

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	S08
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, LINbus, SCI, SPI
Peripherals	LCD, LVD, POR, PWM, WDT
Number of I/O	53
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1.9К х 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 12x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=s9s08lg32j0vlh

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Freescale Semiconductor, Inc. Data Sheet Addendum

Document Number: MC9S08LG32AD Rev. 0, 04/2015

Addendum to Rev. 9 of the MC9S08LG32 Series Covers: MC9S08LG32 and MC9S08LG16

This addendum identifies changes to Rev. 9 of the MC9S08LG32 Series data sheet (covering MC9S08LG32 and MC9S08LG16). The changes described in this addendum have not been implemented in the specified pages.

1 Add min values for I_{IC} (DC injection current)

Location: Table 8. DC Characteristics, Page 14

In Table 8, "DC Characteristics," add min values for I_{IC} (row number 14) as follows:

Num	С		Characteristic	Symbol	Min	Typ ¹	Мах	Unit
14		DC injection current ^{5, 6, 7}	Single pin limit	I _{IC}	-0.2		2	mA
		V _{IN} < V _{SS} (min) V _{IN} > V _{DD} (max)	Total MCU limit, includes sum of all stressed pins		-5	—	25	mA

2 Change the max value of t_{LPO} (low power oscillator period)

Location: Table 14. Control Timing, Page 29

In Table 14, "Control Timing," change the max value of t_{LPO} (row number 2) from 1300 to 1500 µs.

© 2015 Freescale Semiconductor, Inc. All rights reserved.

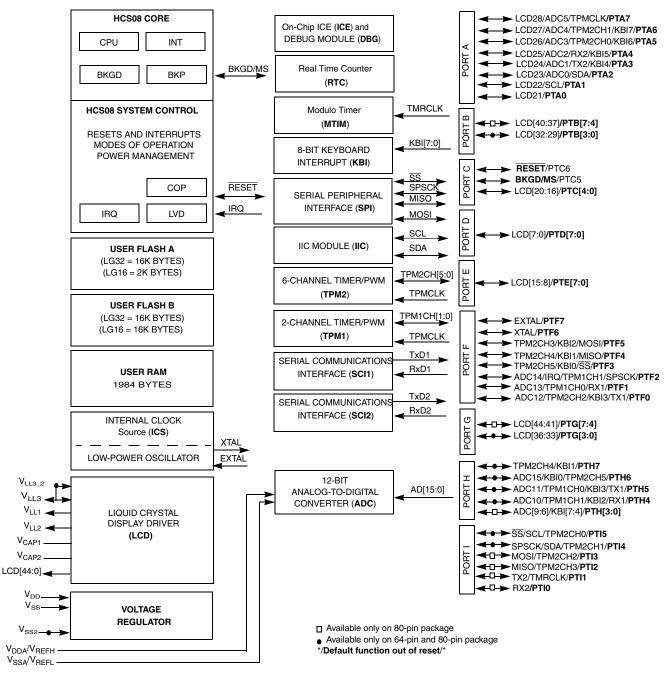
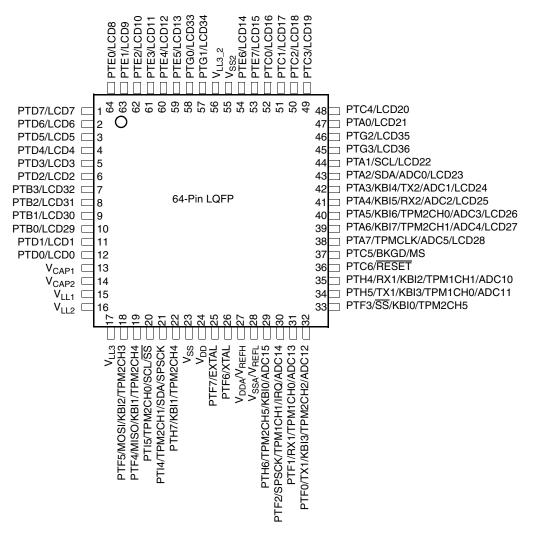


Figure 1. MC9S08LG32 Series Block Diagram

Feature	1	MC9S08LG32 MC9S08LG			08LG16		
Flash size (bytes)		32,768		18,	432		
RAM size (bytes)		1984					
Pin quantity	80	64	48	64	48		
ADC	16 ch	12 ch	9 ch	12 ch	9 ch		
LCD	8 x 37 4 x 41	8 x 29 4 x 33	8 x 21 4 x 25	8 x 29 4 x 33	8 x 21 4 x 25		
ICE + DBG		•	yes				
ICS	yes						
IIC		yes					
IRQ			yes				
KBI			8 pin				
GPIOs	69	53	39	53	39		
RTC			yes				
MTIM			yes				
SCI1			yes				
SCI2			yes				
SPI			yes				
TPM1 channels			2				
TPM2 channels			6				
XOSC			yes				


Table 1. MC9S08LG32 Series Features by MCU and Package

1 Pin Assignments

This section shows the pin assignments for the MC9S08LG32 series devices. The priority of functions on a pin is in ascending order from left to right and bottom to top. Another view of pinouts and function priority is given in Table 2.

Pin Assignments

Figure 3. 64-Pin LQFP

NOTE

 V_{REFH}/V_{REFL} are internally connected to V_{DDA}/V_{SSA} .

Pin Assignments

	Packages			< Lov	west Priority:	> Highest	
80	64	48	Port Pin	Alt 1	Alt 2	Alt 3	Alt 4
1	1	1	PTD7	LCD7	—	—	_
2	2	2	PTD6	LCD6	—	—	_
3	3	3	PTD5	LCD5	—	—	_
4	4	4	PTD4	LCD4	—	—	_
5	5	5	PTD3	LCD3	—	—	_
6	6	6	PTD2	LCD2	—	—	_
7	7	—	PTB3	LCD32	—	—	_
8	8	_	PTB2	LCD31	—	—	
9	—	—	PTB7	LCD40	—	—	_
10		_	PTB6	LCD39	—	—	
11	—	—	PTB5	LCD38		—	_
12	_	_	PTB4	LCD37	—	—	_
13	9	—	PTB1	LCD30	—	—	_
14	10	_	PTB0	LCD29	—	—	_
15	11	7	PTD1	LCD1	—	—	_
16	12	8	PTD0	LCD0	—	—	_
17	13	9	V _{CAP1}	—	—	—	_
18	14	10	V _{CAP2}	—	_	—	_
19	15	11	V _{LL1}		—	—	_
20	16	12	V _{LL2}		—	—	_
21	17	13	V _{LL3}		—	—	_
22	18	14	PTF5	MOSI	KBI2	TPM2CH3	_
23	19	15	PTF4	MISO	KBI1	TPM2CH4	_
24	20	—	PTI5	TPM2CH0	SCL	SS	_
25	21	—	PTI4	TPM2CH1	SDA	SPSCK	_
26	—	—	PTI3	TPM2CH2	MOSI	—	_
27	—	—	PTI2	TPM2CH3	MISO	—	_
28	—	—	PTI1	TMRCLK	TX2	—	_
29	—	—	PTI0	RX2		—	
30	22	—	PTH7	KBI1	TPM2CH4	—	_
31	23	16	V _{SS}		—	—	_
32	24	17	V _{DD}		—	—	_
33	25	18	PTF7	EXTAL	—	—	_
34	26	19	PTF6	XTAL	—	—	_
35	27	20	V _{DDA}	V _{REFH}		—	_
36	28	21	V _{SSA}	V _{REFL}	—	—	_
37	29	—	PTH6	TPM2CH5	KBI0	ADC15	_
38	30	22	PTF2	SPSCK	TPM1CH1	IRQ	ADC14

Table 2. Pin Availability by Package Pin-Count

	Packages			< Lo	west Priority :	> Highest	
80	64	48	Port Pin	Alt 1	Alt 2	Alt 3	Alt 4
39	31	23	PTF1	RX1	TPM1CH0	ADC13	
40	32	24	PTF0	TX1	KBI3	TPM2CH2	ADC12
41	33	25	PTF3	SS	KBI0	TPM2CH5	—
42	34	—	PTH5	TX1	KBI3	TPM1CH0	ADC11
43	35	—	PTH4	RX1	KBI2	TPM1CH1	ADC10
44	—	—	PTH3	KBI7	ADC9	_	—
45	—	—	PTH2	KBI6	ADC8	—	—
46	—	_	PTH1	KBI5	ADC7		
47	—	—	PTH0	KBI4	ADC6	—	—
48	36	26	PTC6	RESET	—		
49	37	27	PTC5	BKGD/MS	—	_	—
50	38	28	PTA7	TPMCLK	ADC5	LCD28	
51	39	29	PTA6	KBI7	TPM2CH1	ADC4	LCD27
52	40	30	PTA5	KBI6	TPM2CH0	ADC3	LCD26
53	41	31	PTA4	KBI5	RX2	ADC2	LCD25
54	42	32	PTA3	KBI4	TX2	ADC1	LCD24
55	43	33	PTA2	SDA	ADC0	LCD23	—
56	44	34	PTA1	SCL	LCD22	—	—
57	45	—	PTG3	LCD36	—	_	—
58	46	—	PTG2	LCD35	—	—	—
59	47	35	PTA0	LCD21	—	—	—
60	48	36	PTC4	LCD20	—	—	—
61	49	37	PTC3	LCD19	—	—	—
62	50	38	PTC2	LCD18	—	—	—
63	51	39	PTC1	LCD17	—	—	—
64	52	40	PTC0	LCD16	—	—	—
65	53	41	PTE7	LCD15	—		
66	54	42	PTE6	LCD14			
67	55	—	V _{SS2}	_	—	—	—
68	56	—	V _{LL3_2}			—	—
69	—	—	PTG7	LCD44	—	—	—
70	—	—	PTG6	LCD43	—	_	—
71	—	—	PTG5	LCD42	—	_	—
72	—	—	PTG4	LCD41	—		—
73	57	—	PTG1	LCD34	—	_	—
74	58	—	PTG0	LCD33	—		—
75	59	43	PTE5	LCD13	—		—
76	60	44	PTE4	LCD12	—		—

Table 2. Pin Availability by Package Pin-Count (continued)

No.	Rating ¹	Symbol	Min	Max	Unit
1	Human body model (HBM)	V _{HBM}	2500	_	V
2	Charge device model (CDM)	V _{CDM}	750	_	V
3	Latch-up current at $T_A = 85 \ ^{\circ}C$	I _{LAT}	±100		mA

Table 7. ESD and Latch-Up Protection Characteristics

Parameter is achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted.

2.6 DC Characteristics

This section includes information about power supply requirements and I/O pin characteristics.

Num	С	Characteristic	Symbol	Min	Typ ¹	Max	Unit
1	—	Operating Voltage	—	2.7	_	5.5	V
2	Ρ	Output high voltage — Low Drive (PTxDSn = 0) 5 V, ILoad = -2 mA 3 V, ILoad = -0.6 mA	V _{OH}	Vdd - 0.8 Vdd - 0.8	_		V
		Output high voltage — High Drive (PTxDSn = 1) V 5 V, ILoad = -10 mA 3 V, ILoad = -3 mA		Vdd – 0.8 Vdd – 0.8			
3	Ρ	Output low voltage — Low Drive (PTxDSn = 0) 5 V, ILoad = 2 mA 3 V, ILoad = 0.6 mA	V _{OL}	—		0.8 0.8	V
		Output low voltage — High Drive (PTxDSn = 1) 5 V, ILoad = 10 mA 3 V, ILoad = 3 mA			_	0.8 0.8	
4	Ρ	Output high current — Max total I _{OH} for all ports 5 V 3 V	I _{ОНТ}	_	_	100 60	mA
5	С	Output high current — Max total I _{OL} for all ports 5 V 3 V		_	_	100 60	mA
6	Ρ	Bandgap voltage reference	V _{BG}	—	1.225		V
7	Ρ	Input high voltage; all digital inputs	V _{IH}	0.65 x V _{DD}	_		V
8	Ρ	Input low voltage; all digital inputs	V _{IL}	_		$0.35 \times V_{DD}$	V
9	Ρ	Input hysteresis; all digital inputs	V _{hys}	0.06 x V _{DD}	_		mV
10	Ρ	Input leakage current; input only pins ² $V_{In} = V_{DD}$ or V_{SS}	_{In}	—	0.1	1	μA
11	Ρ	High impedence (off-state) leakage current $V_{In} = V_{DD}$ or V_{SS}	ll _{oz} l	—	0.1	1	μA
12	Ρ	Internal pullup resistors ³	R _{PU}	20	45	65	kΩ
13	Ρ	Internal pulldown resistors ⁴	R _{PD}	20	45	65	kΩ

Table 8. DC Characteristics

2.7 Supply Current Characteristics

This section includes information about power supply current in various operating modes.

Num	с	Parameter	Symbol	Bus Freq	V _{DD} (V)	Typ ¹	Max	Unit	Temp (°C)
1	С	Run supply current	RI _{DD}	20 MHz	3	16.38	27.85	mA	–40 °C to 85 °C
	С	FEI mode, all modules on					28.05		–40 °C to105 °C
	С			1 MHz		1.67	2.84		–40 °C to 85 °C
	С						2.87		–40 °C to105 °C
	Р			20 MHz	5	16.55	28.14	mA	–40 °C to 85 °C
	Ρ						28.35		–40 °C to105 °C
	С			1 MHz		1.77	3.01		–40 °C to 85 °C
	С						3.05		–40 °C to105 °C
2	Т	Run supply current	RI _{DD}	20 MHz	3	11.9	20.25	mA	–40 °C to 85 °C
	Т	FEI mode, all modules off					21.72		–40 °C to105 °C
	Т			1 MHz		1.16	1.95		–40 °C to 85 °C
	Т						1.98		–40 °C to105 °C
	Т			20 MHz	5	12.68	21.56	mA	–40 °C to 85 °C
	Т						23.12		–40 °C to105 °C
	Т			1 MHz		1.4	2.39		–40 °C to 85 °C
	Т						2.41		–40 °C to105 °C
3	Т	Wait mode supply current	WI _{DD}	20 MHz	3	7.9	13.42	mA	–40 °C to 85 °C
	Т	FEI mode, all modules off					13.59		–40 °C to105 °C
	Т			1 MHz		0.88	1.49		–40 °C to 85 °C
	Т						1.51		–40 °C to105 °C
	Р			20 MHz	5	8.13	13.81	mA	–40 °C to 85 °C
	Р						13.98		–40 °C to105 °C
	Т			1 MHz		1.12	1.91		–40 °C to 85 °C
	Т						1.94		–40 °C to105 °C
4	С	Stop2 mode supply current	S2I _{DD}	n/a	3	1.1	16.0	μA	–40 °C to 85 °C
	С						39.0		–40 °C to105 °C
	Р				5	1.2	18.7	μA	–40 °C to 85 °C
	Р						46.1		–40 °C to105 °C
5	С	Stop3 mode supply current No clocks active	S3I _{DD}	n/a	3	1.2	22.4	μA	–40 °C to 85 °C
	С	INU GOURS ACTIVE					56.2		–40 °C to105 °C
	Р				5	1.32	25.5	μA	–40 °C to 85 °C
	Р						63.9		–40 °C to105 °C

Table 9. Supply Current Characteristics

Characteristic	Conditions	Symb	Min	Typ ¹	Max	Unit	Comment
Input Resistance	_	R _{ADIN}	—	5	7	kΩ	_
Analog Source Resistance	12-bit mode f _{ADCK} > 4MHz f _{ADCK} < 4MHz	R _{AS}	_		2 5	kΩ	External to MCU
	10-bit mode f _{ADCK} > 4MHz f _{ADCK} < 4MHz				5 10		
	8-bit mode (all valid f _{ADCK})		_		10		
ADC	High Speed (ADLPC = 0)	f _{ADCK}	0.4	_	8.0	MHz	—
Conversion Clock Freq.	Low Power (ADLPC = 1)		0.4	_	4.0		

Table 12. 12-bit ADC Operating Conditions (continued)

¹ Typical values assume V_{DDAD} = 5.0 V, Temp = 25 °C, f_{ADCK} = 1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

² DC potential difference.

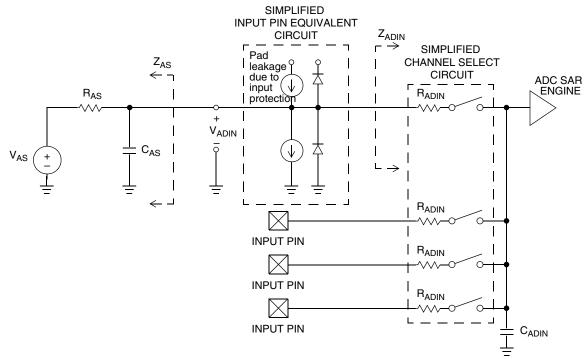


Figure 18. ADC Input Impedance Equivalency Diagram

					-		-		
Num	с	Characteristic	Conditions	Symb	Min	Typ ¹	Max	Unit	Comment
13	Т	Full-Scale	12-bit mode	E _{FS}	_	±1	_	LSB ²	$V_{ADIN} = V_{DDAD}$
	Р	Error	10-bit mode		_	±0.5	±1		
	Т		8-bit mode			±0.5	±0.5		
14	D	Quantization	12-bit mode	EQ		-1 to 0		LSB ²	_
	Error	10-bit mode				±0.5			
			8-bit mode				±0.5		
15	D	Input Leakage	12-bit mode	E _{IL}		±1		LSB ²	Pad leakage ⁴ *
		Error	10-bit mode			±0.2	±2.5		R _{AS}
			8-bit mode			±0.1	±1		
16	С	Temp Sensor	–40 °C to 25 °C	m	_	1.646	_	mV/°C	—
	Slope	Slope	25 °C to 125°C		_	1.769	_		
17	С	Temp Sensor Voltage	25 °C	V _{TEMP25}	_	701.2	_	mV	

Table 13. 12-bit ADC Characteristics ($V_{REFH} = V_{DDAD}$, $V_{REFL} = V_{SSAD}$) (continued)

¹ Typical values assume V_{DDAD} = 5.0 V, Temp = 25 °C, f_{ADCK} = 1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

² 1 LSB = $(V_{\text{REFH}} - V_{\text{REFL}})/2^N$

³ Monotonicity and no-missing-codes guaranteed in 10-bit and 8-bit modes

⁴ Based on input pad leakage current. Refer to pad electricals.

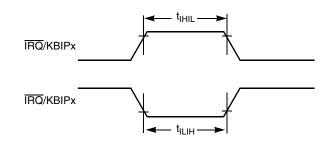


Figure 20. IRQ/KBIPx Timing

2.11.2 TPM Module Timing

Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that can be used as the optional external source to the timer counter. These synchronizers operate from the current bus rate clock.

No.	С	Function	Symbol	Min	Max	Unit
1	D	External clock frequency	f _{TCLK}	0	f _{Bus} /4	Hz
2	D	External clock period	t _{TCLK}	4	_	t _{cyc}
3	D	External clock high time	t _{clkh}	1.5	_	t _{cyc}
4	D	External clock low time	t _{clkl}	1.5	_	t _{cyc}
5	D	Input capture pulse width	t _{ICPW}	1.5	_	t _{cyc}

Table 15. TPM Input Timing

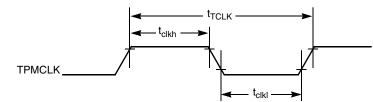


Figure 21. Timer External Clock

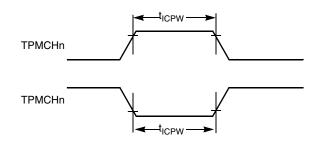


Figure 22. Timer Input Capture Pulse

2.11.3 SPI Timing

Table 16 and Figure 23 through Figure 26 describe the timing requirements for the SPI system.

No.	С	Function	Symbol	Min	Max	Unit
_	D	Operating frequency Master Slave	f _{op}	f _{Bus} /2048 0	f _{Bus} /2 f _{Bus} /4	Hz
1	D	SPSCK period Master Slave	t _{SPSCK}	2 4	2048 —	t _{cyc} t _{cyc}
2	D	Enable lead time Master Slave	t _{Lead}	1/2 1		t _{SPSCK} t _{cyc}
3	D	Enable lag time Master Slave	t _{Lag}	1/2 1		t _{SPSCK} t _{cyc}
4	D	Clock (SPSCK) high or low time Master Slave	twspsck	$t_{cyc} - 30$ $t_{cyc} - 30$	1024 t _{cyc}	ns ns
5	D	Data setup time (inputs) Master Slave	t _{SU}	15 15		ns ns
6	D	Data hold time (inputs) Master Slave	t _{HI}	0 25		ns ns
7	D	Slave access time	t _a	—	1	t _{cyc}
8	D	Slave MISO disable time	t _{dis}	_	1	t _{cyc}
9	D	Data valid (after SPSCK edge) Master Slave	t _v		25 25	ns ns
(10)	D	Data hold time (outputs) Master Slave	t _{HO}	0 0		ns ns
(1)	D	Rise time Input Output	t _{RI} t _{RO}		t _{cyc} – 25 25	ns ns
(12)	D	Fall time Input Output	t _{FI} t _{FO}	—	t _{cyc} – 25 25	ns ns

Table 16. SPI Timing

2.12 LCD Specifications

Table 17. LCD Electricals, 3 V Glass

С	Characteristic	Symbol	Min	Тур	Мах	Units
D	VLL3 Supply Voltage	VLL3	2.7	_	5.5	V
D	LCD Frame Frequency	f _{Frame}	28	30	64	Hz
D	LCD Charge Pump Capacitance	C _{LCD}	—	100	100	pF
D	LCD Bypass Capacitance	C _{BYLCD}	—	100	100	
D	LCD Glass Capacitance	C _{glass}	_	2000	8000	

2.13 Flash Specifications

This section provides details about program/erase times and program-erase endurance for the flash memory.

Program and erase operations do not require any special power sources other than the normal V_{DD} supply. For more detailed information about program/erase operations, see the Memory section.

С	Characteristic	Symbol	Min	Typical	Мах	Unit
D	Supply voltage for program/erase -40 °C to 85 °C	V _{prog/erase}	2.7 5.5		V	
D	Supply voltage for read operation	V _{Read}	2.7		5.5	V
D	Internal FCLK frequency ¹	f _{FCLK}	150		200	kHz
D	Internal FCLK period (1/FCLK)	t _{Fcyc}	5		6.67	μs
С	C Byte program time (random location) ²		9			t _{Fcyc}
С	Byte program time (burst mode) ²	t _{Burst}	4		t _{Fcyc}	
С	Page erase time ²	t _{Page}	4000		t _{Fcyc}	
С	Mass erase time ²	t _{Mass}	20,000			t _{Fcyc}
D	Byte program current ³	R _{IDDBP}	_	4	—	mA
D	Page erase current ³	R _{IDDPE}	_	6	—	mA
с	Program/erase endurance ⁴ T _L to T _H = -40 °C to + 85 °C T = 25 °C		10,000	 100,000		cycles
С	Data retention ⁵	t _{D_ret}	15	100	—	years

Table 18. Flash Characteristics

¹ The frequency of this clock is controlled by a software setting.

² These values are hardware state machine controlled. User code does not need to count cycles. This information supplied for calculating approximate time to program and erase.

³ The program and erase currents are additional to the standard run I_{DD} . These values are measured at room temperatures with $V_{DD} = 5.0 \text{ V}$, bus frequency = 4.0 MHz.

⁴ Typical endurance for flash was evaluated for this product family on the 9S12Dx64. For additional information on how Freescale defines typical endurance, please refer to *Engineering Bulletin EB619, Typical Endurance for Nonvolatile Memory.*

⁵ Typical data retention values are based on intrinsic capability of the technology measured at high temperature and de-rated to 25 °C using the Arrhenius equation. For additional information on how Freescale defines typical data retention, please refer to *Engineering Bulletin EB618, Typical Data Retention for Nonvolatile Memory.*

2.14 EMC Performance

Electromagnetic compatibility (EMC) performance is highly dependant on the environment in which the MCU resides. Board design and layout, circuit topology choices, location and characteristics of external components as well as MCU software operation all play a significant role in EMC performance. The system designer should consult Freescale applications notes such as AN2321, AN1050, AN1263, AN2764, and AN1259 for advice and guidance specifically targeted at optimizing EMC performance.

2.14.1 Radiated Emissions

Microcontroller radiated RF emissions are measured from 150 kHz to 1 GHz using the TEM/GTEM cell method in accordance with the IEC 61967-2 and SAE J1752/3 standards. The measurement is performed with the microcontroller installed on a custom EMC evaluation board while running specialized EMC test software. The radiated emissions from the microcontroller are measured in a TEM cell in two package orientations (North and East).

The maximum radiated RF emissions of the tested configuration in all orientations are less than or equal to the reported emissions levels.

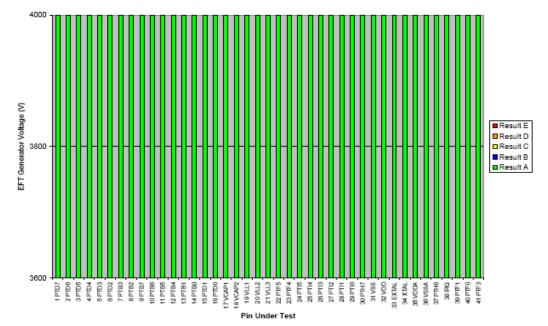
Parameter	Symbol	Conditions	Frequency	f _{OSC} /f _{BUS}	Level ¹ (Max)	Unit
Radiated emissions,		4 MHz crystal	10	dBμV		
electric field			50 – 150 MHz	16 MHz bus	14	
80 LQFP		150 – 500 MHz		8		
			500 – 1000 MHz		5	
			IEC Level		L	—
		SAE Level		2	—	

Table 19. Radiated Emissions, Electric Field

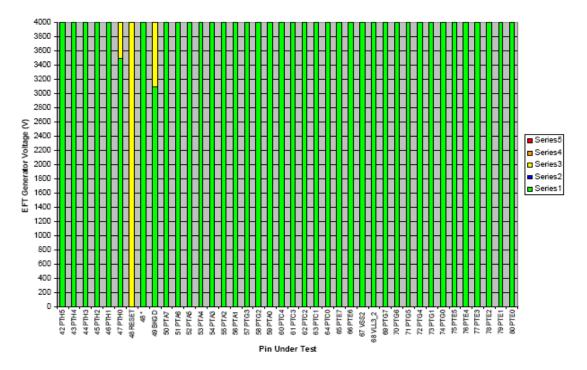
¹ Data based on qualification test results.

2.14.2 Conducted Transient Susceptibility

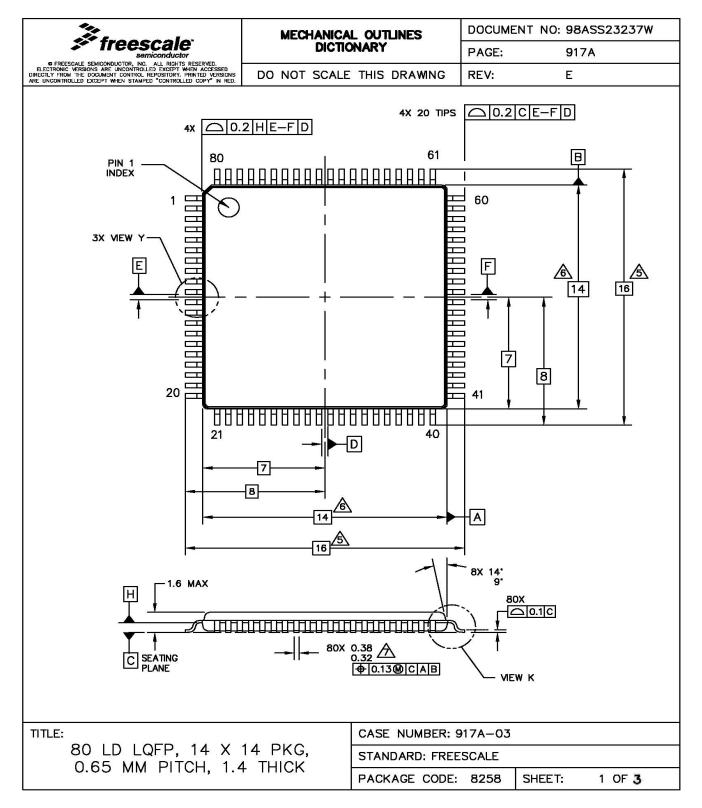
Microcontroller transient conducted susceptibility is measured in accordance with an internal Freescale test method. The measurement is performed with the microcontroller installed on a custom EMC evaluation board and running specialized EMC test software designed in compliance with the test method. The conducted susceptibility is determined by injecting the transient susceptibility signal on each pin of the microcontroller. The transient waveform and injection methodology is based on IEC 61000-4-4 (EFT/B). The transient voltage required to cause performance degradation on any pin in the tested configuration is greater than or equal to the reported levels unless otherwise indicated by footnotes below Table 20.


Table 20.	Conducted	Susceptibility,	EFT/B
-----------	-----------	-----------------	-------

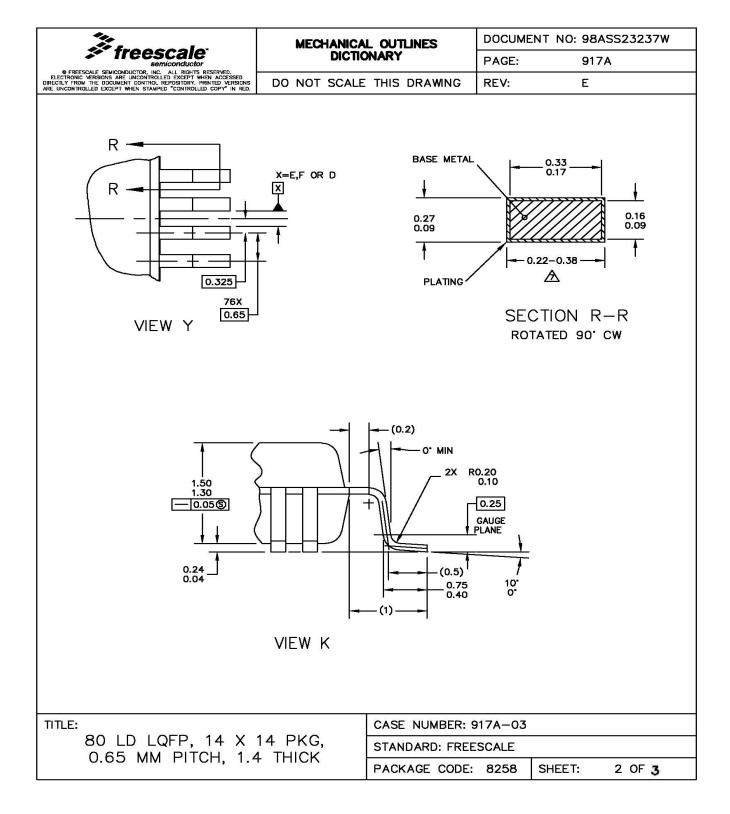
Parameter	Symbol	Conditions	f _{OSC} /f _{BUS}	Result	Amplitude ¹ (Min)	Unit
Conducted susceptibility, electrical	V _{CS EFT}	V _{DD} = 5.5	4 kHz crystal	А	>4.0 ²	kV
fast transient/burst (EFT/B)		$T_{A} = +25 {}^{\circ}C$	4 MHz bus	В	>4.0 ³	
		Package type = 80-pin LQFP		С	>4.0 ⁴	
				D	>4.0	


¹ Data based on qualification test results. Not tested in production.

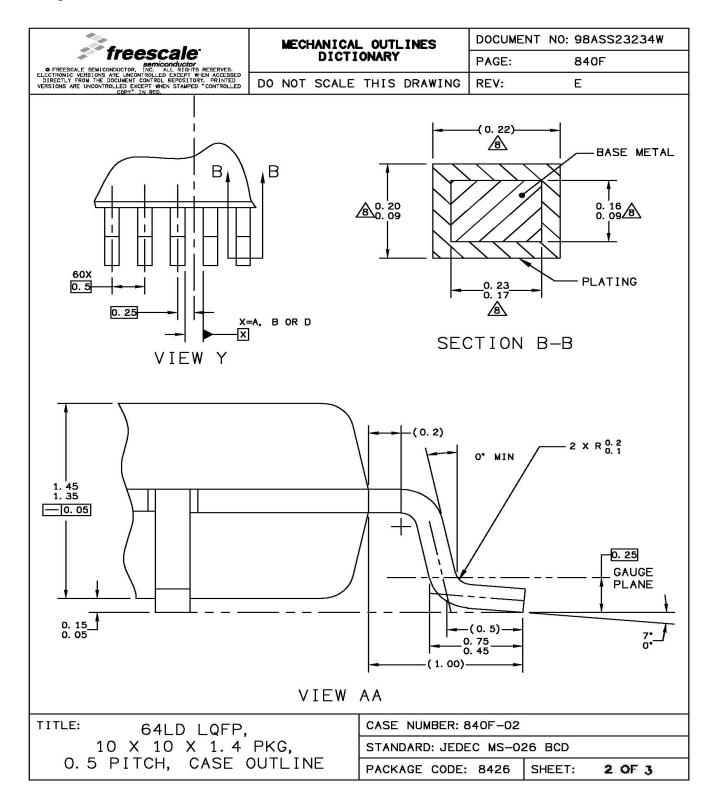
² Exceptions as covered in footnotes 3 and 4.


Note:

RESET retested with 0.1 μ F capacitor from pin to ground is Class A compliant as shown by 48*. Figure 30. 4 MHz, Negative Polarity Pins 42 – 80


Package Information

4.1.1 80-pin LQFP



Package Information

Package Information

Package Information

	MECHANICAL OUTLINES	DOCUMENT NO: 98ASS23234W						
• FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	DICTIONARY		PAGE:	840F				
• FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. ELECTRONIC VERSIONS ARE UNCONTROLLED EXCEPT WHEN ACCESSED DIRECTLY FROM THE DOCUMENT CONTROL REPOSITORY, FRINTED VERSIONS ARE UNCONTROLLED EXCEPT WHEN STAMPED *CONTROLLED COPY" IN RED.	DO NOT SCALE	THIS DRAWING	REV:	E				
NOTES:								
1. DIMENSIONS ARE IN MILLIMETERS.								
2. DIMENSIONING AND TO	2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.							
3. DATUMS A, B AND D TO	D BE DETERMINE	D AT DATUM PLA	NE H.					
A DIMENSIONS TO BE DE	FERMINED AT SE	ATING PLANE C.						
THIS DIMENSION DOES PROTRUSION SHALL NO BY MORE THAN 0.08 mr LOCATED ON THE LOWER PROTRUSION AND ADJAC	「 CAUSE THE LE n AT MAXIMUM M ₹ RADIUS OR TH	AD WIDTH TO EX ATERIAL CONDIT E FOOT. MINIMU	CEED TH ION. DA JM SPACE	HE UPPER LIMIT AMBAR CANNOT BE E BETWEEN				
THIS DIMENSION DOES IS 0.25 mm PER SIDE. DIMENSION INCLUDING	THIS DIMENSI	ON IS MAXIMUM						
\triangle exact shape of each	CORNER IS OPT	IONAL.						
A THESE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.1 mm AND 0.25 mm FROM THE LEAD TIP.								
TITLE: 64LD LQFP,		CASE NUMBER: 8	840F-02					
10 X 10 X 1.4		STANDARD: JEDE	C MS-02					
0.5 PITCH, CASE	JUILINE	PACKAGE CODE:	8426	SHEET: 3 OF 3				

Figure 34. 64-pin LQFP Package Drawing (Case 840F, Doc #98ASS23234W)

Revision History

5 Revision History

To provide the most up-to-date information, the revision of our documents on the World Wide Web are the most current. Your printed copy may be an earlier revision. To verify you have the latest information available, refer to:

http://www.freescale.com

The following revision history table summarizes changes contained in this document.

Table 24. Revision History

Revision	Date	Description of Changes
1	8/2008	First Initial release.
2	9/2008	Second Initial Release.
3	11/2008	Alpha Customer Release.
4	2/2009	Launch Release.
5	4/2009	Added EMC Radiated Emission and Transient Susceptibility data in Table 19 and Table 20.
6	4/2009	Updated EMC performance data.
7	8/2009	Updated auto part numbers, changed TCLK, T0CH0, T0CH1, T1CH0, T1CH1, T1CH2, T1CH3, T1CH3, T1CH3, T1CH4, and T1CH5 to TPMCLK, TPM0CH0, TPM0CH1, TPM1CH0, TPM1CH1, TPM1CH2, TPM1CH3, TPM1CH4, and TPM1CH5, and changed the maximum LCD frame frequency to 64 Hz.
8	8/2011	Updated Table "ICS Frequency Specifications (Temperature Range = $-40 \times C$ to $105 \times C$ Ambient)". Changed the value of row 8 column C from C to P.
9	9/2011	Updated Table "ICS Frequency Specifications (Temperature Range = $-40 \times C$ to $105 \times C$ Ambient)". Removed Footnote from Row 8. Updated the Revision History