_VM Bidirectional Mode

| Name       | Direction           | Signal Description                                                                                |
|------------|---------------------|---------------------------------------------------------------------------------------------------|
| USB_TXOE_B | Out                 | Transmit enable, active low                                                                       |
| USB_DAT_VP | Out (Tx)<br>In (Rx) | <ul> <li>Tx VP data when USB_TXOE_B is low</li> <li>Rx VP data when USB_TXOE_B is high</li> </ul> |
| USB_SE0_VM | Out (Tx)<br>In (Rx) | <ul> <li>Tx VM data when USB_TXOE_B low</li> <li>Rx VM data when USB_TXOE_B high</li> </ul>       |
| USB_RCV    | In                  | Differential Rx data                                                                              |

Figure 93 shows the USB transmit waveform in VP\_VM bidirectional mode diagram.



Figure 94 shows the USB receive waveform in VP\_VM bidirectional mode diagram.





|   | -          | 2         | 3          | 4          | 5         | 9         | 7         | 8        | 6    | 10       | 11       | 12     | 13   | 14       | 15   | 16           | 17              | 18         | 19                | 20         |
|---|------------|-----------|------------|------------|-----------|-----------|-----------|----------|------|----------|----------|--------|------|----------|------|--------------|-----------------|------------|-------------------|------------|
| ¥ | QGND       | QGND      | QGND       | QGND       | QGND      | QVDD      | QVDD      | QGND     | QGND | QGND     | QGND     | QVDD   | QGND | QGND     | QGND | USBPHY1_VDDA | USBPHY1_VBUS    | USBPHY1_DM | USBPHY1_VDDA_BIAS | SD1_CMD    |
| - | FEC_MDC    | FEC_MDIO  | FEC_TDATA0 | FEC_TX_CLK | QGND      | NVCC_NFC  | NVCC_NFC  | NVCC_NFC | QGND | QGND     | QGND     | QGND   | QGND | QGND     | QGND | UPLL_VDD     | USBPHY1_RREF    | USBPHY1_DP | USBPHY1_VSSA      | SD1_DATA0  |
| Σ | FEC_RDATA0 | FEC_TX_EN | FEC_RX_DV  | FEC_RDATA1 | QVDD      | QVDD      | QVDD      | QGND     | QGND | QGND     | QGND     | QGND   | QGND | QGND     | QGND | UPLL_GND     | USBPHY1_UPLLVDD | NC_BGA_M18 | SD1_DATA2         | SD1_CLK    |
| z | KPP_COL3   | KPP_COL2  | KPP_COL1   | KPP_ROW0   | NVCC_MISC | NVCC_MISC | NVCC_MISC | QVDD     | QGND | TAMPER_A | TAMPER_B | QGND   | QGND | NVCC_CRM | QGND | QGND         | USBPHY1_UPLLVSS | GPIO_B     | GPIO_A            | SD1_DATA1  |
| ٩ | KPP_COL0   | KPP_ROW3  | KPP_ROW2   | UART2_RXD  | QGND      | NVCC_LCDC | NVCC_LCDC | QVDD     | QVDD | BAT_VDD  | MESH_C   | MESH_D | QGND | QGND     | QGND | QGND         | GPIO_C          | GPIO_E     | GPIO_D            | NC_BGA_P20 |
| æ | KPP_ROW1   | UART2_CTS | UART2_RTS  | CSPI1_SS0  | QGND      | NVCC_LCDC | NVCC_LCDC | QGND     | QGND | QGND     | QGND     | QGND   | QGND | QGND     | QGND | QGND         | NVCC_SDIO       | VSTBY_REQ  | GPIO_F            | EXT_ARMCLK |
| н | UART2_TXD  | UART1_CTS | UART1_RTS  | CSPI1_MOSI | QGND      | QGND      | QGND      | QGND     | QGND | QGND     | QGND     | QGND   | QGND | QGND     | QGND | QGND         | FUSE_VDD        | RESET_B    | POWER_FAIL        | VSTBY_ACK  |

Table 103. i.MX25 17×17 Package Ball Map (continued)



Table 104. 12x12 mm Package Ground, Power Sense, and Reference Contact Assignments (continued)

| Contact Name      | Contact Assignment |
|-------------------|--------------------|
| USBPHY1_VSSA      | К19                |
| USBPHY1_VSSA_BIAS | К18                |
| USBPHY2_VDD       | T16                |
| USBPHY2_VSS       | W16                |

<sup>1</sup> NVCC\_DRYICE is a supply output. An external capacitor no less than 4 μF must be connected to it. A 4.7 μF capacitor is recommended.

# 4.7 Signal Contact Assignments—12 x 12 mm, 0.5 mm Pitch

Table 105 lists the 12×12 mm package i.MX25 signal contact assignments.

| Table 105. 12x12 mm Package | i.MX25 Signal | Contact Assignment |
|-----------------------------|---------------|--------------------|
| Table 105. 12x12 mm Package | i.MX25 Signal | Contact Assignment |

| Contact Name | Contact<br>Assignment | Power Rail | I/O Buffer Type | Direction after<br>Reset <sup>1</sup> | Configuration<br>after Reset <sup>1</sup> |
|--------------|-----------------------|------------|-----------------|---------------------------------------|-------------------------------------------|
| A0           | A20                   | EMI2       | DDR             | OUTPUT                                | Low                                       |
| A1           | A19                   | EMI2       | DDR             | OUTPUT                                | Low                                       |
| A2           | B18                   | EMI2       | DDR             | OUTPUT                                | Low                                       |
| A3           | D17                   | EMI2       | DDR             | OUTPUT                                | Low                                       |
| A4           | A21                   | EMI2       | DDR             | OUTPUT                                | Low                                       |
| A5           | B19                   | EMI2       | DDR             | OUTPUT                                | Low                                       |
| A6           | D18                   | EMI2       | DDR             | OUTPUT                                | Low                                       |
| A7           | B20                   | EMI2       | DDR             | OUTPUT                                | Low                                       |
| A8           | A8 E19                |            | DDR             | OUTPUT                                | Low                                       |
| A9           | A9 D19                |            | DDR             | OUTPUT                                | Low                                       |
| A10          | B5                    | EMI1       | DDR             | OUTPUT                                | Low                                       |
| MA10         | E17                   | EMI2       | DDR             | OUTPUT                                | Low                                       |
| A11          | C21                   | EMI2       | DDR             | OUTPUT                                | Low                                       |
| A12          | B22                   | EMI2       | DDR             | OUTPUT                                | Low                                       |
| A13          | D21                   | EMI2       | DDR             | OUTPUT                                | Low                                       |
| A14          | A4                    | EMI1       | DDR             | OUTPUT                                | Low                                       |
| A15          | D6                    | EMI1       | DDR             | OUTPUT                                | Low                                       |
| A16          | A5                    | EMI1       | DDR             | OUTPUT                                | Low                                       |
| A17          | E6                    | EMI1       | DDR             | OUTPUT                                | Low                                       |
| A18          | A6                    | EMI1       | DDR             | OUTPUT                                | Low                                       |
| A19          | E7                    | EMI1       | DDR             | OUTPUT                                | Low                                       |



| Contact Name        | Contact<br>Assignment | Power Rail | I/O Buffer Type | Direction after<br>Reset <sup>1</sup> | Configuration<br>after Reset <sup>1</sup> |
|---------------------|-----------------------|------------|-----------------|---------------------------------------|-------------------------------------------|
| D7                  | L1                    | NFC        | GPIO            | INPUT                                 | Keeper                                    |
| D6                  | K1                    | NFC        | GPIO            | INPUT                                 | Keeper                                    |
| D5                  | J1                    | NFC        | GPIO            | INPUT                                 | Keeper                                    |
| D4                  | H2                    | NFC        | GPIO            | INPUT                                 | Keeper                                    |
| D3                  | H1                    | NFC        | GPIO            | INPUT                                 | Keeper                                    |
| D2                  | G1                    | NFC        | GPIO            | INPUT                                 | Keeper                                    |
| D1                  | F1                    | NFC        | GPIO            | INPUT                                 | Keeper                                    |
| D0                  | F2                    | NFC        | GPIO            | INPUT                                 | Keeper                                    |
| LD0 <sup>2</sup>    | AB10                  | LCDC       | GPIO            | OUTPUT                                | Low                                       |
| LD1 <sup>2</sup>    | W8                    | LCDC       | GPIO            | OUTPUT                                | Low                                       |
| LD2 <sup>2</sup>    | AB9                   | LCDC       | GPIO            | OUTPUT                                | Low                                       |
| LD3 <sup>2</sup>    | AA9                   | LCDC       | GPIO            | OUTPUT                                | Low                                       |
| LD4 <sup>2</sup>    | AB8                   | LCDC       | GPIO            | OUTPUT                                | Low                                       |
| LD5 <sup>2</sup>    | AA8                   | LCDC       | GPIO            | OUTPUT                                | Low                                       |
| LD6 <sup>2</sup>    | AB7                   | LCDC       | GPIO            | OUTPUT                                | Low                                       |
| LD7 <sup>2</sup>    | AA7                   | LCDC       | GPIO            | OUTPUT                                | Low                                       |
| LD8 <sup>2</sup>    | AB6                   | LCDC       | GPIO            | OUTPUT                                | Low                                       |
| LD9 <sup>2</sup>    | AA6                   | LCDC       | GPIO            | OUTPUT                                | Low                                       |
| LD10 <sup>2</sup>   | AB5                   | LCDC       | GPIO            | OUTPUT                                | Low                                       |
| LD11 <sup>2</sup>   | W7                    | LCDC       | GPIO            | OUTPUT                                | Low                                       |
| LD12 <sup>2</sup>   | AB4                   | LCDC       | GPIO            | OUTPUT                                | Low                                       |
| LD13 <sup>2</sup>   | W6                    | LCDC       | GPIO            | OUTPUT                                | Low                                       |
| LD14 <sup>2</sup>   | AB3                   | LCDC       | GPIO            | OUTPUT                                | Low                                       |
| LD15 <sup>2</sup>   | AA5                   | LCDC       | GPIO            | OUTPUT                                | Low                                       |
| HSYNC <sup>2</sup>  | AA4                   | LCDC       | GPIO            | OUTPUT                                | Low                                       |
| VSYNC <sup>2</sup>  | W5                    | LCDC       | GPIO            | OUTPUT                                | Low                                       |
| LSCLK <sup>2</sup>  | AB2                   | LCDC       | GPIO            | OUTPUT                                | Low                                       |
| OE_ACD <sup>2</sup> | AA3                   | LCDC       | GPIO            | OUTPUT                                | Low                                       |
| CONTRAST            | Y2                    | LCDC       | GPIO            | OUTPUT                                | Low                                       |
| PWM <sup>2</sup>    | W4                    | LCDC       | GPIO            | INPUT                                 | 100 KΩ Pull-Down                          |
| CSI_D2              | C22                   | CSI        | GPIO            | INPUT                                 | Keeper                                    |

 Table 105. 12x12 mm Package i.MX25 Signal Contact Assignment (continued)