

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

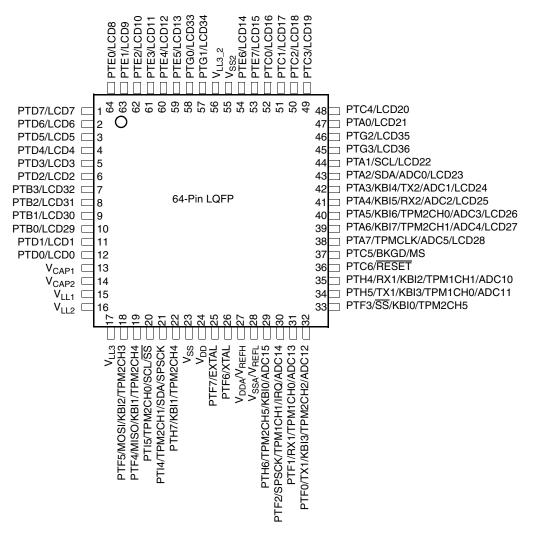
E·XFI

Product Status	Active
Core Processor	S08
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, LINbus, SCI, SPI
Peripherals	LCD, LVD, POR, PWM, WDT
Number of I/O	69
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1.9К х 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-LQFP
Supplier Device Package	80-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=s9s08lg32j0clk

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Feature		MC9S08LG32			08LG16	
Flash size (bytes)		32,768		18,432		
RAM size (bytes)			1984			
Pin quantity	80	64	48	64	48	
ADC	16 ch	12 ch	9 ch	12 ch	9 ch	
LCD	8 x 37 4 x 41	8 x 29 4 x 33	8 x 21 4 x 25	8 x 29 4 x 33	8 x 21 4 x 25	
ICE + DBG		•	yes			
ICS			yes			
IIC			yes			
IRQ			yes			
KBI			8 pin			
GPIOs	69	53	39	53	39	
RTC			yes			
MTIM			yes			
SCI1			yes			
SCI2			yes			
SPI			yes			
TPM1 channels			2			
TPM2 channels			6			
XOSC			yes			


Table 1. MC9S08LG32 Series Features by MCU and Package

1 Pin Assignments

This section shows the pin assignments for the MC9S08LG32 series devices. The priority of functions on a pin is in ascending order from left to right and bottom to top. Another view of pinouts and function priority is given in Table 2.

Pin Assignments

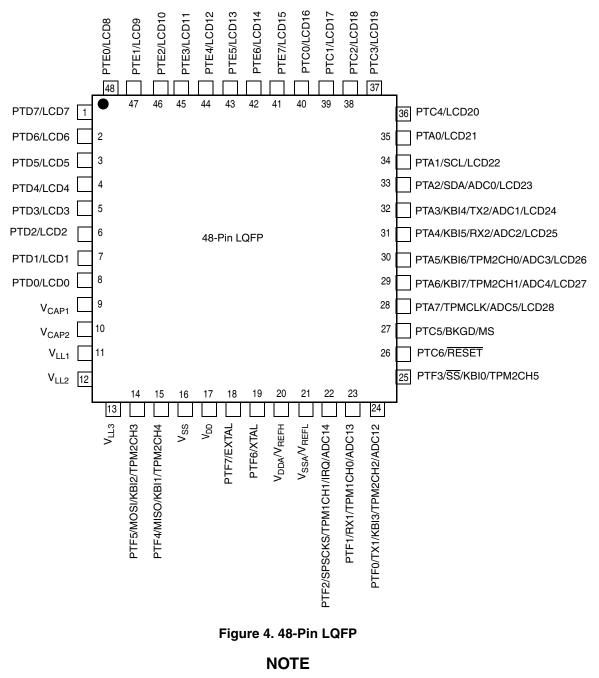


Figure 3. 64-Pin LQFP

NOTE

 V_{REFH}/V_{REFL} are internally connected to V_{DDA}/V_{SSA} .

 V_{REFH}/V_{REFL} are internally connected to V_{DDA}/V_{SSA} .

	Packages			< Lo	west Priority :	> Highest	
80	64	48	Port Pin	Alt 1	Alt 2	Alt 3	Alt 4
39	31	23	PTF1	RX1	TPM1CH0	ADC13	
40	32	24	PTF0	TX1	KBI3	TPM2CH2	ADC12
41	33	25	PTF3	SS	KBI0	TPM2CH5	—
42	34	—	PTH5	TX1	KBI3	TPM1CH0	ADC11
43	35	—	PTH4	RX1	KBI2	TPM1CH1	ADC10
44	—	—	PTH3	KBI7	ADC9	_	—
45	—	—	PTH2	KBI6	ADC8	—	—
46	—	_	PTH1	KBI5	ADC7		
47	—	—	PTH0	KBI4	ADC6	—	—
48	36	26	PTC6	RESET	—		
49	37	27	PTC5	BKGD/MS	—	_	—
50	38	28	PTA7	TPMCLK	ADC5	LCD28	
51	39	29	PTA6	KBI7	TPM2CH1	ADC4	LCD27
52	40	30	PTA5	KBI6	TPM2CH0	ADC3	LCD26
53	41	31	PTA4	KBI5	RX2	ADC2	LCD25
54	42	32	PTA3	KBI4	TX2	ADC1	LCD24
55	43	33	PTA2	SDA	ADC0	LCD23	—
56	44	34	PTA1	SCL	LCD22	—	—
57	45	—	PTG3	LCD36	—	_	—
58	46	—	PTG2	LCD35	—	—	—
59	47	35	PTA0	LCD21	—	—	—
60	48	36	PTC4	LCD20	—	—	—
61	49	37	PTC3	LCD19	—	—	—
62	50	38	PTC2	LCD18	—	—	—
63	51	39	PTC1	LCD17	—	—	—
64	52	40	PTC0	LCD16	—	—	—
65	53	41	PTE7	LCD15	—		
66	54	42	PTE6	LCD14			
67	55	—	V _{SS2}	_	—	—	—
68	56	—	V _{LL3_2}			—	—
69	—	—	PTG7	LCD44	—	—	—
70	—	—	PTG6	LCD43	—	_	—
71	—	—	PTG5	LCD42	—	_	—
72	—	—	PTG4	LCD41	—		—
73	57	—	PTG1	LCD34	—	_	—
74	58	—	PTG0	LCD33	—		—
75	59	43	PTE5	LCD13	—		—
76	60	44	PTE4	LCD12	—		—

Table 2. Pin Availability by Package Pin-Count (continued)

Rating	Symbol	Value	Unit
Supply voltage	V _{DD}	-0.3 to +5.8	V
Maximum current into V _{DD}	I _{DD}	120	mA
Digital input voltage	V _{In}	–0.3 to V _{DD} + 0.3	V
Instantaneous maximum current Single pin limit (applies to all port pins) ^{1, 2, 3}	Ι _D	±25 ±2	mA
Storage temperature range	T _{stg}	–55 to 150	°C

Table 4. Absolute Maximum Ratings

Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive (V_{DD}) and negative (V_{SS}) clamp voltages and use the largest of the two resistance values.

 $^2\,$ All functional non-supply pins are internally clamped to V_{SS} and V_{DD}

³ Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current (V_{In} > V_{DD}) is greater than I_{DD}, the injection current may flow out of V_{DD} and could result in an external power supply going out of regulation. Ensure that the external V_{DD} load will shunt current greater than maximum injection current, this will be of greater risk when the MCU is not consuming power. For instance, if no system clock is present, or if the clock rate is very low (which would reduce overall power consumption).

2.4 Thermal Characteristics

This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in On-Chip logic and voltage regulator circuits, and it is user-determined rather than being controlled by the MCU design. To take $P_{I/O}$ into account in power calculations, determine the difference between actual pin voltage and V_{SS} or V_{DD} and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current (heavy loads), the difference between pin voltage and V_{SS} or V_{DD} will be very small.

Rating	Symbol	Value	Unit
Operating temperature range (packaged)	T _A	T _L to T _H –40 to +105	°C
Maximum junction temperature	TJ	125	°C
Thermal resistance Single-layer board 80-pin LQFP 64-pin LQFP 48-pin LQFP	θ_{JA}	61 71 80	°C/W
Thermal resistance Four-layer board 80-pin LQFP 64-pin LQFP 48-pin LQFP	θ_{JA}	48 52 56	°C/W

Table 5. Thermal Characteristics

The average chip-junction temperature (T_J) in °C can be obtained from:

$$T_J = T_A + (P_D \times \theta_{JA})$$
 Eqn. 1

MC9S08LG32 Series Data Sheet, Rev. 9

No.	Rating ¹	Symbol	Min	Max	Unit
1	Human body model (HBM)	V _{HBM}	2500	_	V
2	Charge device model (CDM)	V _{CDM}	750	_	V
3	Latch-up current at $T_A = 85 \ ^{\circ}C$	I _{LAT}	±100		mA

Table 7. ESD and Latch-Up Protection Characteristics

Parameter is achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted.

2.6 DC Characteristics

This section includes information about power supply requirements and I/O pin characteristics.

Num	С	Characteristic	Symbol	Min	Typ ¹	Max	Unit
1	—	Operating Voltage	—	2.7	_	5.5	V
2	Ρ	Output high voltage — Low Drive (PTxDSn = 0) 5 V, ILoad = -2 mA 3 V, ILoad = -0.6 mA	V _{OH}	Vdd - 0.8 Vdd - 0.8	_		V
		Output high voltage — High Drive (PTxDSn = 1) V 5 V, ILoad = -10 mA 3 V, ILoad = -3 mA		Vdd – 0.8 Vdd – 0.8			
3	Ρ	Output low voltage — Low Drive (PTxDSn = 0) 5 V, ILoad = 2 mA 3 V, ILoad = 0.6 mA	V _{OL}	—		0.8 0.8	V
		Output low voltage — High Drive (PTxDSn = 1) 5 V, ILoad = 10 mA 3 V, ILoad = 3 mA			_	0.8 0.8	
4	Ρ	Output high current — Max total I _{OH} for all ports 5 V 3 V	I _{ОНТ}	_	_	100 60	mA
5	С	Output high current — Max total I _{OL} for all ports 5 V 3 V		_	_	100 60	mA
6	Ρ	Bandgap voltage reference	V _{BG}	—	1.225		V
7	Ρ	Input high voltage; all digital inputs	V _{IH}	0.65 x V _{DD}	_		V
8	Ρ	Input low voltage; all digital inputs	V _{IL}	_		$0.35 \times V_{DD}$	V
9	Ρ	Input hysteresis; all digital inputs	V _{hys}	0.06 x V _{DD}	_		mV
10	Ρ	Input leakage current; input only pins ² $V_{In} = V_{DD}$ or V_{SS}	_{In}	—	0.1	1	μA
11	Ρ	High impedence (off-state) leakage current $V_{In} = V_{DD}$ or V_{SS}	ll _{oz} l	—	0.1	1	μA
12	Ρ	Internal pullup resistors ³	R _{PU}	20	45	65	kΩ
13	Ρ	Internal pulldown resistors ⁴	R _{PD}	20	45	65	kΩ

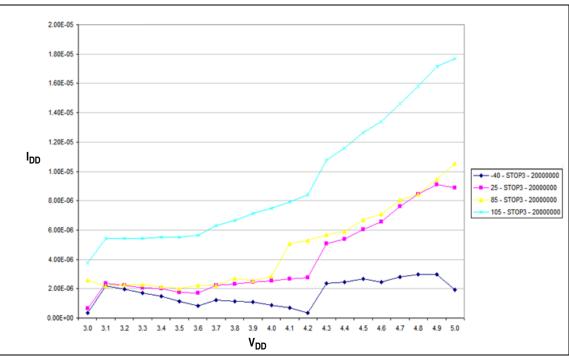
Table 8. DC Characteristics

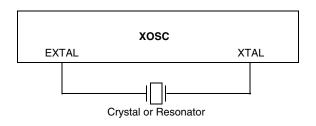
2.7 Supply Current Characteristics

This section includes information about power supply current in various operating modes.

Num	с	Parameter	Symbol	Bus Freq	V _{DD} (V)	Typ ¹	Max	Unit	Temp (°C)
1	С	Run supply current	RI _{DD}	20 MHz	3	16.38	27.85	mA	–40 °C to 85 °C
	С	FEI mode, all modules on					28.05		–40 °C to105 °C
	С			1 MHz		1.67	2.84		–40 °C to 85 °C
	С						2.87		–40 °C to105 °C
	Р			20 MHz	5	16.55	28.14	mA	–40 °C to 85 °C
	Ρ						28.35		–40 °C to105 °C
	С			1 MHz		1.77	3.01		–40 °C to 85 °C
	С						3.05		–40 °C to105 °C
2	Т	Run supply current	RI _{DD}	20 MHz	3	11.9	20.25	mA	–40 °C to 85 °C
	Т	FEI mode, all modules off					21.72		–40 °C to105 °C
	Т			1 MHz		1.16	1.95		–40 °C to 85 °C
	Т						1.98		–40 °C to105 °C
	Т			20 MHz	5	12.68	21.56	mA	–40 °C to 85 °C
	Т						23.12		–40 °C to105 °C
	Т			1 MHz		1.4	2.39		–40 °C to 85 °C
	Т						2.41		–40 °C to105 °C
3	Т	Wait mode supply current	WI _{DD}	20 MHz	3	7.9	13.42	mA	–40 °C to 85 °C
	Т	FEI mode, all modules off					13.59		–40 °C to105 °C
	Т			1 MHz		0.88	1.49		–40 °C to 85 °C
	Т						1.51		–40 °C to105 °C
	Р			20 MHz	5	8.13	13.81	mA	–40 °C to 85 °C
	Р						13.98		–40 °C to105 °C
	Т			1 MHz		1.12	1.91		–40 °C to 85 °C
	Т						1.94		–40 °C to105 °C
4	С	Stop2 mode supply current	S2I _{DD}	n/a	3	1.1	16.0	μA	–40 °C to 85 °C
	С						39.0		–40 °C to105 °C
	Р				5	1.2	18.7	μA	–40 °C to 85 °C
	Р						46.1		–40 °C to105 °C
5	С	Stop3 mode supply current No clocks active	S3I _{DD}	n/a	3	1.2	22.4	μA	–40 °C to 85 °C
	С	INU GOURS ACTIVE					56.2		–40 °C to105 °C
	Р				5	1.32	25.5	μA	–40 °C to 85 °C
	Р						63.9		–40 °C to105 °C

Table 9. Supply Current Characteristics




Figure 14. Typical Stop3 I_{DD}

2.8 External Oscillator (XOSC) Characteristics

Num	С	Characteristic	Symbol	Min	Typ ¹	Max	Unit
1	D	Oscillator crystal or resonator (EREFS = 1, ERCLKEN = 1) • Low range (RANGE = 0) • High range (RANGE = 1) FEE or FBE mode ² • High range (RANGE = 1, HGO = 1) BLPE mode • High range (RANGE = 1, HGO = 0) BLPE mode	f _{lo} f _{hi} f _{hi-hgo} f _{hi-lp}	32 1 1 1		38.4 5 16 8	kHz MHz MHz MHz
2	D	Load capacitors	C ₁ C ₂	See crystal or resonator manufacturer's recommendatio			

Table 10. Oscillator Electrical Specifications (Temperature Range = -40 °C to 105 °C Ambient)

2.9 Internal Clock Source (ICS) Characteristics

Num	С	Character	stic	Symbol	Min	Typ ¹	Мах	Unit
1	Ρ	Average internal reference frequency — factory trimmed at VDD = 5.0 V and temperature = 25 °C		f _{int_ft}	_	32.768	—	kHz
2	С	Average internal reference frequ	iency — user trimmed	f _{int_t}	31.25	_	39.0625	kHz
3	С	Internal reference start-up time		t _{IRST}	_	60	100	μS
4	Р	DCO output frequency range —	Low range (DRS = 00)	f _{dco_t}	16	—	20	MHz
	Р	trimmed ²	Mid range (DRS = 01)		32	—	40	
5	Р	DCO output frequency ²	Low range (DRS = 00)	f _{dco_DMX32}	—	19.92	—	MHz
	Ρ	Reference = 32768 Hz and DMX32 = 1	Mid range (DRS = 01)		_	39.85	—	
6	С	Resolution of trimmed DCO output frequency at fixed voltage and temperature (using FTRIM) ³		$\Delta f_{dco_res_t}$	_	±0.1	±0.2	%f _{dco}
7	С	Resolution of trimmed DCO out voltage and temperature (not us		$\Delta f_{dco_res_t}$	—	±0.2	±0.4	%f _{dco}
8	Р	Total deviation of trimmed DCO voltage and temperature	output frequency over	Δf_{dco_t}	_	-1.0 to +0.5	±2	%f _{dco}
9	С	Total deviation of trimmed DCO output frequency over fixed voltage and temperature range of 0 $^\circ\text{C}$ to 70 $^\circ\text{C}^3$		Δf_{dco_t}	_	±0.5	±1	%f _{dco}
10	С	FLL acquisition time ^{3, 4}		t _{Acquire}	—	—	1	mS
11	С	Long term jitter of DCO output cl interval) ⁵	ock (averaged over 2 ms	C _{Jitter}	—	0.02	0.2	%f _{dco}

¹ Data in Typical column was characterized at 5.0 V, 25 °C or is typical recommended value.

² The resulting bus clock frequency should not exceed the maximum specified bus clock frequency of the device.

³ This parameter is characterized and not tested on each device.

⁴ This specification applies to any time the FLL reference source or reference divider is changed, trim value changed or changing from FLL disabled (FBELP, FBILP) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.

⁵ Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f_{Bus}. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the FLL circuitry via V_{DD} and V_{SS} and variation in the crystal oscillator frequency increase the C_{Jitter} percentage for a given interval.

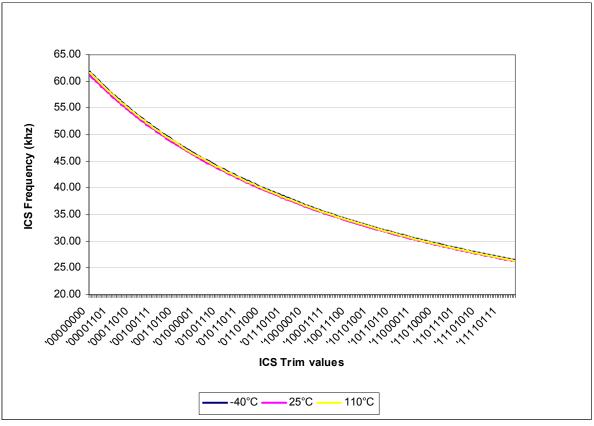


Figure 17. Internal Oscillator Deviation from Trimmed Frequency

2.10 ADC Characteristics

Characteristic	Conditions	Symb	Min	Typ ¹	Max	Unit	Comment
Supply voltage Absolute		V _{DDAD}	2.7	_	5.5	V	—
	Delta to V _{DD} (V _{DD} – V _{DDAD}) ²	ΔV_{DDAD}	-100	0	+100	mV	—
Ground voltage	Delta to V _{SS} (V _{SS} – V _{SSAD}) ²	ΔV_{SSAD}	-100	0	+100	mV	—
Ref Voltage High	_	V _{REFH}	_	-	-	V	V _{REFH} shorted to V _{DDAD}
Ref Voltage Low	_	V _{REFL}	_	-	-	V	V _{REFL} shorted to V _{SSAD}
Input Voltage	_	V _{ADIN}	V_{REFL}		V_{REFH}	V	—
Input Capacitance	_	C _{ADIN}	_	4.5	5.5	pF	_

Table 12. 12-bit ADC Operating Conditions

Characteristic	Conditions	Symb	Min	Typ ¹	Max	Unit	Comment
Input Resistance	_	R _{ADIN}	—	5	7	kΩ	_
Analog Source Resistance	12-bit mode f _{ADCK} > 4MHz f _{ADCK} < 4MHz	R _{AS}	_		2 5	kΩ	External to MCU
	10-bit mode f _{ADCK} > 4MHz f _{ADCK} < 4MHz				5 10		
	8-bit mode (all valid f _{ADCK})		_		10		
ADC	High Speed (ADLPC = 0)	f _{ADCK}	0.4	_	8.0	MHz	—
Conversion Clock Freq.	Low Power (ADLPC = 1)		0.4	_	4.0		

Table 12. 12-bit ADC Operating Conditions (continued)

¹ Typical values assume V_{DDAD} = 5.0 V, Temp = 25 °C, f_{ADCK} = 1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

² DC potential difference.

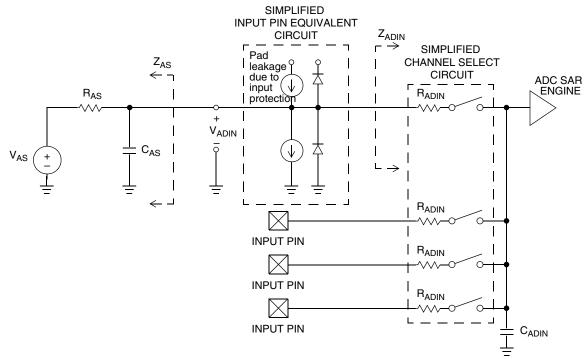



Figure 18. ADC Input Impedance Equivalency Diagram

Num	С	Characteristic	Conditions	Symb	Min	Typ ¹	Max	Unit	Comment	
1	Т	Supply Current ADLPC = 1 ADLSMP = 1 ADCO = 1		I _{DDAD}	_	195		μA	_	
2	Т	Supply Current ADLPC = 1 ADLSMP = 0 ADCO = 1	_	I _{DDAD}	_	347	_	μA	_	
3	Т	Supply Current ADLPC = 0 ADLSMP = 1 ADCO = 1	_	I _{DDAD}	_	407		μΑ	_	
4	Ρ	Supply Current ADLPC = 0 ADLSMP = 0 ADCO = 1	_	I _{DDAD}	_	0.755	1	mA	_	
5		Supply Current	Stop, Reset, Module Off	Iddad		0.011	1	μA	—	
6	6 P ADC Asynchronous Clock Source		High Speed (ADLPC=0)	f _{ADACK}	2	3.3	5	MHz	t _{ADACK} =	
			Low Power (ADLPC=1)		1.25	2	3.3		1/f _{ADACK}	
7		Conversion	Short sample (ADLSMP=0)	t _{ADC}	_	20	_	ADCK	See ADC	
	Time (Including sample time)	Long sample (ADLSMP=1)		—	40	—	cycles	chapter in the LG32		
8	8 C Sample Time		Short sample (ADLSMP=0)	t _{ADS}	_	3.5	_	ADCK	Reference Manual for	
			Long sample (ADLSMP=1)		_	23.5		cycles	conversion time variances	
9	Т	Total	12-bit mode	E _{TUE}	—	±3.0	—	LSB ²	Includes	
	Ρ	Unadjusted Error	10-bit mode		_	±1	±2.5		quantization	
	Т		8-bit mode		_	±0.5	±1			
10	Т	Differential	12-bit mode	DNL	—	±1.75	—	LSB ²		
	Ρ	Non-Linearity	10-bit mode ³		—	±0.5	±1.0			
	Т		8-bit mode ³		—	±0.3	±0.5			
11	Т	Integral	12-bit mode	INL	—	±1.5	_	LSB ²		
	Ρ	Non-Linearity	10-bit mode		—	±0.5	±1			
	Т		8-bit mode		_	±0.3	±0.5			
12	Т	Zero-Scale Error	12-bit mode	E _{ZS}		±1.5		LSB ²	$V_{ADIN} = V_{SSAD}$	
	Ρ		10-bit mode		_	±0.5	±1.5			
	Т		8-bit mode		—	±0.5	±0.5			

Table 13. 12-bit ADC Characteristics ($V_{REFH} = V_{DDAD}$, $V_{REFL} = V_{SSAD}$)

2.11 AC Characteristics

This section describes timing characteristics for each peripheral system.

2.11.1 Control Timing

Table 14.	Control	Timing
-----------	---------	--------

Num	С	Rating	Symbol	Min	Typ ¹	Max	Unit
1	D	Bus frequency (t _{cyc} = 1/f _{Bus})	f _{Bus}	dc		20	MHz
2	D	Internal low power oscillator period	t _{LPO}	700	_	1300	μS
3	D	External reset pulse width ²	t _{extrst}	100	_	—	ns
4	D	Reset low drive	t _{rstdrv}	66 x t _{cyc}	_	—	ns
5	D	BKGD/MS setup time after issuing background debug force reset to enter user or BDM modes	t _{MSSU}	500	_	—	ns
6	D	BKGD/MS hold time after issuing background debug force reset to enter user or BDM modes ³	t _{MSH}	100	—	—	μs
7	D	IRQ pulse width Asynchronous path ² Synchronous path ⁴	t _{ILIH} t _{IHIL}	100 1.5 x t _{cyc}	_	_	ns
8	D	Keyboard interrupt pulse width Asynchronous path ² Synchronous path ⁴	t _{ILIH} t _{IHIL}	100 1.5 x t _{cyc}			ns
9	С	Port rise and fall time — (load = 50 pF) ^{5, 6} Slew rate control disabled (PTxSE = 0) Slew rate control enabled (PTxSE = 1)	t _{Rise} t _{Fall}		3 30		ns

¹ Typical values are based on characterization data at $V_{DD} = 5.0$ V, 25 °C unless otherwise stated.

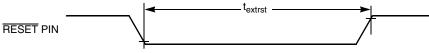
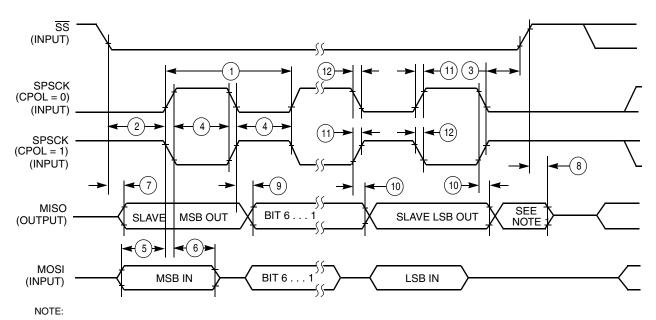
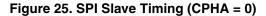
 $^2\,$ This is the shortest pulse that is guaranteed to be recognized as a reset pin request.

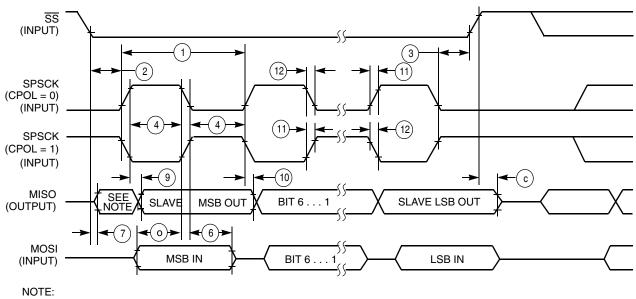
 3 To enter BDM mode following a POR, BKGD/MS should be held low during the power-up and for a hold time of t_{MSH} after V_{DD} rises above V_{LVD}.

⁴ This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or may not be recognized. In stop mode, the synchronizer is bypassed so shorter pulses can be recognized.

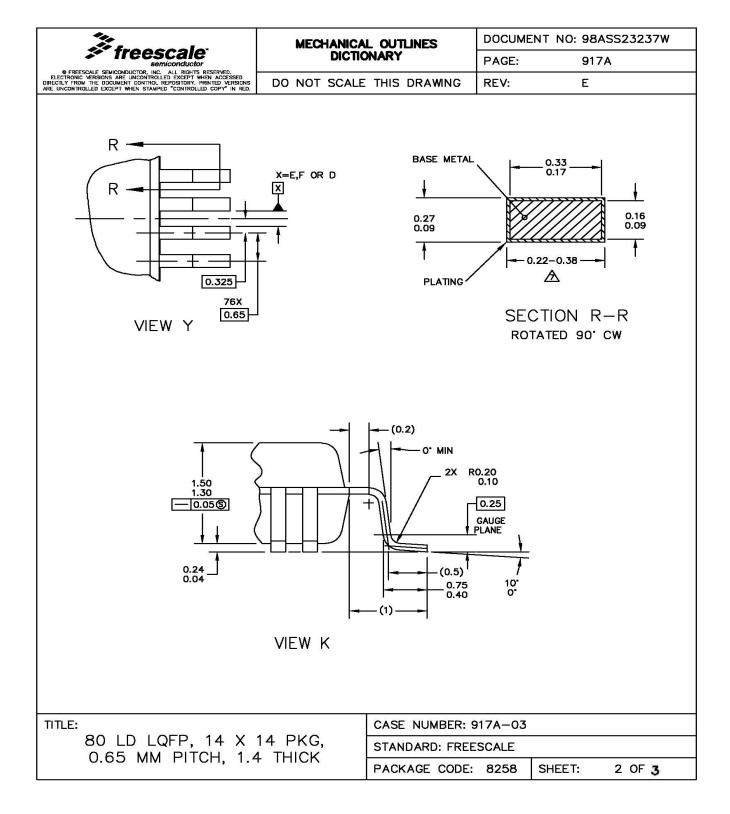
 5 Timing is shown with respect to 20% V_{DD} and 80% V_{DD} levels. Temperature range –40 °C to 105 °C.

⁶ Except for LCD pins in Open Drain mode.


Figure 19. Reset Timing

1. Not defined but normally MSB of character just received.

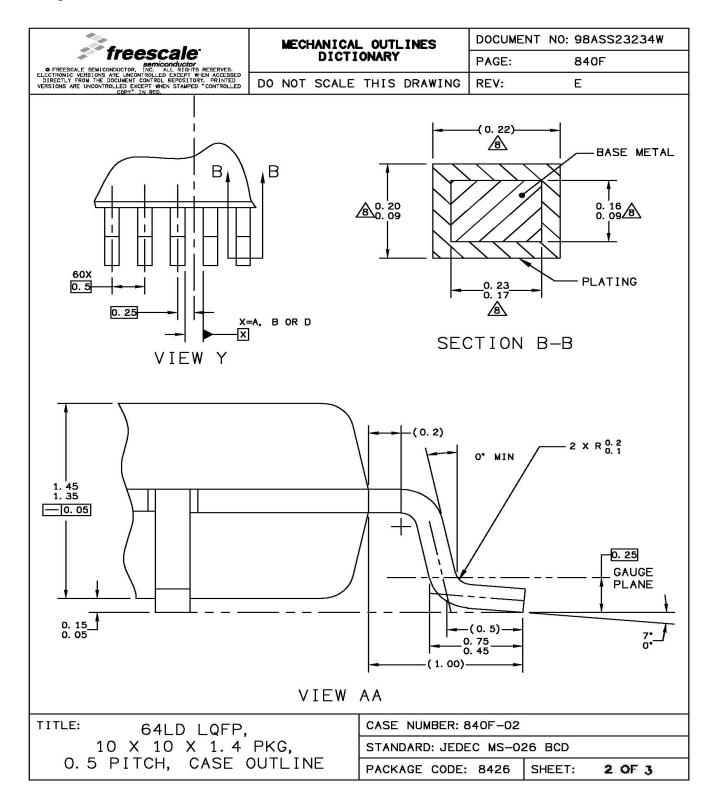


1. Not defined but normally LSB of character just received

Figure 26. SPI Slave Timing (CPHA = 1)

Package Information

N


Package Information

	*** 	MECHANICAL OUTLINES DICTIONARY		DOCUMENT NO: 98ASS23237W							
	TICESSCALE semiconductor REESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.			PAGE:	91	7A					
ELECTR DIRECTLY ARE UNCO	NC VERSIONS ARE UNCONTROLLED EXCEPT WHEN ACCESSED FROM THE DOCUMENT CONTROLLED EXCEPT WHEN ACCESSED INTROLLED EXCEPT WHEN STAMPED "CONTROLLED COPY" IN RED.	DO NOT SCALE	THIS DRAWING	REV:	Е						
NO	TES:										
1.	1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.										
2.	2. CONTROLLING DIMENSION : MILIMETER.										
3.	3. DATUM PLANE H IS LOCATED AT THE BOTTOM OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE BOTTOM OF THE PARTING LINE.										
4.	DATUM E, F AND D TO BE I	DETERMINED AT D	ATUM PLANE H.								
⚠	DIMENSIONS TO BE DETERMIN	NED AT SEATING	PLANE C.								
<u>A</u>	DIMENSIONS DO NOT INCLUD PER SIDE. DIMENSIONS DO I DATUM PLANE H.					5					
A	DIMENSION DOES NOT INCLU CAUSE THE LEAD WIDTH TO ADJACENT LEAD OR PROTRU	EXCEED 0.46.									
TITLE			CASE NUMBER: 9	917A-03							
	80 LD LQFP, 14 X 0.65 MM PITCH, 1.4		STANDARD: FREE	SCALE							
			PACKAGE CODE:	8258	SHEET:	3 OF 3					

Figure 33. 80-pin LQFP Package Drawing (Case 917A, Doc #98ASS23237W)

Package Information

	MECHANICAL	OUTLINES	DOCUMENT NO: 98ASH00962A								
FREESCALE SEWICONDUCTOR, INC. ALL RIGHTS RESERVED.	DICTI	ONARY	PAGE:	932							
• FREESCALE SEMICONDUCTOR TAC. ALL RIGHT RESERVED. ELECTRONIC VERSIONS ARE UNCONTROLLED EXCEPT WHEN ACCESSED DIRECTLY FROM THE DOCUMENT CONTROL REPOSITORY, FRITTED VERSIONS ARE UNCONTROLLED EXCEPT WHEN STAMPED "CONTROLLED COPY" IN WED.	DO NOT SCALE	THIS DRAWING	REV:	G							
NOTES:	NOTES:										
1. DIMENSIONS AND TOLERANCING PER ASME Y14.5M-1994.											
2. CONTROLLING DIMENSI	2. CONTROLLING DIMENSION: MILLIMETER.										
3. DATUM PLANE AB IS WITH THE LEAD WHEF OF THE PARTING LINI	RE THE LEAD E										
4. DATUMS T, U, AND Z	TO BE DETERN	INED AT DATUM	M PLAN	E AB.							
5. dimensions to be di	ETERMINED AT	SEATING PLANE	AC.								
6. DIMENSIONS DO NOT PROTRUSION IS 0.250 MOLD MISMATCH AND	D PER SIDE. DIN	ENSIONS DO IN	ICLUDE								
THIS DIMENSION DOES SHALL NOT CAUSE T				DAMBAR PROTRUSION							
8. MINIMUM SOLDER PLA	TE THICKNESS	SHALL BE 0.00	76.								
9. EXACT SHAPE OF EAG	CH CORNER IS	OPTIONAL.									
TITLE: LQFP, 48 LEAD, C) 50 PITCH	CASE NUMBER: 9									
(7.0 X 7.0)		STANDARD. GEDEC MS-020-BBC									
•		PACKAGE CODE:	6089	SHEET: 2 OF 2							

Figure 35. 48-pin LQFP Package Drawing (Case 932, Doc #98ASH00962A)

Revision History

5 Revision History

To provide the most up-to-date information, the revision of our documents on the World Wide Web are the most current. Your printed copy may be an earlier revision. To verify you have the latest information available, refer to:

http://www.freescale.com

The following revision history table summarizes changes contained in this document.

Table 24. Revision History

Revision	Date	Description of Changes
1	8/2008	First Initial release.
2	9/2008	Second Initial Release.
3	11/2008	Alpha Customer Release.
4	2/2009	Launch Release.
5	4/2009	Added EMC Radiated Emission and Transient Susceptibility data in Table 19 and Table 20.
6	4/2009	Updated EMC performance data.
7	8/2009	Updated auto part numbers, changed TCLK, T0CH0, T0CH1, T1CH0, T1CH1, T1CH2, T1CH3, T1CH3, T1CH3, T1CH4, and T1CH5 to TPMCLK, TPM0CH0, TPM0CH1, TPM1CH0, TPM1CH1, TPM1CH2, TPM1CH3, TPM1CH4, and TPM1CH5, and changed the maximum LCD frame frequency to 64 Hz.
8	8/2011	Updated Table "ICS Frequency Specifications (Temperature Range = $-40 \times C$ to $105 \times C$ Ambient)". Changed the value of row 8 column C from C to P.
9	9/2011	Updated Table "ICS Frequency Specifications (Temperature Range = $-40 \times C$ to $105 \times C$ Ambient)". Removed Footnote from Row 8. Updated the Revision History

How to Reach Us:

Home Page: freescale.com

Web Support: freescale.com/support Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document.

Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners. All rights reserved.

© 2009, 2011,2015 Freescale Semiconductor, Inc.

Document Number: MC9S08LG32 Rev. 10 04/2015

