

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Active
Core Processor	S08
Core Size	8-Bit
Speed	40MHz
Connectivity	I²C, SCI, SPI
Peripherals	LCD, LVD, PWM
Number of I/O	53
Program Memory Size	18KB (18K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1.9K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 12x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mc9s08lg16clh

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Assignments

Table 1. MC9S08LG32 Series Features by MCU and Package

Feature	ľ	MC9S08LG3	MC9S0	08LG16			
Flash size (bytes)	32,768			18,432			
RAM size (bytes)			1984				
Pin quantity	80	64	48	64	48		
ADC	16 ch	12 ch	9 ch	12 ch	9 ch		
LCD	8 x 37 4 x 41	8 x 29 4 x 33	8 x 21 4 x 25	8 x 29 4 x 33	8 x 21 4 x 25		
ICE + DBG			yes				
ICS			yes				
IIC			yes				
IRQ			yes				
KBI			8 pin				
GPIOs	69	53	39	53	39		
RTC			yes				
MTIM			yes				
SCI1			yes				
SCI2			yes				
SPI			yes				
TPM1 channels			2				
TPM2 channels			6				
XOSC			yes				

1 Pin Assignments

This section shows the pin assignments for the MC9S08LG32 series devices. The priority of functions on a pin is in ascending order from left to right and bottom to top. Another view of pinouts and function priority is given in Table 2.

6

Pin Assignments

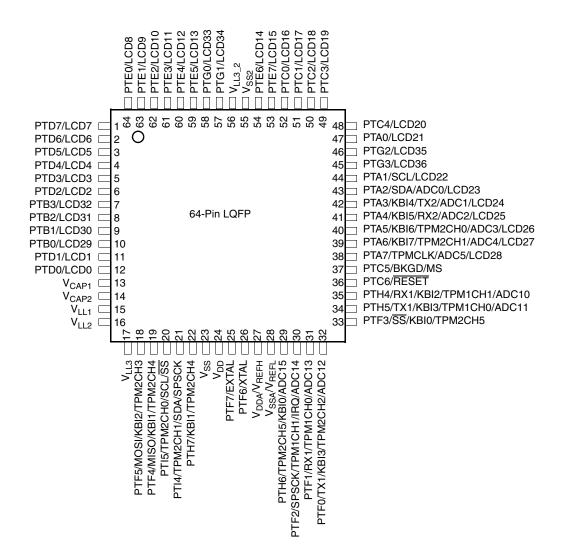


Figure 3. 64-Pin LQFP

NOTE

 V_{REFH}/V_{REFL} are internally connected to V_{DDA}/V_{SSA} .

No.	Rating ¹	Symbol	Min	Max	Unit
1	Human body model (HBM)	V_{HBM}	2500	_	V
2	Charge device model (CDM)	V _{CDM}	750	_	٧
3	Latch-up current at T _A = 85 °C	I _{LAT}	±100	_	mA

Parameter is achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted.

2.6 DC Characteristics

This section includes information about power supply requirements and I/O pin characteristics.

Table 8. DC Characteristics

Num	С	Characteristic	Symbol	Min	Typ ¹	Max	Unit
1	_	Operating Voltage	_	2.7		5.5	V
2	Р	Output high voltage — Low Drive (PTxDSn = 0) 5 V, ILoad = -2 mA 3 V, ILoad = -0.6 mA	V _{OH}	VDD - 0.8 VDD - 0.8	_ _	_	V
		Output high voltage — High Drive (PTxDSn = 1) V 5 V, ILoad = -10 mA 3 V, ILoad = -3 mA		VDD - 0.8 VDD - 0.8		_	
3	Р	Output low voltage — Low Drive (PTxDSn = 0) 5 V, ILoad = 2 mA 3 V, ILoad = 0.6 mA		_	_	0.8 0.8	V
		Output low voltage — High Drive (PTxDSn = 1) 5 V, ILoad = 10 mA 3 V, ILoad = 3 mA				0.8 0.8	
4	Р	Output high current — Max total I _{OH} for all ports 5 V 3 V	I _{OHT}	_	_	100 60	mA
5	С	Output high current — Max total I _{OL} for all ports 5 V 3 V		_	_	100 60	mA
6	Р	Bandgap voltage reference	V_{BG}	_	1.225	_	V
7	Р	Input high voltage; all digital inputs	V _{IH}	0.65 x V _{DD}	_	_	V
8	Р	Input low voltage; all digital inputs	V _{IL}	_	_	0.35 x V _{DD}	V
9	Р	Input hysteresis; all digital inputs	V _{hys}	0.06 x V _{DD}	_	_	mV
10	Р	Input leakage current; input only pins ² $V_{ln} = V_{DD} \text{ or } V_{SS}$	II _{In} I	_	0.1	1	μΑ
11	Р	High impedence (off-state) leakage current $V_{In} = V_{DD}$ or V_{SS}	ll _{OZ} l	_	0.1	1	μΑ
12	Р	Internal pullup resistors ³	R _{PU}	20	45	65	kΩ
13	Р	Internal pulldown resistors ⁴	R _{PD}	20	45	65	kΩ

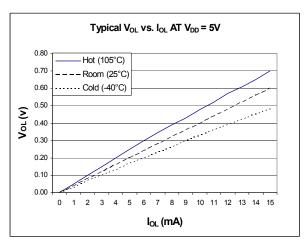
Table 8. DC Characteristics (continued)

Num	С		Characteristic		Symbol	Min	Typ ¹	Max	Unit
14	D	DC injection	Single pin limit		I _{IC}	_	_	2	mA
		current $^{5, 6, 7}$ $V_{IN} < V_{SS}, V_{IN} > V_{DD}$	Total MCU limit, includes sum all stressed pins	n of		_	_	25	mA
15	С	Input Capacitance,	all non-supply pins		C _{In}	_	_	8	pF
16	С	RAM retention volta	age		V_{RAM}	2	_	_	V
17	Р	POR rearm voltage)		V_{POR}	0.9	1.4	2.0	V
18	D	POR rearm time			t _{POR}	10	_	_	μS
19	Р	Low-voltage detect	ion threshold — high range	V _{DD} falling V _{DD} rising	V _{LVD1}	3.9 4.0	4.0 4.1	4.1 4.2	V
20	Р	Low-voltage detect	ion threshold — low range	V _{DD} falling V _{DD} rising	V _{LVD0}	2.48 2.54	2.56 2.62	2.64 2.70	V
21	Р	Low-voltage warnir	ng threshold — high range 1	V _{DD} falling V _{DD} rising	V _{LVW3}	4.5 4.6	4.6 4.7	4.7 4.8	V
22	Р	Low-voltage warnir	ng threshold — high range 0	V _{DD} falling V _{DD} rising	V _{LVW2}	4.2 4.3	4.3 4.4	4.4 4.5	V
23	P	Low-voltage warnir	ng threshold — low range 1	V _{DD} falling V _{DD} rising	V _{LVW1}	2.84 2.90	2.92 2.98	3.00 3.06	V
24	Р	Low-voltage warnir	ng threshold — low range 0	V _{DD} falling V _{DD} rising	V _{LVW0}	2.66 2.72	2.74 2.80	2.82 2.88	V
25	Р	Low-voltage inhibit	reset/recover hysteresis	5 V 3 V	V _{hys}	_	100 60	_	mV

¹ Typical values are measured at 25 °C. Characterized, not tested

² Measured with V_{In} = V_{DD} or Vss.

³ Measured with V_{In} = Vss.


⁴ Measured with V_{In} = V_{DD}.

 $^{^{5}}$ All functional non-supply pins, except for PTC6 are internally clamped to V_{SS} and V_{DD} .

⁶ Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger of the two values.

Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If the positive injection current ($V_{In} > V_{DD}$) is greater than I_{DD} , the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure that external V_{DD} load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power. For instance, if no system clock is present, or if clock rate is very low (which would reduce overall power consumption).

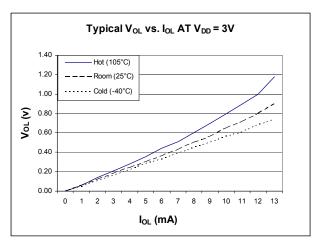
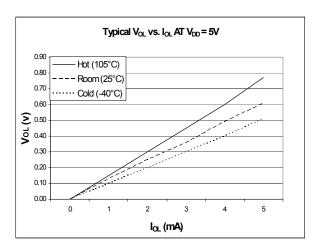



Figure 5. Typical Low-side Drive (sink) characteristics – High Drive (PTxDSn = 1)

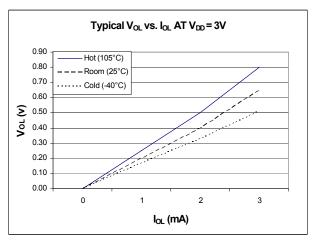
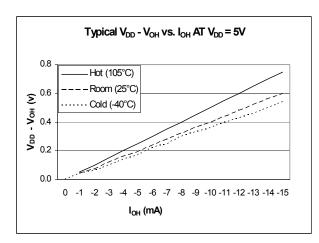



Figure 6. Typical Low-side Drive (sink) characteristics – Low Drive (PTxDSn = 0)

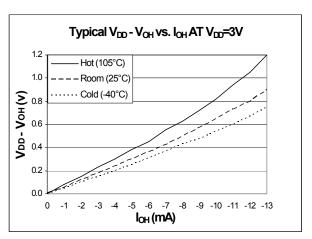
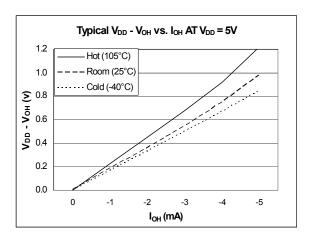



Figure 7. Typical High-side Drive (source) characteristics – High Drive (PTxDSn = 1)

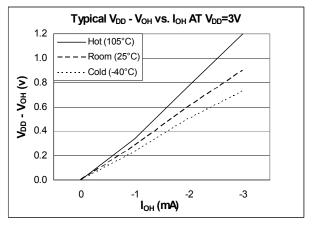


Figure 8. Typical High-side Drive (source) characteristics – Low Drive (PTxDSn = 0)

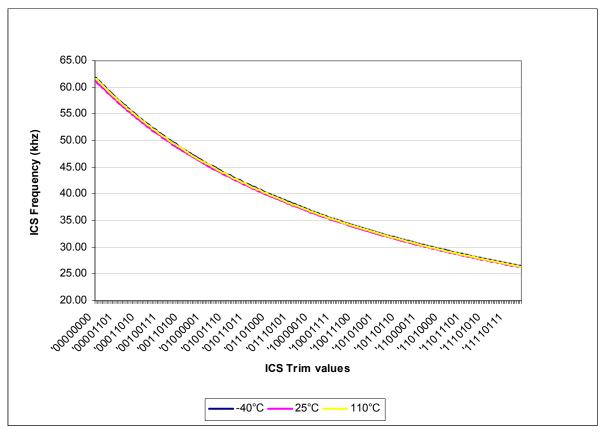


Figure 17. Internal Oscillator Deviation from Trimmed Frequency

2.10 ADC Characteristics

Table 12. 12-bit ADC Operating Conditions

Characteristic	Conditions	Symb	Min	Typ ¹	Max	Unit	Comment
Supply voltage	Absolute	V_{DDAD}	2.7	_	5.5	V	_
	Delta to V _{DD} (V _{DD} – V _{DDAD}) ²	ΔV_{DDAD}	-100	0	+100	mV	_
Ground voltage	Delta to V _{SS} (V _{SS} – V _{SSAD}) ²	ΔV _{SSAD}	-100	0	+100	mV	_
Ref Voltage High	1	V _{REFH}	_	_	_	>	V _{REFH} shorted to V _{DDAD}
Ref Voltage Low	_	V _{REFL}	_	_	_	٧	V _{REFL} shorted to V _{SSAD}
Input Voltage	_	V _{ADIN}	V _{REFL}	_	V _{REFH}	V	_
Input Capacitance	_	C _{ADIN}	_	4.5	5.5	pF	_

Table 12. 12-bit ADC Operating Conditions (continued)

Characteristic	Conditions	Symb	Min	Typ ¹	Max	Unit	Comment
Input Resistance	_	R _{ADIN}	_	5	7	kΩ	_
Analog Source Resistance	12-bit mode f _{ADCK} > 4MHz f _{ADCK} < 4MHz	R _{AS}	_	_	2 5	kΩ	External to MCU
	10-bit mode f _{ADCK} > 4MHz f _{ADCK} < 4MHz		_	_	5 10		
	8-bit mode (all valid f _{ADCK})		_	_	10		
ADC	High Speed (ADLPC = 0)	f _{ADCK}	0.4	_	8.0	MHz	_
Conversion Clock Freq.	Low Power (ADLPC = 1)		0.4	_	4.0		

Typical values assume $V_{DDAD} = 5.0 \text{ V}$, Temp = 25 °C, $f_{ADCK} = 1.0 \text{ MHz}$ unless otherwise stated. Typical values are for reference only and are not tested in production.

² DC potential difference.

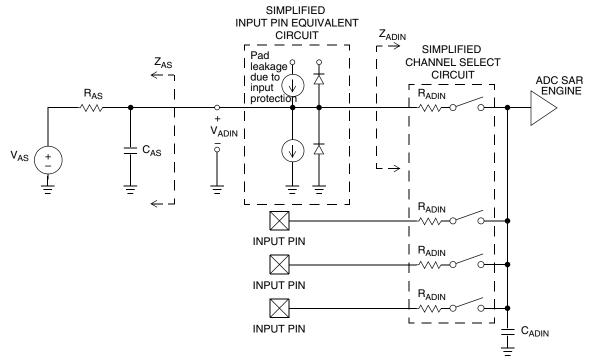


Figure 18. ADC Input Impedance Equivalency Diagram

2.11 AC Characteristics

This section describes timing characteristics for each peripheral system.

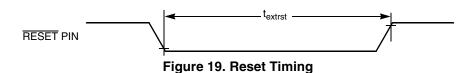

2.11.1 Control Timing

Table 14. Control Timing

Num	С	Rating	Symbol	Min	Typ ¹	Max	Unit
1	D	Bus frequency (t _{cyc} = 1/f _{Bus})	f _{Bus}	dc		20	MHz
2	D	Internal low power oscillator period	t _{LPO}	700	_	1300	μS
3	D	External reset pulse width ²	t _{extrst}	100	_	_	ns
4	D	Reset low drive	t _{rstdrv}	66 x t _{cyc}	_	_	ns
5	D	BKGD/MS setup time after issuing background debug force reset to enter user or BDM modes	t _{MSSU}	500	_	_	ns
6	D	BKGD/MS hold time after issuing background debug force reset to enter user or BDM modes ³	t _{MSH}	100	_	_	μS
7	D	IRQ pulse width Asynchronous path ² Synchronous path ⁴	t _{ILIH} t _{IHIL}	100 1.5 x t _{cyc}	_ _	_ _	ns
8	D	Keyboard interrupt pulse width Asynchronous path ² Synchronous path ⁴	t _{ILIH} t _{IHIL}	100 1.5 x t _{cyc}			ns
9	С	Port rise and fall time — (load = 50 pF) ^{5, 6} Slew rate control disabled (PTxSE = 0) Slew rate control enabled (PTxSE = 1)	t _{Rise} t _{Fall}		3 30		ns

Typical values are based on characterization data at $V_{DD} = 5.0 \text{ V}$, 25 °C unless otherwise stated.

⁶ Except for LCD pins in Open Drain mode.

 $^{^{2}\,}$ This is the shortest pulse that is guaranteed to be recognized as a reset pin request.

 $^{^3}$ To enter BDM mode following a POR, BKGD/MS should be held low during the power-up and for a hold time of t_{MSH} after V_{DD} rises above V_{LVD} .

⁴ This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or may not be recognized. In stop mode, the synchronizer is bypassed so shorter pulses can be recognized.

 $^{^5}$ Timing is shown with respect to 20% $\rm V_{DD}$ and 80% $\rm V_{DD}$ levels. Temperature range –40 $^{\circ}C$ to 105 $^{\circ}C$.

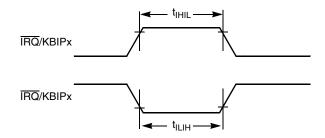


Figure 20. IRQ/KBIPx Timing

2.11.2 TPM Module Timing

Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that can be used as the optional external source to the timer counter. These synchronizers operate from the current bus rate clock.

С **Function** Unit No. **Symbol** Max Min D 0 f_{Bus}/4 1 External clock frequency Hz f_{TCLK} 4 2 D External clock period t_{TCLK} t_{cyc} 3 D External clock high time 1.5 $\rm t_{\rm cyc}$ t_{clkh} 4 D External clock low time 1.5 t_{clkl} $t_{\rm cyc}$ 5 D Input capture pulse width 1.5 t_{ICPW} t_{cyc}

Table 15. TPM Input Timing

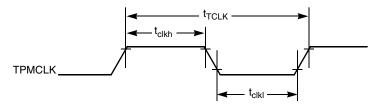


Figure 21. Timer External Clock

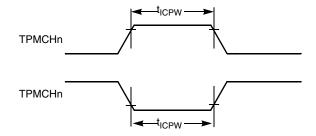
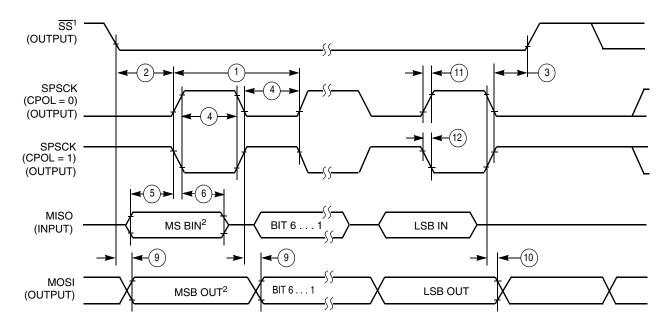
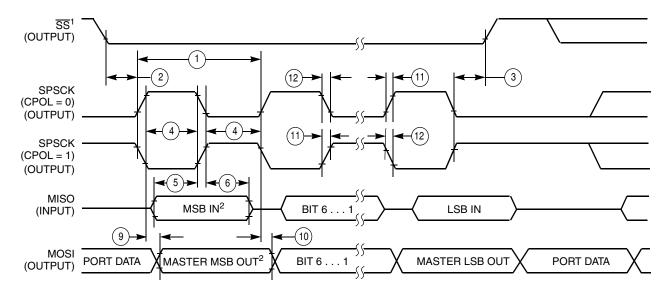



Figure 22. Timer Input Capture Pulse



NOTES:

- 1. SS output mode (DDS7 = 1, SSOE = 1).
- 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure 23. SPI Master Timing (CPHA = 0)

NOTES:

- 1. \overline{SS} output mode (DDS7 = 1, SSOE = 1).
- 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure 24. SPI Master Timing (CPHA =1)

2.12 LCD Specifications

Table 17. LCD Electricals, 3 V Glass

С	Characteristic	Symbol	Min	Тур	Max	Units
D	VLL3 Supply Voltage	VLL3	2.7	_	5.5	V
D	LCD Frame Frequency	f _{Frame}	28	30	64	Hz
D	LCD Charge Pump Capacitance	C _{LCD}	_	100	100	pF
D	LCD Bypass Capacitance	C _{BYLCD}	_	100	100	
D	LCD Glass Capacitance	C _{glass}	_	2000	8000	

2.13 Flash Specifications

This section provides details about program/erase times and program-erase endurance for the flash memory.

Program and erase operations do not require any special power sources other than the normal V_{DD} supply. For more detailed information about program/erase operations, see the Memory section.

Table 18. Flash Characteristics

С	Characteristic	Symbol	Min	Typical	Max	Unit
D	Supply voltage for program/erase -40 °C to 85 °C	V _{prog/erase}	2.7		5.5	V
D	Supply voltage for read operation	V _{Read}	2.7		5.5	V
D	Internal FCLK frequency ¹	f _{FCLK}	150		200	kHz
D	Internal FCLK period (1/FCLK)	t _{Fcyc}	5		6.67	μS
С	Byte program time (random location) ²	t _{prog}		9		t _{Fcyc}
С	Byte program time (burst mode) ²	t _{Burst}		4		t _{Fcyc}
С	Page erase time ²	t _{Page}		4000		t _{Fcyc}
С	Mass erase time ²	t _{Mass}		20,000		t _{Fcyc}
D	Byte program current ³	R _{IDDBP}	_	4	_	mA
D	Page erase current ³	R _{IDDPE}	_	6	_	mA
С	Program/erase endurance ⁴ T_L to $T_H = -40$ °C to + 85 °C $T = 25$ °C		10,000	 100,000		cycles
С	Data retention ⁵	t _{D_ret}	15	100	_	years

The frequency of this clock is controlled by a software setting.

34 Freescale Semiconductor

These values are hardware state machine controlled. User code does not need to count cycles. This information supplied for calculating approximate time to program and erase.

³ The program and erase currents are additional to the standard run I_{DD} . These values are measured at room temperatures with $V_{DD} = 5.0 \text{ V}$, bus frequency = 4.0 MHz.

⁴ Typical endurance for flash was evaluated for this product family on the 9S12Dx64. For additional information on how Freescale defines typical endurance, please refer to Engineering Bulletin EB619, Typical Endurance for Nonvolatile Memory.

Typical data retention values are based on intrinsic capability of the technology measured at high temperature and de-rated to 25 °C using the Arrhenius equation. For additional information on how Freescale defines typical data retention, please refer to Engineering Bulletin EB618, Typical Data Retention for Nonvolatile Memory.

2.14 EMC Performance

Electromagnetic compatibility (EMC) performance is highly dependant on the environment in which the MCU resides. Board design and layout, circuit topology choices, location and characteristics of external components as well as MCU software operation all play a significant role in EMC performance. The system designer should consult Freescale applications notes such as AN2321, AN1050, AN1263, AN2764, and AN1259 for advice and guidance specifically targeted at optimizing EMC performance.

2.14.1 Radiated Emissions

Microcontroller radiated RF emissions are measured from 150 kHz to 1 GHz using the TEM/GTEM cell method in accordance with the IEC 61967-2 and SAE J1752/3 standards. The measurement is performed with the microcontroller installed on a custom EMC evaluation board while running specialized EMC test software. The radiated emissions from the microcontroller are measured in a TEM cell in two package orientations (North and East).

The maximum radiated RF emissions of the tested configuration in all orientations are less than or equal to the reported emissions levels.

Parameter	Symbol	Conditions	Frequency	f _{osc} /f _{Bus}	Level ¹ (Max)	Unit			
Radiated emissions,	V _{RE_TEM}	$V_{DD} = 5.5$	0.15 – 50 MHz	4 MHz crystal	10	dΒμV			
electric field		Package type =		$T_A = +25$ °C Package type =	50 – 150 MHz	16 MHz bus	16 MHz bus	14	
		80 LQFP	150 – 500 MHz		8				
			500 – 1000 MHz		5				
			IEC Level		L	_			
			SAE Level		2	_			

Table 19. Radiated Emissions, Electric Field

2.14.2 Conducted Transient Susceptibility

Microcontroller transient conducted susceptibility is measured in accordance with an internal Freescale test method. The measurement is performed with the microcontroller installed on a custom EMC evaluation board and running specialized EMC test software designed in compliance with the test method. The conducted susceptibility is determined by injecting the transient susceptibility signal on each pin of the microcontroller. The transient waveform and injection methodology is based on IEC 61000-4-4 (EFT/B). The transient voltage required to cause performance degradation on any pin in the tested configuration is greater than or equal to the reported levels unless otherwise indicated by footnotes below Table 20.

Parameter	Symbol	Conditions	f _{OSC} /f _{BUS}	Result	Amplitude ¹ (Min)	Unit
Conducted susceptibility, electrical	V _{CS EFT}	V _{DD} = 5.5	4 kHz crystal	Α	>4.0 ²	kV
fast transient/burst (EFT/B)		T _A = +25 °C	4 MHz bus	В	>4.0 ³	
		Package type = 80-pin LQFP		С	>4.0 ⁴	
				D	>4.0	

Table 20. Conducted Susceptibility, EFT/B

Data based on qualification test results.

¹ Data based on qualification test results. Not tested in production.

² Exceptions as covered in footnotes 3 and 4.

- ³ Except pins PHT1, PTH2, PTH3, PTH4, PTH5. See figures below for values.
- ⁴ Except pins PTF3, PTH5, PTH4, PHT0, Reset, and BKGD. See figures below for values.

Individual performance of each pin is shown in Figure 27, Figure 28, Figure 29, and Figure 30.

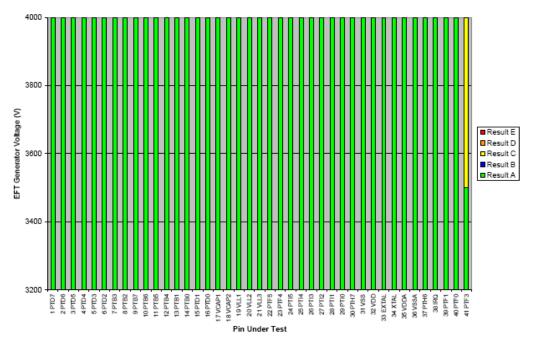
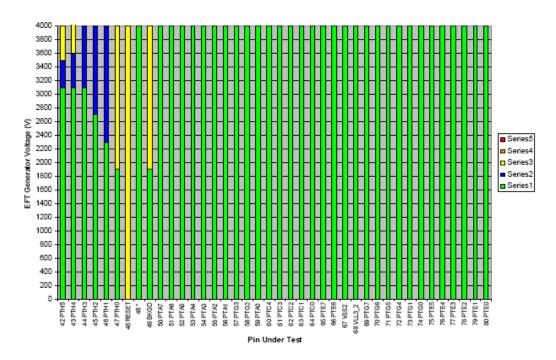



Figure 27. 4 MHz, Positive Polarity Pins 1 - 41

Note:

RESET retested with 0.1 μF capacitor from pin to ground is Class A compliant as shown by 48*.

Figure 28. 4 MHz, Positive Polarity Pins 42 – 80

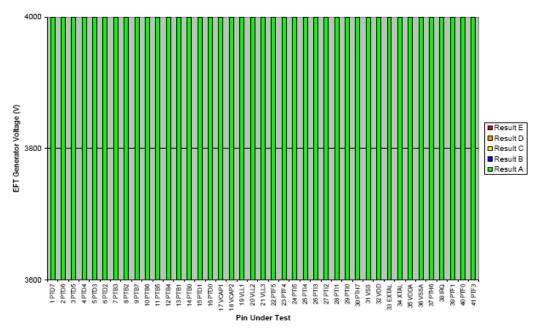
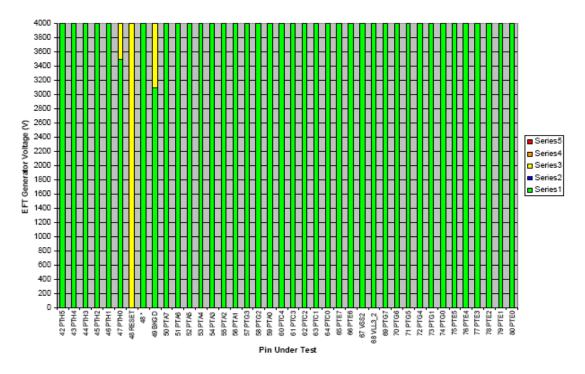



Figure 29. 4 MHz, Negative Polarity Pins 1 - 41

Note:

RESET retested with 0.1 μF capacitor from pin to ground is Class A compliant as shown by 48*.

Figure 30. 4 MHz, Negative Polarity Pins 42 – 80

3.1 Device Numbering System

Example of the device numbering system:

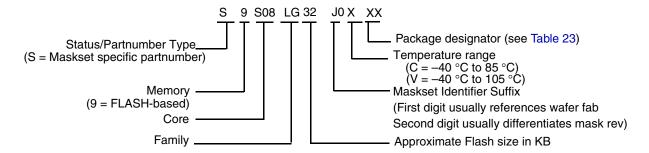


Figure 31. Device Number Example for Auto Parts

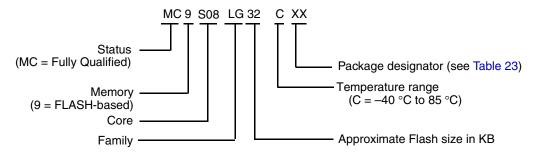
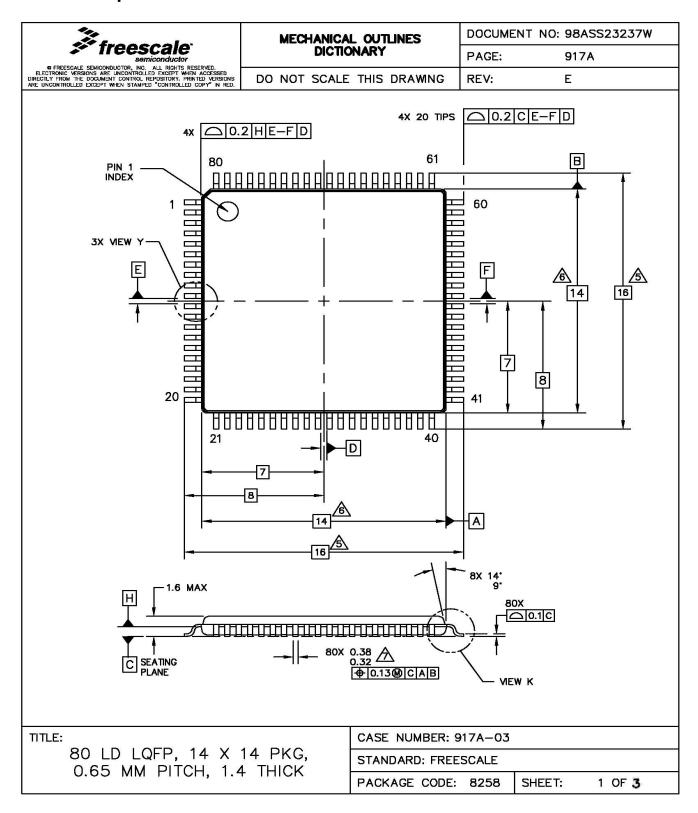


Figure 32. Device Number Example for IMM Parts

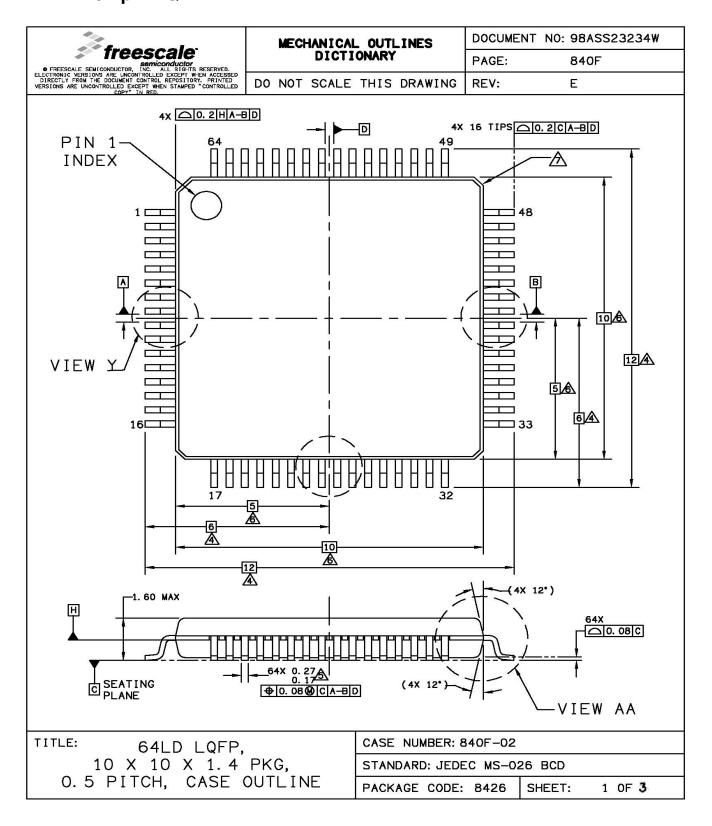
4 Package Information

Table 23. Package Descriptions

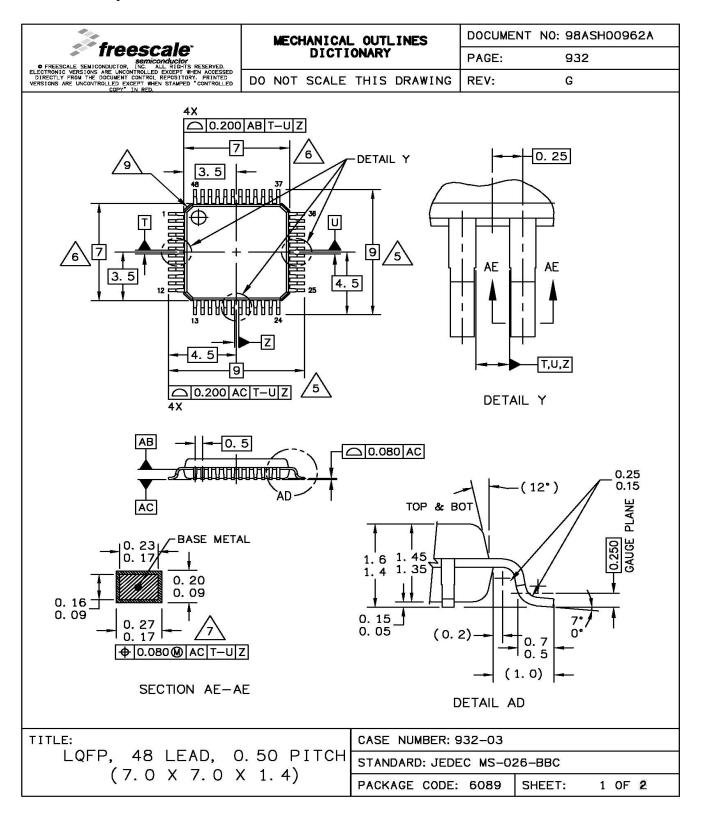
Pin Count	Package Type	Abbreviation	Designator	Case No.	Document No.
80	Low Quad Flat Package	LQFP	LK	917A	98ASS23237W
64	Low Quad Flat Package	LQFP	LH	840F	98ASS23234W
48	Low Quad Flat Package	LQFP	LF	932	98ASH00962A


4.1 Mechanical Drawings

The following pages are mechanical drawings for the packages described in Table 23. For the latest available drawings please visit our web site (http://www.freescale.com) and enter the package's document number into the keyword search box.


Package Information

4.1.1 80-pin LQFP


4.1.2 64-pin LQFP

Package Information

4.1.3 48-pin LQFP

Revision History

5 Revision History

To provide the most up-to-date information, the revision of our documents on the World Wide Web are the most current. Your printed copy may be an earlier revision. To verify you have the latest information available, refer to:

http://www.freescale.com

The following revision history table summarizes changes contained in this document.

Table 24. Revision History

Revision	Date	Description of Changes
1	8/2008	First Initial release.
2	9/2008	Second Initial Release.
3	11/2008	Alpha Customer Release.
4	2/2009	Launch Release.
5	4/2009	Added EMC Radiated Emission and Transient Susceptibility data in Table 19 and Table 20.
6	4/2009	Updated EMC performance data.
7	8/2009	Updated auto part numbers, changed TCLK, T0CH0, T0CH1, T1CH0, T1CH1, T1CH2, T1CH3, T1CH3, T1CH3, T1CH4, and T1CH5 to TPMCLK, TPM0CH0, TPM0CH1, TPM1CH0, TPM1CH1, TPM1CH2, TPM1CH3, TPM1CH4, and TPM1CH5, and changed the maximum LCD frame frequency to 64 Hz.
8	8/2011	Updated Table "ICS Frequency Specifications (Temperature Range = $-40 \times C$ to $105 \times C$ Ambient)". Changed the value of row 8 column C from C to P.
9	9/2011	Updated Table "ICS Frequency Specifications (Temperature Range = -40 ×C to 105 ×C Ambient)". Removed Footnote from Row 8. Updated the Revision History