

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Active
Core Processor	S08
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, LINbus, SCI, SPI
Peripherals	LCD, LVD, POR, PWM, WDT
Number of I/O	69
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1.9K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	80-LQFP
Supplier Device Package	80-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/s9s08lg32j0vlk

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

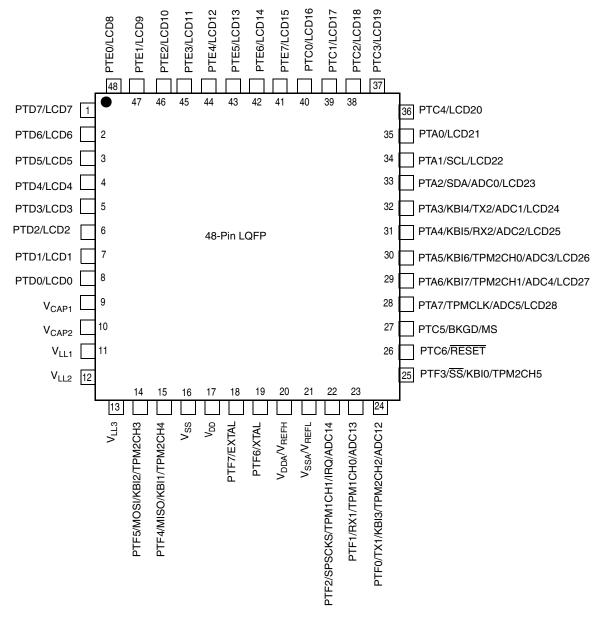


Figure 4. 48-Pin LQFP

NOTE

 V_{REFH}/V_{REFL} are internally connected to $V_{DDA}/V_{SSA}.$

Pin Assignments

Table 2. Pin Availability by Package Pin-Count

	Packages			< Lo	west Priority	> Highest	
80	64	48	Port Pin	Alt 1	Alt 2	Alt 3	Alt 4
1	1	1	PTD7	LCD7	_	_	_
2	2	2	PTD6	LCD6	_	_	_
3	3	3	PTD5	LCD5	_	_	_
4	4	4	PTD4	LCD4	_	_	_
5	5	5	PTD3	LCD3	_	_	_
6	6	6	PTD2	LCD2	_	_	_
7	7	_	PTB3	LCD32	_	_	_
8	8	_	PTB2	LCD31	_	_	_
9	_	_	PTB7	LCD40	_	_	_
10	_	_	PTB6	LCD39	_	_	_
11	_	_	PTB5	LCD38	_	_	_
12	_	_	PTB4	LCD37	_	_	_
13	9	_	PTB1	LCD30	_	_	_
14	10	_	PTB0	LCD29	_	_	_
15	11	7	PTD1	LCD1	_	_	_
16	12	8	PTD0	LCD0	_	_	_
17	13	9	V _{CAP1}	_	_	_	_
18	14	10	V _{CAP2}	_	_	_	_
19	15	11	V_{LL1}	_	_	_	_
20	16	12	V_{LL2}	_	_	_	_
21	17	13	V_{LL3}	_	_	_	_
22	18	14	PTF5	MOSI	KBI2	TPM2CH3	_
23	19	15	PTF4	MISO	KBI1	TPM2CH4	_
24	20	_	PTI5	TPM2CH0	SCL	SS	_
25	21	_	PTI4	TPM2CH1	SDA	SPSCK	_
26	_	_	PTI3	TPM2CH2	MOSI	_	_
27	_	_	PTI2	TPM2CH3	MISO	_	_
28	_	_	PTI1	TMRCLK	TX2	_	_
29	_	_	PTI0	RX2	_	_	_
30	22	_	PTH7	KBI1	TPM2CH4	_	_
31	23	16	V_{SS}	_	_	_	_
32	24	17	V _{DD}	_	_	_	_
33	25	18	PTF7	EXTAL	_	_	_
34	26	19	PTF6	XTAL	_	_	_
35	27	20	V_{DDA}	V _{REFH}	_	_	_
36	28	21	V _{SSA}	V _{REFL}	_	_	_
37	29	_	PTH6	TPM2CH5	KBI0	ADC15	_
38	30	22	PTF2	SPSCK	TPM1CH1	IRQ	ADC14

2.7 Supply Current Characteristics

This section includes information about power supply current in various operating modes.

Table 9. Supply Current Characteristics

Num	С	Parameter	Symbol	Bus Freq	V _{DD} (V)	Typ ¹	Max	Unit	Temp (°C)
1	С	Run supply current	RI _{DD}	20 MHz	3	16.38	27.85	mA	–40 °C to 85 °C
	С	FEI mode, all modules on					28.05		–40 °C to105 °C
	С			1 MHz		1.67	2.84		−40 °C to 85 °C
	С						2.87		-40 °C to105 °C
	Р			20 MHz	5	16.55	28.14	mA	–40 °C to 85 °C
	Р						28.35		–40 °C to105 °C
	С			1 MHz		1.77	3.01		-40 °C to 85 °C
	С						3.05		-40 °C to105 °C
2	Т	Run supply current	RI _{DD}	20 MHz	3	11.9	20.25	mA	–40 °C to 85 °C
	Т	FEI mode, all modules off					21.72		–40 °C to105 °C
	Т			1 MHz		1.16	1.95		–40 °C to 85 °C
	Т						1.98		-40 °C to105 °C
	Т			20 MHz	5	12.68	21.56	mA	–40 °C to 85 °C
	Т						23.12		–40 °C to105 °C
	Т			1 MHz		1.4	2.39		-40 °C to 85 °C
	Т						2.41		-40 °C to105 °C
3	Т	Wait mode supply current	WI _{DD}	20 MHz	3	7.9	13.42	mA	-40 °C to 85 °C
	Т	FEI mode, all modules off					13.59		–40 °C to105 °C
	Т			1 MHz		0.88	1.49		-40 °C to 85 °C
	Т						1.51		–40 °C to105 °C
	Р			20 MHz	5	8.13	13.81	mA	-40 °C to 85 °C
	Р						13.98		-40 °C to105 °C
	Т			1 MHz		1.12	1.91		–40 °C to 85 °C
	Т						1.94		–40 °C to105 °C
4	С	Stop2 mode supply current	S2I _{DD}	n/a	3	1.1	16.0	μА	–40 °C to 85 °C
	С						39.0		–40 °C to105 °C
	Р				5	1.2	18.7	μΑ	–40 °C to 85 °C
	Р						46.1		–40 °C to105 °C
5	C	Stop3 mode supply current	S3I _{DD}	n/a	3	1.2	22.4	μА	–40 °C to 85 °C
	С	No clocks active					56.2		–40 °C to105 °C
	Р				5	1.32	25.5	μА	–40 °C to 85 °C
	Р						63.9		–40 °C to105 °C

Table 9. Supply Current Characteristics (continued)

Num	С	Par	ameter	Symbol	Bus Freq	V _{DD} (V)	Typ ¹	Max	Unit	Temp (°C)
6	Т	Stop2 adders:	RTC using LPO		n/a	3	210	_	nA	-40 °C to 105 °C
			RTC using low power crystal oscillator				4.25	_	μА	
			LCD ² with rbias (Low Gain)				1.2 ³	_		
			LCD ² with rbias (High Gain)				18 ⁴	_		
			LCD ² with Cpump				4.05 ³	_		-40 °C to 85 °C
			RTC using LPO			5	210	_	nA	-40 °C to 105 °C
			RTC using low power crystal oscillator				4.22	_	μА	
			LCD ² with rbias (Low Gain)				1.5 ³	_		
			LCD ² with rbias (High Gain)				32 ⁴	_		
			LCD ² with Cpump				7.12 ³	_		-40 °C to 85 °C
7	Т	Stop3 adders:	RTC using LPO	_	n/a	3	210	_	nA	-40 °C to 105 °C
			RTC using low power crystal oscillator				4.75	_	μА	
			LCD ² with rbias (Low Gain)				1.2 ³	_	•	
			LCD ² with rbias (High Gain)				18 ⁴	_		
			LCD ² with Cpump				4.35 ³	_		-40 °C to 85 °C
			RTC using LPO			5	230	_	nA	-40 °C to 105 °C
			RTC using low power crystal oscillator				4.74	_	μА	
			LCD ² with rbias (Low Gain)				1.5 ³	_		
			LCD ² with rbias (High Gain)				32 ⁴	_	•	
			LCD ² with Cpump				7.49 ³	_	1	-40 °C to 85 °C

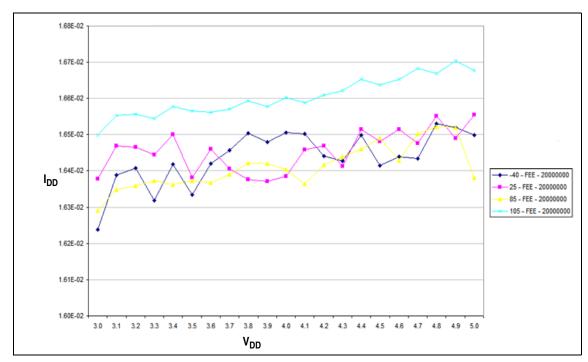


Figure 12. Typical Run I_{DD} for FEE Mode at 20 MHz

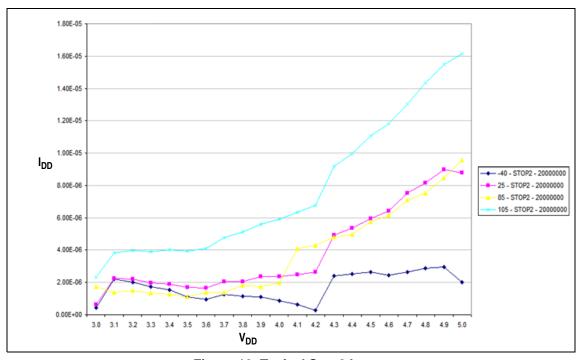


Figure 13. Typical Stop2 I_{DD}

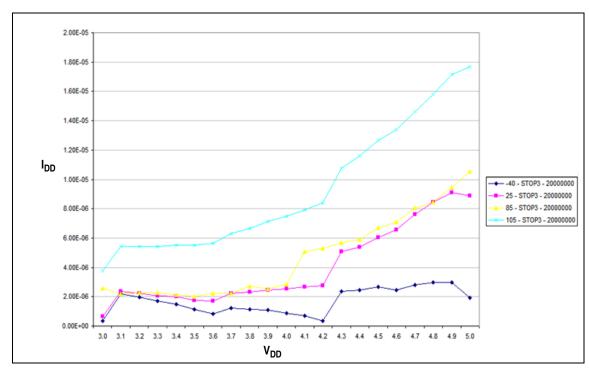


Figure 14. Typical Stop3 I_{DD}

2.8 External Oscillator (XOSC) Characteristics

Table 10. Oscillator Electrical Specifications (Temperature Range = -40 °C to 105 °C Ambient)

Num	С	Characteristic	Symbol	Min	Typ ¹	Max	Unit
1	D	Oscillator crystal or resonator (EREFS = 1, ERCLKEN = 1) • Low range (RANGE = 0) • High range (RANGE = 1) FEE or FBE mode ² • High range (RANGE = 1, HGO = 1) BLPE mode • High range (RANGE = 1, HGO = 0) BLPE mode	f _{lo} f _{hi} f _{hi-hgo} f _{hi-lp}	32 1 1	_ _ _ _	38.4 5 16 8	kHz MHz MHz MHz
2	D	Load capacitors	C ₁ C ₂	See manufac	•	r resona commen	

Table 10. Oscillator Electrical Specifications (Temperature Range = -40 °C to 105 °C Ambient) (continued)

Num	С	Characteristic	Symbol	Min	Typ ¹	Max	Unit
3	D	Feedback resistor • Low range (32 kHz to 100 kHz) • High range (1 MHz to 16 MHz)	R _F		10 1	_	ΜΩ
4	D	Series resistor • Low range, low gain (RANGE = 0, HGO = 0) • Low range, high gain (RANGE = 0, HGO = 1)	R _S		0 100		kΩ
5	D	Series resistor • High range, low gain (RANGE = 1, HGO = 0) • High range, high gain (RANGE = 1, HGO = 1) ≥8 MHz 4 MHz 1 MHz	R _S		0 0	0 10 20	kΩ
6	Т	Crystal start-up time ^{3, 4} • Low range (HGO = 0) • Low range (HGO = 1) • High range (HG0 = 0) ⁵ • High range (HG0 = 1) ⁵	t _{CSTL-LP} t _{CSTL-HGO} t _{CSTH-LP} t _{CSTH-HGO}	_ _ _ _	500 3570 4 4	_ _ _ _	ms
7	D	Square wave input clock frequency (EREFS = 0, ERCLKEN = 1) • FEE or FBE mode • BLPE mode	f _{extal}	0.03125 0	_	5 40	MHz

Data in Typical column was characterized at 5.0 V, 25 °C or is typical recommended value.

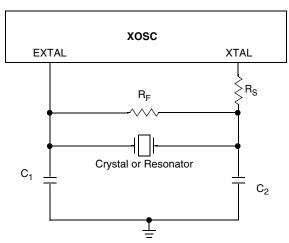


Figure 15. Typical Crystal or Resonator Circuit: High Range and Low Range/High Gain

When ICS is configured for FEE or FBE mode, input clock source must be divisible using RDIV to within the range of 31.25 kHz to 39.0625 kHz.

³ This parameter is characterized and not tested on each device.

⁴ Proper PC board layout procedures must be followed to achieve specifications.

⁵ 4 MHz crystal

Figure 16. Typical Crystal or Resonator Circuit: Low Range/Low Power

2.9 Internal Clock Source (ICS) Characteristics

Table 11. ICS Frequency Specifications (Temperature Range = -40 °C to 105 °C Ambient)

Num	С	Character	istic	Symbol	Min	Typ ¹	Max	Unit
1	Р	Average internal reference frequat VDD = 5.0 V and temperature		f _{int_ft}	_	32.768	_	kHz
2	С	Average internal reference frequ	uency — user trimmed	f _{int_t}	31.25	_	39.0625	kHz
3	С	Internal reference start-up time		t _{IRST}	_	60	100	μS
4	Р	DCO output frequency range —	Low range (DRS = 00)	f _{dco_t}	16	_	20	MHz
Ī	Р	trimmed ²	Mid range (DRS = 01)		32	_	40	
5	Р	DCO output frequency ²	Low range (DRS = 00)	f _{dco_DMX32}	_	19.92	_	MHz
-	Р	Reference = 32768 Hz and DMX32 = 1	Mid range (DRS = 01)		_	39.85	_	
6	С	Resolution of trimmed DCO out voltage and temperature (using		$\Delta f_{dco_res_t}$	_	±0.1	±0.2	%f _{dco}
7	С	Resolution of trimmed DCO out voltage and temperature (not us		$\Delta f_{dco_res_t}$	_	±0.2	±0.4	%f _{dco}
8	Р	Total deviation of trimmed DCO voltage and temperature	output frequency over	Δf_{dco_t}	_	-1.0 to +0.5	±2	%f _{dco}
9	С	Total deviation of trimmed DCO output frequency over fixed voltage and temperature range of 0 °C to 70 °C ³		Δf_{dco_t}	_	±0.5	±1	%f _{dco}
10	С	FLL acquisition time ^{3, 4}		t _{Acquire}	_	_	1	mS
11	С	Long term jitter of DCO output c interval) ⁵	lock (averaged over 2 ms	C _{Jitter}	_	0.02	0.2	%f _{dco}

Data in Typical column was characterized at 5.0 V, 25 °C or is typical recommended value.

MC9S08LG32 Series Data Sheet, Rev. 9

² The resulting bus clock frequency should not exceed the maximum specified bus clock frequency of the device.

³ This parameter is characterized and not tested on each device.

⁴ This specification applies to any time the FLL reference source or reference divider is changed, trim value changed or changing from FLL disabled (FBELP, FBILP) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.

Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f_{Bus}. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the FLL circuitry via V_{DD} and V_{SS} and variation in the crystal oscillator frequency increase the C_{Jitter} percentage for a given interval.

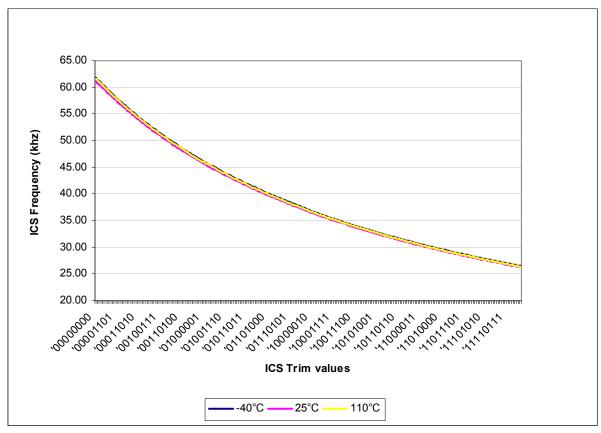


Figure 17. Internal Oscillator Deviation from Trimmed Frequency

2.10 ADC Characteristics

Table 12. 12-bit ADC Operating Conditions

Characteristic	Conditions	Symb	Min	Typ ¹	Max	Unit	Comment
Supply voltage	Absolute	V_{DDAD}	2.7	_	5.5	V	_
	Delta to V _{DD} (V _{DD} – V _{DDAD}) ²	ΔV_{DDAD}	-100	0	+100	mV	_
Ground voltage	Delta to V _{SS} (V _{SS} – V _{SSAD}) ²	ΔV _{SSAD}	-100	0	+100	mV	_
Ref Voltage High	1	V _{REFH}	_	_	_	>	V _{REFH} shorted to V _{DDAD}
Ref Voltage Low	_	V _{REFL}	_	_	_	٧	V _{REFL} shorted to V _{SSAD}
Input Voltage	_	V _{ADIN}	V _{REFL}	_	V _{REFH}	V	_
Input Capacitance		C _{ADIN}	_	4.5	5.5	pF	_

Table 13. 12-bit ADC Characteristics ($V_{REFH} = V_{DDAD}$, $V_{REFL} = V_{SSAD}$)

Num	С	Characteristic	Conditions	Symb	Min	Typ ¹	Max	Unit	Comment
1	Т	Supply Current ADLPC = 1 ADLSMP = 1 ADCO = 1	_	I _{DDAD}	_	195	_	μА	_
2	Т	Supply Current ADLPC = 1 ADLSMP = 0 ADCO = 1	_	I _{DDAD}	_	347	_	μА	
3	Т	Supply Current ADLPC = 0 ADLSMP = 1 ADCO = 1	_	I _{DDAD}	_	407	_	μА	_
4	Р	Supply Current ADLPC = 0 ADLSMP = 0 ADCO = 1	_	I _{DDAD}	_	0.755	1	mA	_
5	_	Supply Current	Stop, Reset, Module Off	IDDAD		0.011	1	μА	_
6	Р	ADC Asynchronous	High Speed (ADLPC=0)	f _{ADACK}	2	3.3	5	MHz	t _{ADACK} =
		Clock Source	Low Power (ADLPC=1)		1.25	2	3.3		1/f _{ADACK}
7	С	Conversion	Short sample (ADLSMP=0)	t _{ADC}	_	20	-	ADCK cycles	See ADC
		Time (Including sample time)	Long sample (ADLSMP=1)		_	40	_		chapter in the LG32
8	С	Sample Time	Short sample (ADLSMP=0)	t _{ADS}	_	3.5	_	ADCK	Reference Manual for
			Long sample (ADLSMP=1)		_	23.5	_	cycles	conversion time variances
9	Т	Total	12-bit mode	E _{TUE}	_	±3.0	1	LSB ²	Includes
	Р	Unadjusted Error	10-bit mode		_	±1	±2.5		quantization
	Т		8-bit mode		_	±0.5	±1		
10	Т	Differential Non-Linearity	12-bit mode	DNL	_	±1.75	-	LSB ²	
	Р	Non-Lineanty	10-bit mode ³		_	±0.5	±1.0		
	Т		8-bit mode ³		_	±0.3	±0.5		
11	Т	Integral Non-Linearity	12-bit mode	INL	_	±1.5	_	LSB ²	
	Р	Non-Lineanty	10-bit mode		_	±0.5	±1		
	Т		8-bit mode		_	±0.3	±0.5		
12	Т	Zero-Scale Error	12-bit mode	E _{ZS}	_	±1.5	_	LSB ²	$V_{ADIN} = V_{SSAD}$
	Р	Error	10-bit mode		_	±0.5	±1.5		
	Т		8-bit mode		_	±0.5	±0.5		

2.11.3 SPI Timing

Table 16 and Figure 23 through Figure 26 describe the timing requirements for the SPI system.

Table 16. SPI Timing

No.	С	Function	Symbol	Min	Max	Unit
_	D	Operating frequency Master Slave	f _{op}	f _{Bus} /2048 0	f _{Bus} /2 f _{Bus} /4	Hz
1	D	SPSCK period Master Slave	t _{SPSCK}	2 4	2048 —	t _{cyc}
2	D	Enable lead time Master Slave	t _{Lead}	1/2 1		t _{SPSCK}
3	D	Enable lag time Master Slave	t _{Lag}	1/2 1		t _{SPSCK} t _{cyc}
4	D	Clock (SPSCK) high or low time Master Slave	twspsck	t _{cyc} – 30 t _{cyc} – 30	1024 t _{cyc}	ns ns
(5)	D	Data setup time (inputs) Master Slave	t _{SU}	15 15		ns ns
6	D	Data hold time (inputs) Master Slave	t _{HI}	0 25		ns ns
7	D	Slave access time	t _a	_	1	t _{cyc}
8	D	Slave MISO disable time	t _{dis}	_	1	t _{cyc}
9	D	Data valid (after SPSCK edge) Master Slave	t _v		25 25	ns ns
10	D	Data hold time (outputs) Master Slave	t _{HO}	0 0		ns ns
11)	D	Rise time Input Output	t _{RI}		t _{cyc} – 25 25	ns ns
12)	D	Fall time Input Output	t _{FI}		t _{cyc} – 25 25	ns ns

2.12 LCD Specifications

Table 17. LCD Electricals, 3 V Glass

С	Characteristic	Symbol	Min	Тур	Max	Units
D	VLL3 Supply Voltage	VLL3	2.7	_	5.5	V
D	LCD Frame Frequency	f _{Frame}	28	30	64	Hz
D	LCD Charge Pump Capacitance	C _{LCD}	_	100	100	pF
D	LCD Bypass Capacitance	C _{BYLCD}	_	100	100	
D	LCD Glass Capacitance	C _{glass}	_	2000	8000	

2.13 Flash Specifications

This section provides details about program/erase times and program-erase endurance for the flash memory.

Program and erase operations do not require any special power sources other than the normal V_{DD} supply. For more detailed information about program/erase operations, see the Memory section.

Table 18. Flash Characteristics

С	Characteristic	Symbol	Min	Typical	Max	Unit
D	Supply voltage for program/erase -40 °C to 85 °C	V _{prog/erase}	2.7		5.5	V
D	Supply voltage for read operation	V _{Read}	2.7		5.5	V
D	Internal FCLK frequency ¹	f _{FCLK}	150		200	kHz
D	Internal FCLK period (1/FCLK)	t _{Fcyc}	5		6.67	μS
С	Byte program time (random location) ²	t _{prog}		9		t _{Fcyc}
С	Byte program time (burst mode) ²	t _{Burst}			t _{Fcyc}	
С	Page erase time ²	t _{Page}		4000		t _{Fcyc}
С	Mass erase time ²	t _{Mass}		20,000		t _{Fcyc}
D	Byte program current ³	R _{IDDBP}	_	4	_	mA
D	Page erase current ³	R _{IDDPE}	_	6	_	mA
С	Program/erase endurance ⁴ T_L to $T_H = -40$ °C to + 85 °C $T = 25$ °C		10,000	 100,000		cycles
С	Data retention ⁵	t _{D_ret}	15	100	_	years

The frequency of this clock is controlled by a software setting.

34 Freescale Semiconductor

MC9S08LG32 Series Data Sheet, Rev. 9

These values are hardware state machine controlled. User code does not need to count cycles. This information supplied for calculating approximate time to program and erase.

³ The program and erase currents are additional to the standard run I_{DD} . These values are measured at room temperatures with $V_{DD} = 5.0 \text{ V}$, bus frequency = 4.0 MHz.

⁴ Typical endurance for flash was evaluated for this product family on the 9S12Dx64. For additional information on how Freescale defines typical endurance, please refer to Engineering Bulletin EB619, Typical Endurance for Nonvolatile Memory.

Typical data retention values are based on intrinsic capability of the technology measured at high temperature and de-rated to 25 °C using the Arrhenius equation. For additional information on how Freescale defines typical data retention, please refer to Engineering Bulletin EB618, Typical Data Retention for Nonvolatile Memory.

2.14 EMC Performance

Electromagnetic compatibility (EMC) performance is highly dependant on the environment in which the MCU resides. Board design and layout, circuit topology choices, location and characteristics of external components as well as MCU software operation all play a significant role in EMC performance. The system designer should consult Freescale applications notes such as AN2321, AN1050, AN1263, AN2764, and AN1259 for advice and guidance specifically targeted at optimizing EMC performance.

2.14.1 Radiated Emissions

Microcontroller radiated RF emissions are measured from 150 kHz to 1 GHz using the TEM/GTEM cell method in accordance with the IEC 61967-2 and SAE J1752/3 standards. The measurement is performed with the microcontroller installed on a custom EMC evaluation board while running specialized EMC test software. The radiated emissions from the microcontroller are measured in a TEM cell in two package orientations (North and East).

The maximum radiated RF emissions of the tested configuration in all orientations are less than or equal to the reported emissions levels.

Parameter	Symbol	Conditions	Frequency	f _{osc} /f _{Bus}	Level ¹ (Max)	Unit	
Radiated emissions,	V _{RE_TEM}	$V_{DD} = 5.5$	0.15 – 50 MHz	4 MHz crystal	10	dΒμV	
electric field	lectric field	T _A = +25 °C Package type = 80 LQFP	50 – 150 MHz	16 MHz bus	14		
			80 LQFP	80 LQFP 150 – 500 MHz		8	
			500 – 1000 MHz		5		
			IEC Level		L	_	
			SAE Level		2	_	

Table 19. Radiated Emissions, Electric Field

2.14.2 Conducted Transient Susceptibility

Microcontroller transient conducted susceptibility is measured in accordance with an internal Freescale test method. The measurement is performed with the microcontroller installed on a custom EMC evaluation board and running specialized EMC test software designed in compliance with the test method. The conducted susceptibility is determined by injecting the transient susceptibility signal on each pin of the microcontroller. The transient waveform and injection methodology is based on IEC 61000-4-4 (EFT/B). The transient voltage required to cause performance degradation on any pin in the tested configuration is greater than or equal to the reported levels unless otherwise indicated by footnotes below Table 20.

Parameter	Symbol	Conditions	f _{OSC} /f _{BUS}	Result	Amplitude ¹ (Min)	Unit
Conducted susceptibility, electrical	V _{CS EFT}	V _{DD} = 5.5	4 kHz crystal	Α	>4.0 ²	kV
fast transient/burst (EFT/B)		T _A = +25 °C	4 MHz bus	В	>4.0 ³	
		Package type = 80-pin LQFP		С	>4.0 ⁴	
				D	>4.0	

Table 20. Conducted Susceptibility, EFT/B

Data based on qualification test results.

¹ Data based on qualification test results. Not tested in production.

² Exceptions as covered in footnotes 3 and 4.

Ordering Information

The susceptibility performance classification is described in Table 21.

Table 21. Susceptibility Performance Classification

Result	Performance Criteria				
Α	No failure	The MCU performs as designed during and after exposure.			
В	Self-recovering failure	The MCU does not perform as designed during exposure. The MCU returns automatically to normal operation after exposure is removed.			
С	Soft failure	The MCU does not perform as designed during exposure. The MCU does not return to normal operation until exposure is removed and the RESET pin is asserted.			
D	Hard failure	The MCU does not perform as designed during exposure. The MCU does not return to normal operation until exposure is removed and the power to the MCU is cycled.			
E	Damage	The MCU does not perform as designed during and after exposure. The MCU cannot be returned to proper operation due to physical damage or other permanent performance degradation.			

3 Ordering Information

This section contains ordering information for MC9S08LG32 and MC9S08LG16 devices.

Table 22. Device Numbering System

Device Number ¹	Memory		Tomporeture Benge (°C)	LCD Mode	Aveilable Deeks as 2	
Device Number	FLASH	RAM	Temperature Range (°C)	Operation	Available Packages ²	
			Auto			
S9S08LG32J0CLK	32 KB	1984	-40 °C to +85 °C	Charge Pump	80-pin LQFP	
S9S08LG32J0CLH					64-pin LQFP	
S9S08LG32J0CLF					48-pin LQFP	
S9S08LG32J0VLK	32 KB	1984	-40 °C to +105 °C	Register Bias	80-pin LQFP	
S9S08LG32J0VLH					64-pin LQFP	
S9S08LG32J0VLF					48-pin LQFP	
S9S08LG16J0VLH	18 KB	1984			64-pin LQFP	
S9S08LG16J0VLF					48-pin LQFP	
			IMM			
MC9S08LG32CLK	32 KB	1984	-40 °C to + 85 °C	Charge Pump	80-pin LQFP	
MC9S08LG32CLH					64-pin LQFP	
MC9S08LG32CLF					48-pin LQFP	
MC9S08LG16CLH	18 KB	1984			64-pin LQFP	
MC9S08LG16CLF	1				48-pin LQFP	

See the MC9S08LG32 Reference Manual (document MC9S08LG32RM), for a complete description of modules included on each device.

38

MC9S08LG32 Series Data Sheet, Rev. 9

² See Table 23 for package information.

3.1 Device Numbering System

Example of the device numbering system:

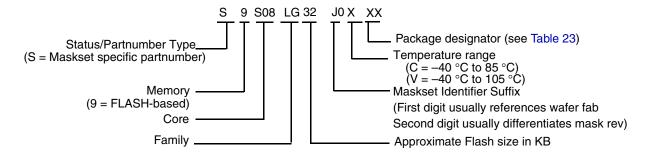


Figure 31. Device Number Example for Auto Parts

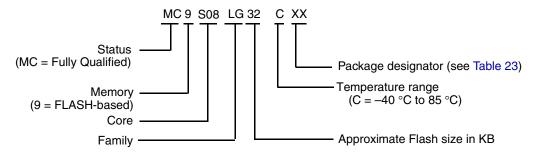


Figure 32. Device Number Example for IMM Parts

4 Package Information

Table 23. Package Descriptions

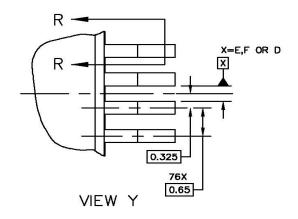
Pin Count	Package Type	Abbreviation	Designator	Case No.	Document No.
80	Low Quad Flat Package	LQFP	LK	917A	98ASS23237W
64	Low Quad Flat Package	LQFP	LH	840F	98ASS23234W
48	Low Quad Flat Package	LQFP	LF	932	98ASH00962A

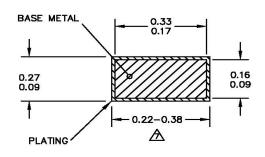
4.1 Mechanical Drawings

The following pages are mechanical drawings for the packages described in Table 23. For the latest available drawings please visit our web site (http://www.freescale.com) and enter the package's document number into the keyword search box.

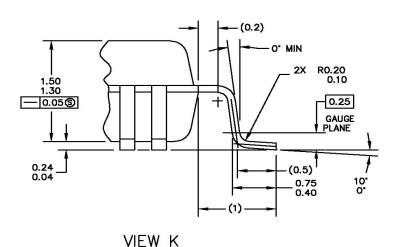
** freescale

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.


ELECTRONIC VERSIONS ARE UNCONTROLLED EXCEPT WHEN ACCESSED
IRECTLY FROM THE DOCUMENT CONTROL REPOSITORY. PRINTED VERSIONS
RE UNCONTROLLED EXCEPT WHEN STAMPED "CONTROLLED COPY" IN RED


MECHANICAL OUTLINES DICTIONARY

DO NOT SCALE THIS DRAWING

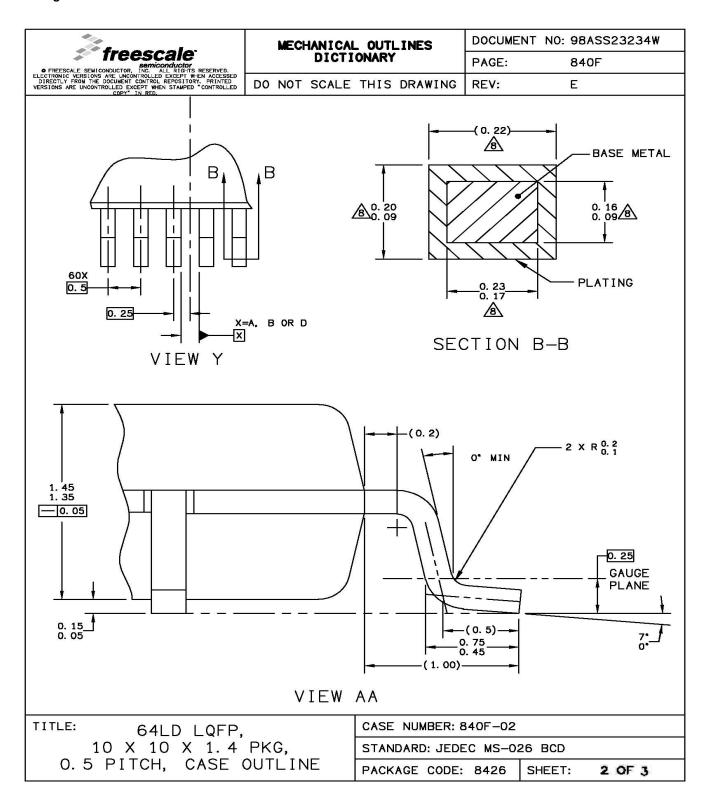

DOCUMENT	NO:	98ASS23237W
----------	-----	-------------

PAGE: 917A REV: E

SECTION R-R ROTATED 90' CW

TITLE:

80 LD LQFP, 14 X 14 PKG, 0.65 MM PITCH, 1.4 THICK


CASE NUMBER: 917A-03

STANDARD: FREESCALE

PACKAGE CODE: 8258 SHEET: 2 OF 3

Package Information

freescale freescale freescale semiconductor, Inc. all rights reserved.	MECHANICAL OUTLINES	DOCUMENT NO: 98ASS23234W		
	DICTIONARY	PAGE: 840F		
ELECTRONIC VERSIONS ARE UNCONTROLLED EXCEPT WHEN ACCESSED DIRECTLY FROM THE DOCUMENT CONTROL REPOSITIORY, PRINTED VERSIONS ARE UNCONTROLLED EXCEPT WHEN STAMPED "CONTROLLED CONTROLLED EXCEPT WHEN STAMPED "CONTROLLED "CONTRO	DO NOT SCALE THIS DRAWING	REV: E		

NOTES:

- 1. DIMENSIONS ARE IN MILLIMETERS.
- 2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.
- 3. DATUMS A, B AND D TO BE DETERMINED AT DATUM PLANE H.

A DIMENSIONS TO BE DETERMINED AT SEATING PLANE C.

THIS DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED THE UPPER LIMIT BY MORE THAN 0.08 mm AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSION AND ADJACENT LEAD SHALL NOT BE LESS THAN 0.07 mm.

THIS DIMENSION DOES NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.25 mm PER SIDE. THIS DIMENSION IS MAXIMUM PLASTIC BODY SIZE DIMENSION INCLUDING MOLD MISMATCH.

A EXACT SHAPE OF EACH CORNER IS OPTIONAL.

A THESE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.1 mm AND 0.25 mm FROM THE LEAD TIP.

TITLE: 64LD LQFP,
10 X 10 X 1. 4 PKG,
0. 5 PITCH, CASE OUTLINE

CASE NUMBER: 840F-02

STANDARD: JEDEC MS-026 BCD

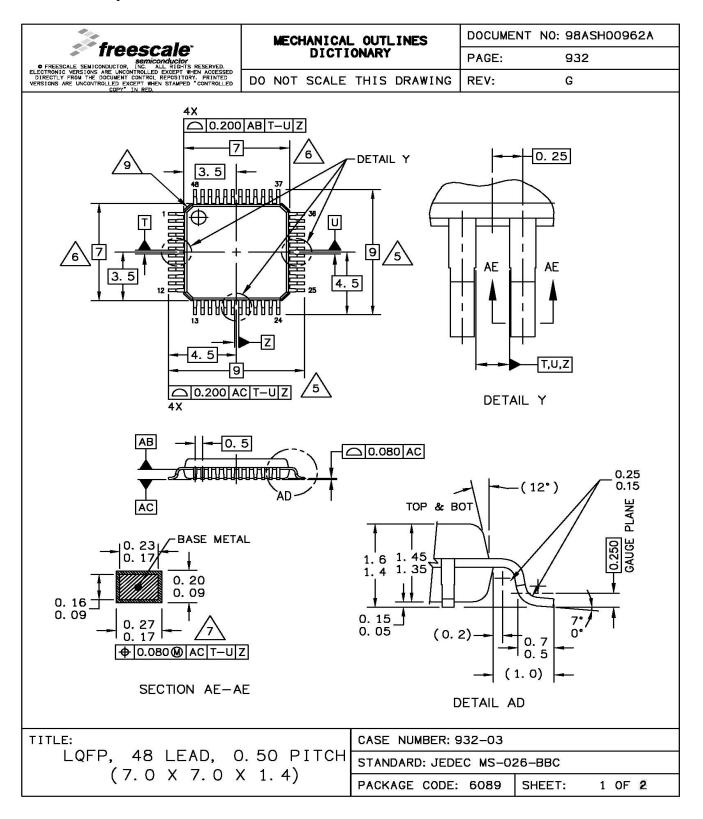

PACKAGE CODE: 8426 SHEET: 3 0F 3

Figure 34. 64-pin LQFP Package Drawing (Case 840F, Doc #98ASS23234W)

Package Information

4.1.3 48-pin LQFP

Revision History

5 Revision History

To provide the most up-to-date information, the revision of our documents on the World Wide Web are the most current. Your printed copy may be an earlier revision. To verify you have the latest information available, refer to:

http://www.freescale.com

The following revision history table summarizes changes contained in this document.

Table 24. Revision History

Revision	Date	Description of Changes
1	8/2008	First Initial release.
2	9/2008	Second Initial Release.
3	11/2008	Alpha Customer Release.
4	2/2009	Launch Release.
5	4/2009	Added EMC Radiated Emission and Transient Susceptibility data in Table 19 and Table 20.
6	4/2009	Updated EMC performance data.
7	8/2009	Updated auto part numbers, changed TCLK, T0CH0, T0CH1, T1CH0, T1CH1, T1CH2, T1CH3, T1CH3, T1CH3, T1CH4, and T1CH5 to TPMCLK, TPM0CH0, TPM0CH1, TPM1CH0, TPM1CH1, TPM1CH2, TPM1CH3, TPM1CH4, and TPM1CH5, and changed the maximum LCD frame frequency to 64 Hz.
8	8/2011	Updated Table "ICS Frequency Specifications (Temperature Range = $-40 \times C$ to $105 \times C$ Ambient)". Changed the value of row 8 column C from C to P.
9	9/2011	Updated Table "ICS Frequency Specifications (Temperature Range = -40 ×C to 105 ×C Ambient)". Removed Footnote from Row 8. Updated the Revision History