E·XFL

NXP USA Inc. - MC9S08LG32CLH Datasheet

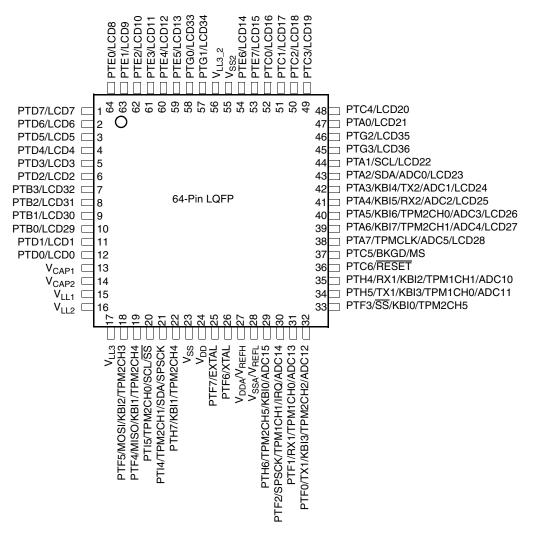
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


Product Status	Not For New Designs
Core Processor	S08
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SCI, SPI
Peripherals	LCD, LVD, PWM
Number of I/O	53
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	·
RAM Size	1.9К х 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 12x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc9s08lg32clh

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Assignments

Figure 3. 64-Pin LQFP

NOTE

 V_{REFH}/V_{REFL} are internally connected to V_{DDA}/V_{SSA} .

Pin Assignments

	Packages			< Lov	west Priority:	> Highest	
80	64	48	Port Pin	Alt 1	Alt 2	Alt 3	Alt 4
1	1	1	PTD7	LCD7	—	—	_
2	2	2	PTD6	LCD6	—	—	_
3	3	3	PTD5	LCD5	—	—	_
4	4	4	PTD4	LCD4	—	—	_
5	5	5	PTD3	LCD3	—	—	_
6	6	6	PTD2	LCD2	—	—	
7	7	—	PTB3	LCD32	—	—	_
8	8	_	PTB2	LCD31	—	—	
9	—	—	PTB7	LCD40	—	—	_
10		_	PTB6	LCD39	—	—	
11	—	—	PTB5	LCD38		—	_
12	_	_	PTB4	LCD37	—	—	_
13	9	—	PTB1	LCD30	—	—	_
14	10	_	PTB0	LCD29	—	—	_
15	11	7	PTD1	LCD1	—	—	_
16	12	8	PTD0	LCD0	—	—	_
17	13	9	V _{CAP1}	—	—	—	_
18	14	10	V _{CAP2}	—	—	—	_
19	15	11	V _{LL1}		—	—	_
20	16	12	V _{LL2}		—	—	_
21	17	13	V _{LL3}		—	—	_
22	18	14	PTF5	MOSI	KBI2	TPM2CH3	_
23	19	15	PTF4	MISO	KBI1	TPM2CH4	_
24	20	—	PTI5	TPM2CH0	SCL	SS	_
25	21	—	PTI4	TPM2CH1	SDA	SPSCK	_
26	—	—	PTI3	TPM2CH2	MOSI	—	_
27	—	—	PTI2	TPM2CH3	MISO	—	_
28	—	—	PTI1	TMRCLK	TX2	—	_
29	—	—	PTI0	RX2		—	
30	22	—	PTH7	KBI1	TPM2CH4	—	_
31	23	16	V _{SS}		—	—	_
32	24	17	V _{DD}		—	—	_
33	25	18	PTF7	EXTAL	—	—	_
34	26	19	PTF6	XTAL	—	—	_
35	27	20	V _{DDA}	V _{REFH}		—	_
36	28	21	V _{SSA}	V _{REFL}	—	—	_
37	29	—	PTH6	TPM2CH5	KBI0	ADC15	_
38	30	22	PTF2	SPSCK	TPM1CH1	IRQ	ADC14

Table 2. Pin Availability by Package Pin-Count

Rating	Symbol	Value	Unit
Supply voltage	V _{DD}	-0.3 to +5.8	V
Maximum current into V _{DD}	I _{DD}	120	mA
Digital input voltage	V _{In}	-0.3 to V _{DD} + 0.3	V
Instantaneous maximum current Single pin limit (applies to all port pins) ^{1, 2, 3}	Ι _D	±25 ±2	mA
Storage temperature range	T _{stg}	–55 to 150	°C

Table 4. Absolute Maximum Ratings

Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive (V_{DD}) and negative (V_{SS}) clamp voltages and use the largest of the two resistance values.

 $^2\,$ All functional non-supply pins are internally clamped to V_{SS} and V_{DD}

³ Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current (V_{In} > V_{DD}) is greater than I_{DD}, the injection current may flow out of V_{DD} and could result in an external power supply going out of regulation. Ensure that the external V_{DD} load will shunt current greater than maximum injection current, this will be of greater risk when the MCU is not consuming power. For instance, if no system clock is present, or if the clock rate is very low (which would reduce overall power consumption).

2.4 Thermal Characteristics

This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in On-Chip logic and voltage regulator circuits, and it is user-determined rather than being controlled by the MCU design. To take $P_{I/O}$ into account in power calculations, determine the difference between actual pin voltage and V_{SS} or V_{DD} and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current (heavy loads), the difference between pin voltage and V_{SS} or V_{DD} will be very small.

Rating	Symbol	Value	Unit
Operating temperature range (packaged)	T _A	T _L to T _H –40 to +105	°C
Maximum junction temperature	TJ	125	°C
Thermal resistance Single-layer board 80-pin LQFP 64-pin LQFP 48-pin LQFP	θ_{JA}	61 71 80	°C/W
Thermal resistance Four-layer board 80-pin LQFP 64-pin LQFP 48-pin LQFP	θ_{JA}	48 52 56	°C/W

Table 5. Thermal Characteristics

The average chip-junction temperature (T_J) in °C can be obtained from:

$$T_J = T_A + (P_D \times \theta_{JA})$$
 Eqn. 1

No.	Rating ¹	Symbol	Min	Max	Unit
1	Human body model (HBM)	V _{HBM}	2500	_	V
2	Charge device model (CDM)	V _{CDM}	750	_	V
3	Latch-up current at $T_A = 85 \ ^{\circ}C$	I _{LAT}	±100		mA

Table 7. ESD and Latch-Up Protection Characteristics

Parameter is achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted.

2.6 DC Characteristics

This section includes information about power supply requirements and I/O pin characteristics.

Num	С	Characteristic	Symbol	Min	Typ ¹	Max	Unit
1	—	Operating Voltage	—	2.7	_	5.5	V
2	Ρ	Output high voltage — Low Drive (PTxDSn = 0) 5 V, ILoad = -2 mA 3 V, ILoad = -0.6 mA	V _{OH}	Vdd - 0.8 Vdd - 0.8	_		V
		Output high voltage — High Drive (PTxDSn = 1) V 5 V, ILoad = -10 mA 3 V, ILoad = -3 mA		Vdd – 0.8 Vdd – 0.8			
3	Ρ	Output low voltage — Low Drive (PTxDSn = 0) 5 V, ILoad = 2 mA 3 V, ILoad = 0.6 mA	V _{OL}	—		0.8 0.8	V
		Output low voltage — High Drive (PTxDSn = 1) 5 V, ILoad = 10 mA 3 V, ILoad = 3 mA			_	0.8 0.8	
4	Ρ	Output high current — Max total I _{OH} for all ports 5 V 3 V	I _{ОНТ}	_	_	100 60	mA
5	С	Output high current — Max total I _{OL} for all ports 5 V 3 V		_	_	100 60	mA
6	Ρ	Bandgap voltage reference	V _{BG}	—	1.225		V
7	Ρ	Input high voltage; all digital inputs	V _{IH}	0.65 x V _{DD}	_		V
8	Ρ	Input low voltage; all digital inputs	V _{IL}	_		$0.35 \times V_{DD}$	V
9	Ρ	Input hysteresis; all digital inputs	V _{hys}	0.06 x V _{DD}	_		mV
10	Ρ	Input leakage current; input only pins ² $V_{In} = V_{DD}$ or V_{SS}	_{In}	—	0.1	1	μA
11	Ρ	High impedence (off-state) leakage current $V_{In} = V_{DD}$ or V_{SS}	ll _{oz} l	—	0.1	1	μA
12	Ρ	Internal pullup resistors ³	R _{PU}	20	45	65	kΩ
13	Ρ	Internal pulldown resistors ⁴	R _{PD}	20	45	65	kΩ

Table 8. DC Characteristics

2.7 Supply Current Characteristics

This section includes information about power supply current in various operating modes.

Num	с	Parameter	Symbol	Bus Freq	V _{DD} (V)	Typ ¹	Max	Unit	Temp (°C)
1	С	Run supply current	RI _{DD}	20 MHz	3	16.38	27.85	mA	–40 °C to 85 °C
	С	FEI mode, all modules on					28.05		–40 °C to105 °C
	С			1 MHz		1.67	2.84		–40 °C to 85 °C
	С						2.87		–40 °C to105 °C
	Ρ			20 MHz	5	16.55	28.14	mA	–40 °C to 85 °C
	Р						28.35		–40 °C to105 °C
	С			1 MHz		1.77	3.01		–40 °C to 85 °C
	С						3.05		–40 °C to105 °C
2	Т	Run supply current	RI _{DD}	20 MHz	3	11.9	20.25	mA	–40 °C to 85 °C
	Т	FEI mode, all modules off					21.72		–40 °C to105 °C
	Т			1 MHz		1.16	1.95		–40 °C to 85 °C
	Т						1.98		–40 °C to105 °C
	Т			20 MHz	5	12.68	21.56	mA	–40 °C to 85 °C
	Т						23.12		–40 °C to105 °C
	Т			1 MHz		1.4	2.39		–40 °C to 85 °C
	Т						2.41		–40 °C to105 °C
3	Т	Wait mode supply current	WI _{DD}	20 MHz	3	7.9	13.42	mA	–40 °C to 85 °C
	Т	FEI mode, all modules off					13.59		–40 °C to105 °C
	Т			1 MHz		0.88	1.49		–40 °C to 85 °C
	Т						1.51		–40 °C to105 °C
	Р			20 MHz	5	8.13	13.81	mA	–40 °C to 85 °C
	Р						13.98		–40 °C to105 °C
	Т			1 MHz		1.12	1.91		–40 °C to 85 °C
	Т						1.94		–40 °C to105 °C
4	С	Stop2 mode supply current	S2I _{DD}	n/a	3	1.1	16.0	μA	–40 °C to 85 °C
	С						39.0		–40 °C to105 °C
	Р				5	1.2	18.7	μA	–40 °C to 85 °C
	Р						46.1		–40 °C to105 °C
5	С	Stop3 mode supply current No clocks active	S3I _{DD}	n/a	3	1.2	22.4	μA	–40 °C to 85 °C
	С	INU GOURS ACTIVE					56.2		–40 °C to105 °C
	Р				5	1.32	25.5	μA	–40 °C to 85 °C
	Р						63.9		–40 °C to105 °C

Table 9. Supply Current Characteristics

Num	с	Par	ameter	Symbol	Bus Freq	V _{DD} (V)	Typ ¹	Max	Unit	Temp (°C)
6	Т	Stop2 adders:	RTC using LPO		n/a	3	210	_	nA	–40 °C to 105 °C
			RTC using low power crystal oscillator				4.25	_	μA	
			LCD ² with rbias (Low Gain)				1.2 ³	_		
			LCD ² with rbias (High Gain)				18 ⁴	—		
			LCD ² with Cpump				4.05 ³	_		–40 °C to 85 °C
			RTC using LPO			5	210	—	nA	–40 °C to 105 °C
			RTC using low power crystal oscillator				4.22	_	μA	
			LCD ² with rbias (Low Gain)				1.5 ³	_		
			LCD ² with rbias (High Gain)				32 ⁴	—		
			LCD ² with Cpump				7.12 ³	_		–40 °C to 85 °C
7	Т	Stop3 adders:	RTC using LPO	_	n/a	3	210		nA	–40 °C to 105 °C
			RTC using low power crystal oscillator				4.75	_	μA	
			LCD ² with rbias (Low Gain)				1.2 ³	—		
			LCD ² with rbias (High Gain)				18 ⁴	_		
			LCD ² with Cpump				4.35 ³	_		–40 °C to 85 °C
			RTC using LPO			5	230	_	nA	–40 °C to 105 °C
			RTC using low power crystal oscillator				4.74	_	μA	
			LCD ² with rbias (Low Gain)				1.5 ³	_		
			LCD ² with rbias (High Gain)				32 ⁴	_		
			LCD ² with Cpump				7.49 ³	—		–40 °C to 85 °C

Table 9.	Supply	Current	Characteristics	(continued)
----------	--------	---------	-----------------	-------------

Num	с	Par	ameter	Symbol	Bus Freq	V _{DD} (V)	Typ ¹	Max	Unit	Temp (°C)
8	Т	Stop3 adders:	EREFSTEN = 1	_	n/a	3	4.58	_	μA	–40 °C to 105 °C
			IREFSTEN = 1				71.7			
			LVD				94.35	_		
			EREFSTEN = 1			5	4.61		μA	
			IREFSTEN = 1				71.69			
			LVD				107.34	_		

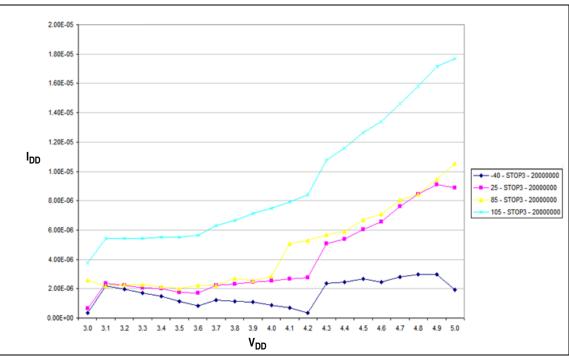

Table 9. Supp	ly Current	Characteristics	(continued)
---------------	------------	-----------------	-------------

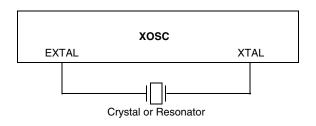

¹ Typical values are measured at 25 °C. Characterized, not tested.

 $^2\,$ LCD configured for Charge Pump Enabled V_{LL3} connected to V_{DD}.

³ This does not include current required for 32 kHz oscillator.

⁴ This is the maximum current when all LCD inputs/outputs are used.




Figure 14. Typical Stop3 I_{DD}

2.8 External Oscillator (XOSC) Characteristics

Num	С	Characteristic	Symbol	Min	Typ ¹	Max	Unit
1	D	Oscillator crystal or resonator (EREFS = 1, ERCLKEN = 1) • Low range (RANGE = 0) • High range (RANGE = 1) FEE or FBE mode ² • High range (RANGE = 1, HGO = 1) BLPE mode • High range (RANGE = 1, HGO = 0) BLPE mode	f _{lo} f _{hi} f _{hi-hgo} f _{hi-lp}	32 1 1 1		38.4 5 16 8	kHz MHz MHz MHz
2	D	Load capacitors	C ₁ C ₂	See manufac	-	or resona ecommen	

Table 10. Oscillator Electrical Specifications (Temperature Range = -40 °C to 105 °C Ambient)

2.9 Internal Clock Source (ICS) Characteristics

Num	С	Character	stic	Symbol	Min	Typ ¹	Max	Unit
1	Ρ	Average internal reference frequative VDD = 5.0 V and temperature		f _{int_ft}	_	32.768	—	kHz
2	С	Average internal reference frequency — user trimmed		f _{int_t}	31.25	_	39.0625	kHz
3	С	Internal reference start-up time		t _{IRST}	_	60	100	μS
4	Р	DCO output frequency range —	Low range (DRS = 00)	f _{dco_t}	16	—	20	MHz
	Р	trimmed ²	Mid range (DRS = 01)		32	—	40	
5	Р	DCO output frequency ²	Low range (DRS = 00)	f _{dco_DMX32}	—	19.92	—	MHz
	Ρ	Reference = 32768 Hz and DMX32 = 1	Mid range (DRS = 01)		_	39.85	_	
6	С	Resolution of trimmed DCO out voltage and temperature (using		$\Delta f_{dco_res_t}$	_	±0.1	±0.2	%f _{dco}
7	С	Resolution of trimmed DCO out voltage and temperature (not us		$\Delta f_{dco_res_t}$	—	±0.2	±0.4	%f _{dco}
8	Р	Total deviation of trimmed DCO voltage and temperature	output frequency over	Δf_{dco_t}	_	-1.0 to +0.5	±2	%f _{dco}
9	С	Total deviation of trimmed DCO output frequency over fixed voltage and temperature range of 0 $^\circ\text{C}$ to 70 $^\circ\text{C}^3$		Δf_{dco_t}	_	±0.5	±1	%f _{dco}
10	С	FLL acquisition time ^{3, 4}	t _{Acquire}	—	—	1	mS	
11	С	Long term jitter of DCO output cl interval) ⁵	ock (averaged over 2 ms	C _{Jitter}	—	0.02	0.2	%f _{dco}

¹ Data in Typical column was characterized at 5.0 V, 25 °C or is typical recommended value.

² The resulting bus clock frequency should not exceed the maximum specified bus clock frequency of the device.

³ This parameter is characterized and not tested on each device.

⁴ This specification applies to any time the FLL reference source or reference divider is changed, trim value changed or changing from FLL disabled (FBELP, FBILP) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.

⁵ Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f_{Bus}. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the FLL circuitry via V_{DD} and V_{SS} and variation in the crystal oscillator frequency increase the C_{Jitter} percentage for a given interval.

Num	С	Characteristic	Conditions	Symb	Min	Typ ¹	Max	Unit	Comment
1	Т	Supply Current ADLPC = 1 ADLSMP = 1 ADCO = 1		I _{DDAD}	_	195	_	μA	_
2	Т	Supply Current ADLPC = 1 ADLSMP = 0 ADCO = 1	_	I _{DDAD}		347		μΑ	_
3	Т	Supply Current ADLPC = 0 ADLSMP = 1 ADCO = 1	_	I _{DDAD}	_	407	_	μΑ	_
4	Ρ	Supply Current ADLPC = 0 ADLSMP = 0 ADCO = 1	_	I _{DDAD}	_	0.755	1	mA	_
5		Supply Current	Stop, Reset, Module Off	Iddad		0.011	1	μA	_
6	Ρ	ADC	High Speed (ADLPC=0)	f _{ADACK}	2	3.3	5	MHz	t _{ADACK} =
	Asynchronous Clock Source		Low Power (ADLPC=1)		1.25	2	3.3		1/f _{ADACK}
7	С	Conversion	Short sample (ADLSMP=0)	t _{ADC}	—	20	—	ADCK	See ADC
	Time (Including sample time)		Long sample (ADLSMP=1)		—	40	—	cycles	chapter in the LG32
8	С	C Sample Time Short sample (ADLSMP=0)		t _{ADS}	_	3.5	_	ADCK	Reference Manual for
			Long sample (ADLSMP=1)			23.5		cycles	conversion time variances
9	Т	Total	12-bit mode	E _{TUE}	—	±3.0	—	LSB ²	Includes
	Р	Unadjusted Error	10-bit mode		_	±1	±2.5		quantization
	Т		8-bit mode		_	±0.5	±1		
10	Т	Differential	12-bit mode	DNL	—	±1.75	—	LSB ²	
	Р	Non-Linearity	10-bit mode ³		_	±0.5	±1.0		
	Т		8-bit mode ³		_	±0.3	±0.5		
11	Т	Integral	12-bit mode	INL	—	±1.5	—	LSB ²	
	Р	Non-Linearity	10-bit mode		—	±0.5	±1		
	Т		8-bit mode		_	±0.3	±0.5		
12	Т	Zero-Scale	12-bit mode	E _{ZS}	_	±1.5		LSB ²	$V_{ADIN} = V_{SSAD}$
	Ρ	Error	10-bit mode]	_	±0.5	±1.5		
	Т		8-bit mode		—	±0.5	±0.5		

Table 13. 12-bit ADC Characteristics ($V_{REFH} = V_{DDAD}$, $V_{REFL} = V_{SSAD}$)

					-		-		
Num	с	Characteristic	Conditions	Symb	Min	Typ ¹	Max	Unit	Comment
13	Т	Full-Scale	12-bit mode	E _{FS}	_	±1	-	LSB ²	$V_{ADIN} = V_{DDAD}$
	Р	Error	10-bit mode		_	±0.5	±1		
	Т		8-bit mode			±0.5	±0.5		
14	D	Quantization	12-bit mode	EQ		-1 to 0		LSB ²	_
	Error	10-bit mode				±0.5			
			8-bit mode				±0.5		
15	D	Input Leakage	12-bit mode	E _{IL}		±1		LSB ²	Pad leakage ⁴ *
		Error	10-bit mode			±0.2	±2.5		R _{AS}
			8-bit mode			±0.1	±1		
16	С	Temp Sensor	–40 °C to 25 °C	m	_	1.646	_	mV/°C	—
	Slope	25 °C to 125°C		_	1.769	_			
17	С	Temp Sensor Voltage	25 °C	V _{TEMP25}	_	701.2	_	mV	_

Table 13. 12-bit ADC Characteristics ($V_{REFH} = V_{DDAD}$, $V_{REFL} = V_{SSAD}$) (continued)

¹ Typical values assume V_{DDAD} = 5.0 V, Temp = 25 °C, f_{ADCK} = 1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

² 1 LSB = $(V_{\text{REFH}} - V_{\text{REFL}})/2^{N}$

³ Monotonicity and no-missing-codes guaranteed in 10-bit and 8-bit modes

⁴ Based on input pad leakage current. Refer to pad electricals.

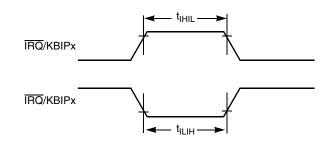


Figure 20. IRQ/KBIPx Timing

2.11.2 TPM Module Timing

Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that can be used as the optional external source to the timer counter. These synchronizers operate from the current bus rate clock.

No.	С	Function	Symbol	Min	Max	Unit
1	D	External clock frequency	f _{TCLK}	0	f _{Bus} /4	Hz
2	D	External clock period	t _{TCLK}	4	_	t _{cyc}
3	D	External clock high time	t _{clkh}	1.5	_	t _{cyc}
4	D	External clock low time	t _{clkl}	1.5	_	t _{cyc}
5	D	Input capture pulse width	t _{ICPW}	1.5	_	t _{cyc}

Table 15. TPM Input Timing

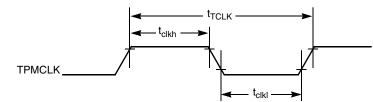
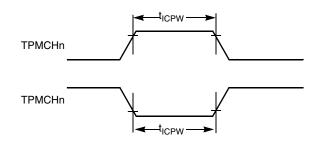
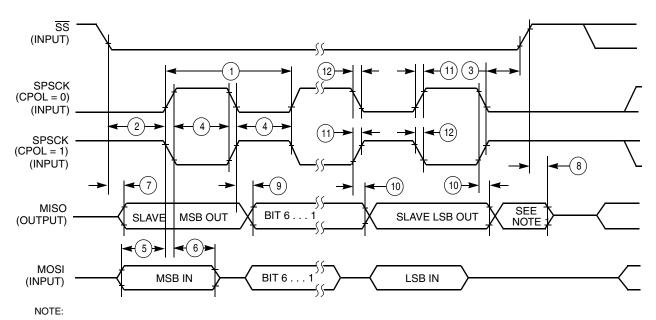
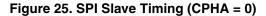
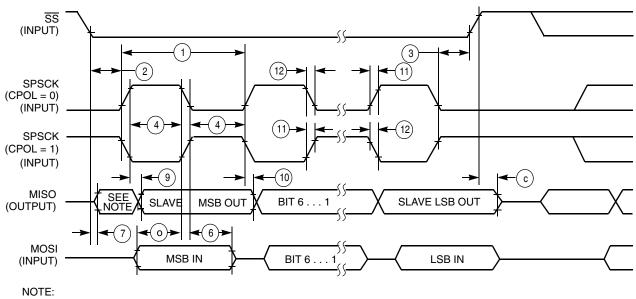


Figure 21. Timer External Clock


Figure 22. Timer Input Capture Pulse

1. Not defined but normally MSB of character just received.

1. Not defined but normally LSB of character just received

Figure 26. SPI Slave Timing (CPHA = 1)

2.12 LCD Specifications

Table 17. LCD Electricals, 3 V Glass

С	Characteristic	Symbol	Min	Тур	Мах	Units
D	VLL3 Supply Voltage	VLL3	2.7	_	5.5	V
D	LCD Frame Frequency	f _{Frame}	28	30	64	Hz
D	LCD Charge Pump Capacitance	C _{LCD}	—	100	100	pF
D	LCD Bypass Capacitance	C _{BYLCD}	—	100	100	
D	LCD Glass Capacitance	C _{glass}	_	2000	8000	

2.13 Flash Specifications

This section provides details about program/erase times and program-erase endurance for the flash memory.

Program and erase operations do not require any special power sources other than the normal V_{DD} supply. For more detailed information about program/erase operations, see the Memory section.

С	Characteristic	Symbol	Min	Typical	Мах	Unit
D	Supply voltage for program/erase -40 °C to 85 °C	V _{prog/erase}	2.7		5.5	V
D	Supply voltage for read operation	V _{Read}	2.7		5.5	V
D	Internal FCLK frequency ¹	f _{FCLK}	150		200	kHz
D	Internal FCLK period (1/FCLK)	t _{Fcyc}	5		6.67	μs
С	Byte program time (random location) ²	t _{prog}		9		t _{Fcyc}
С	Byte program time (burst mode) ²	t _{Burst}	4			t _{Fcyc}
С	Page erase time ²	t _{Page}		4000		t _{Fcyc}
С	Mass erase time ²	t _{Mass}		20,000		t _{Fcyc}
D	Byte program current ³	R _{IDDBP}	_	4	—	mA
D	Page erase current ³	R _{IDDPE}	_	6	—	mA
с	Program/erase endurance ⁴ T _L to T _H = -40 °C to + 85 °C T = 25 °C		10,000	 100,000		cycles
С	Data retention ⁵	t _{D_ret}	15	100	—	years

Table 18. Flash Characteristics

¹ The frequency of this clock is controlled by a software setting.

² These values are hardware state machine controlled. User code does not need to count cycles. This information supplied for calculating approximate time to program and erase.

³ The program and erase currents are additional to the standard run I_{DD} . These values are measured at room temperatures with $V_{DD} = 5.0 \text{ V}$, bus frequency = 4.0 MHz.

⁴ Typical endurance for flash was evaluated for this product family on the 9S12Dx64. For additional information on how Freescale defines typical endurance, please refer to *Engineering Bulletin EB619, Typical Endurance for Nonvolatile Memory.*

⁵ Typical data retention values are based on intrinsic capability of the technology measured at high temperature and de-rated to 25 °C using the Arrhenius equation. For additional information on how Freescale defines typical data retention, please refer to *Engineering Bulletin EB618, Typical Data Retention for Nonvolatile Memory.*

2.14 EMC Performance

Electromagnetic compatibility (EMC) performance is highly dependant on the environment in which the MCU resides. Board design and layout, circuit topology choices, location and characteristics of external components as well as MCU software operation all play a significant role in EMC performance. The system designer should consult Freescale applications notes such as AN2321, AN1050, AN1263, AN2764, and AN1259 for advice and guidance specifically targeted at optimizing EMC performance.

2.14.1 Radiated Emissions

Microcontroller radiated RF emissions are measured from 150 kHz to 1 GHz using the TEM/GTEM cell method in accordance with the IEC 61967-2 and SAE J1752/3 standards. The measurement is performed with the microcontroller installed on a custom EMC evaluation board while running specialized EMC test software. The radiated emissions from the microcontroller are measured in a TEM cell in two package orientations (North and East).

The maximum radiated RF emissions of the tested configuration in all orientations are less than or equal to the reported emissions levels.

Parameter	Symbol	Conditions	Frequency	f _{OSC} /f _{BUS}	Level ¹ (Max)	Unit
Radiated emissions,	V _{RE_TEM}	$V_{DD} = 5.5$	0.15 – 50 MHz	4 MHz crystal	10	dBμV
electric field	Tric field I _A = +25 °C Package type = 80 LQFP		[•] _A = +25 °C ckage type = 50 – 150 MHz 16 MHz bus 1	14		
		80 LQFP	150 – 500 MHz		8	
			500 – 1000 MHz		5	
		IEC Level		L	—	
			SAE Level		2	—

Table 19. Radiated Emissions, Electric Field

¹ Data based on qualification test results.

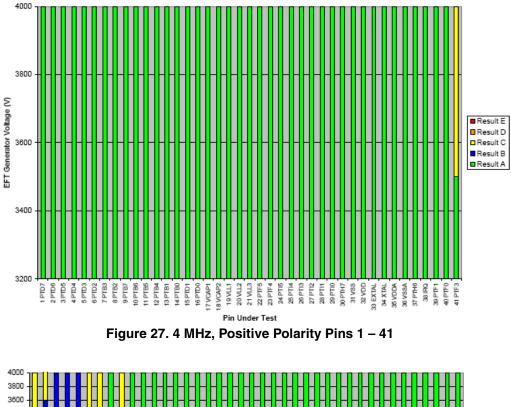
2.14.2 Conducted Transient Susceptibility

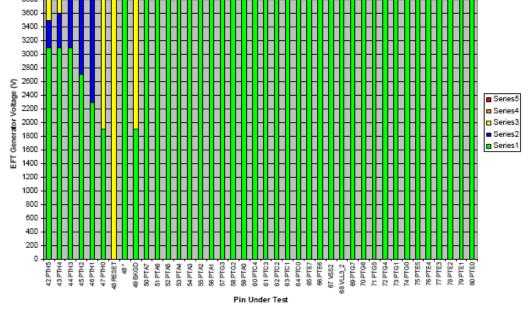
Microcontroller transient conducted susceptibility is measured in accordance with an internal Freescale test method. The measurement is performed with the microcontroller installed on a custom EMC evaluation board and running specialized EMC test software designed in compliance with the test method. The conducted susceptibility is determined by injecting the transient susceptibility signal on each pin of the microcontroller. The transient waveform and injection methodology is based on IEC 61000-4-4 (EFT/B). The transient voltage required to cause performance degradation on any pin in the tested configuration is greater than or equal to the reported levels unless otherwise indicated by footnotes below Table 20.

Table 20.	Conducted	Susceptibility,	EFT/B
-----------	-----------	-----------------	-------

Parameter	Symbol	Conditions	f _{OSC} /f _{BUS}	Result	Amplitude ¹ (Min)	Unit
Conducted susceptibility, electrical	V _{CS EFT}	V _{DD} = 5.5	4 kHz crystal	А	>4.0 ²	kV
fast transient/burst (EFT/B)		$T_{A} = +25 {}^{\circ}C$	4 MHz bus	В	>4.0 ³	
		Package type = 80-pin LQFP		С	>4.0 ⁴	
				D	>4.0	

¹ Data based on qualification test results. Not tested in production.

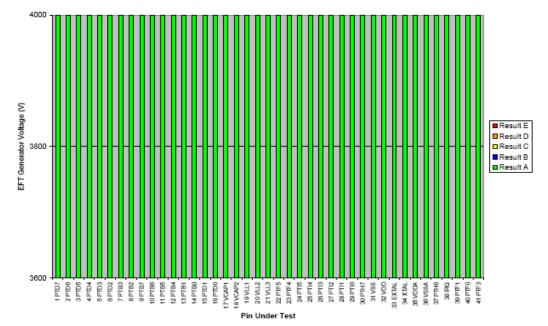

² Exceptions as covered in footnotes 3 and 4.


NP

Electrical Characteristics

- ³ Except pins PHT1, PTH2, PTH3, PTH4, PTH5. See figures below for values.
- ⁴ Except pins PTF3, PTH5, PTH4, PHT0, Reset, and BKGD. See figures below for values.

Individual performance of each pin is shown in Figure 27, Figure 28, Figure 29, and Figure 30.



Note:

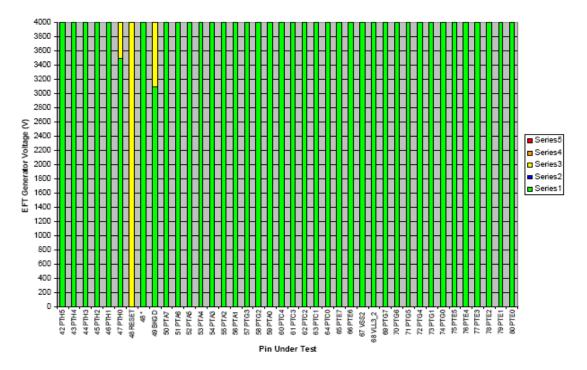

RESET retested with 0.1 μ F capacitor from pin to ground is Class A compliant as shown by 48*.

Figure 28. 4 MHz, Positive Polarity Pins 42 – 80

Note:

RESET retested with 0.1 μ F capacitor from pin to ground is Class A compliant as shown by 48*. Figure 30. 4 MHz, Negative Polarity Pins 42 – 80

Ordering Information

The susceptibility performance classification is described in Table 21.

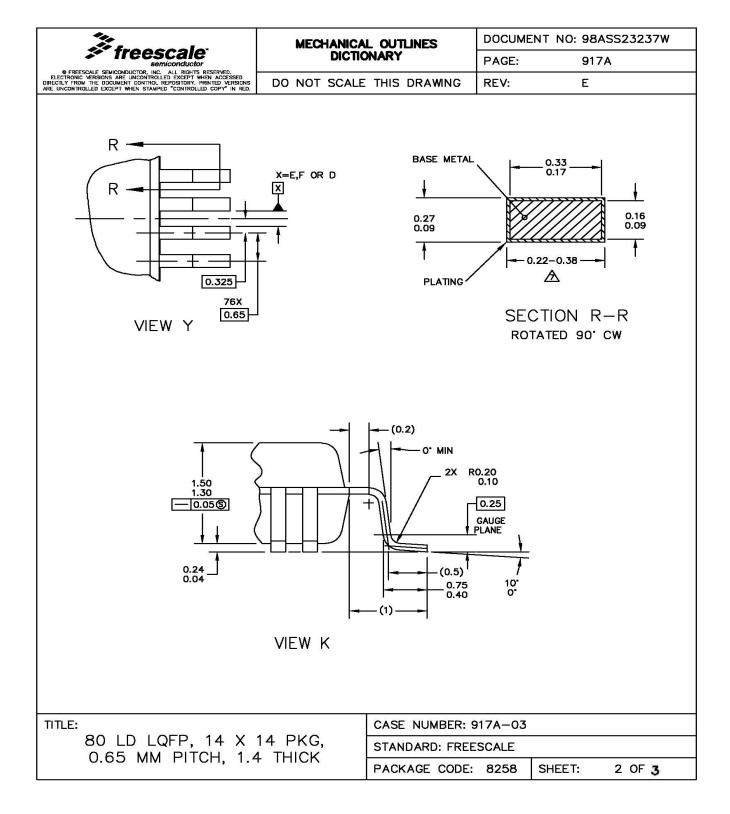
Result		Performance Criteria
A	No failure	The MCU performs as designed during and after exposure.
В	Self-recovering failure	The MCU does not perform as designed during exposure. The MCU returns automatically to normal operation after exposure is removed.
С	Soft failure	The MCU does not perform as designed during exposure. The MCU does not return to normal operation until exposure is removed and the RESET pin is asserted.
D	Hard failure	The MCU does not perform as designed during exposure. The MCU does not return to normal operation until exposure is removed and the power to the MCU is cycled.
E	Damage	The MCU does not perform as designed during and after exposure. The MCU cannot be returned to proper operation due to physical damage or other permanent performance degradation.

Table 21. Susceptibility Performance Classification

3 Ordering Information

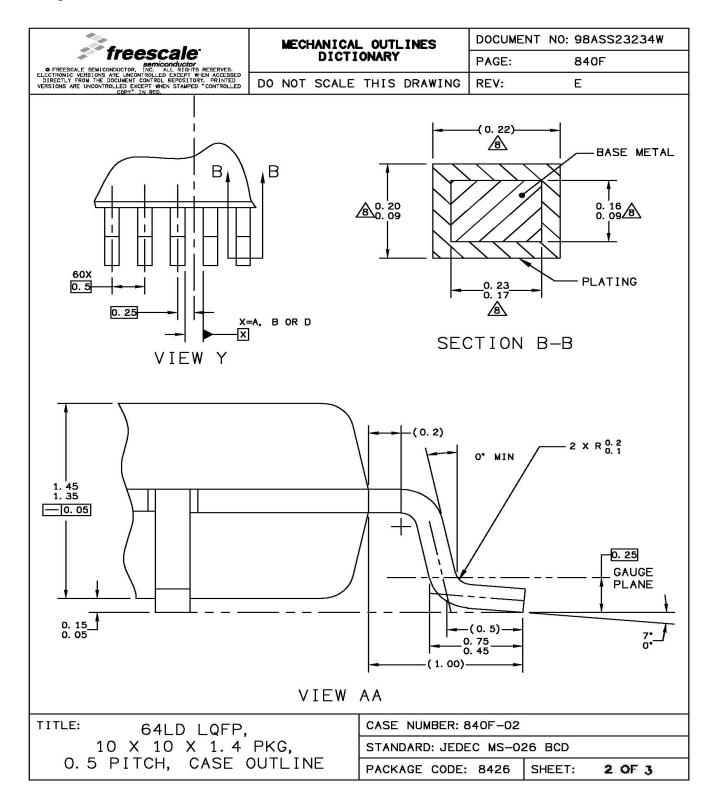
This section contains ordering information for MC9S08LG32 and MC9S08LG16 devices.

Device Number ¹	Memory			LCD Mode	Available Packages ²
	FLASH	RAM	Temperature Range (°C)	Operation	Available Packages
			Auto		
S9S08LG32J0CLK	32 KB	1984	-40 °C to +85 °C	Charge Pump	80-pin LQFP
S9S08LG32J0CLH					64-pin LQFP
S9S08LG32J0CLF					48-pin LQFP
S9S08LG32J0VLK	32 KB	1984	-40 °C to +105 °C	Register Bias	80-pin LQFP
S9S08LG32J0VLH					64-pin LQFP
S9S08LG32J0VLF					48-pin LQFP
S9S08LG16J0VLH	18 KB	1984			64-pin LQFP
S9S08LG16J0VLF					48-pin LQFP
			ІММ		
MC9S08LG32CLK	32 KB	1984	-40 °C to + 85 °C	Charge Pump	80-pin LQFP
MC9S08LG32CLH					64-pin LQFP
MC9S08LG32CLF					48-pin LQFP
MC9S08LG16CLH	18 KB	1984			64-pin LQFP
MC9S08LG16CLF					48-pin LQFP


Table 22. Device Numbering System

¹ See the *MC9S08LG32 Reference Manual* (document MC9S08LG32RM), for a complete description of modules included on each device.

² See Table 23 for package information.



Package Information

Package Information

