

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

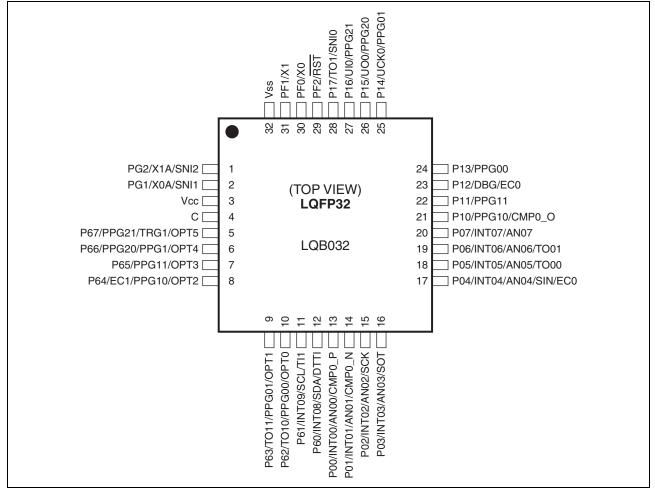
⊡X/EI

Product Status	Obsolete
Core Processor	F ² MC-8FX
Core Size	8-Bit
Speed	16MHz
Connectivity	I ² C, LINbus, SIO, UART/USART
Peripherals	LVD, POR, PWM, WDT
Number of I/O	29
Program Memory Size	36KB (36K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.4V ~ 5.5V
Data Converters	A/D 8x8/10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	32-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb95f636kpmc-g-sne2

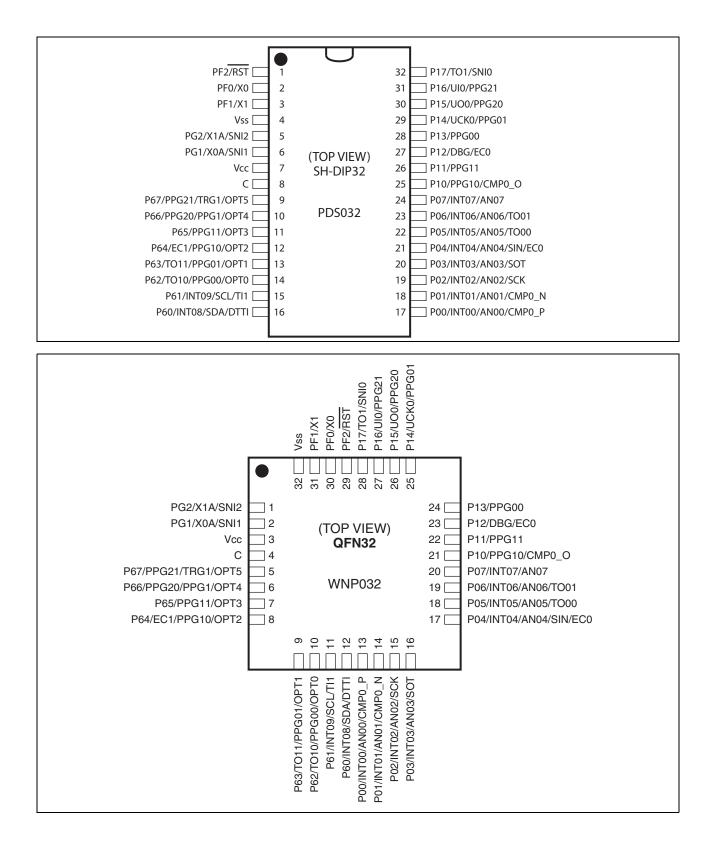
Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Contents


Features 1
1. Product Line-up 3
2. Packages And Corresponding Products
3. Differences Among Products And Notes On Product Selection
4. Pin Assignment 6
5. Pin Functions
6. I/O Circuit Type 12
7. Handling Precautions
7.2 Precautions for Package Mounting
8. Notes On Device Handling 17
9. Pin Connection 18
10. Block Diagram 19
11. CPU Core 20
12. Memory Space 21
13. Areas For Specific Applications 23
14. I/O Map 24

15. I/O Ports	30
15.1 Port 0	31
15.2 Port 1	39
15.3 Port 6	46
15.4 Port F	51
15.5 Port G	53
16. Interrupt Source Table	56
17. Pin States In Each Mode	57
18. Electrical Characteristics	61
18.1 Absolute Maximum Ratings	61
18.2 Recommended Operating Conditions	
18.3 DC Characteristics	
18.4 AC Characteristics	
18.5 A/D Converter	85
18.6 Flash Memory Program/Erase Characteristics	
19. Sample Characteristics	90
20. Mask Options	97
21. Ordering Information	
22. Package Dimension	98
23. Major Changes In This Edition	101
Document History Page	101
Sales, Solutions, and Legal Information	102


The on-chip debug function requires that Vcc, Vss and one serial wire be connected to an evaluation tool. For details of the connection method, refer to "CHAPTER 25 EXAMPLE OF SERIAL PROGRAMMING CONNECTION" in "New 8FX MB95630H Series Hardware Manual".

4. Pin Assignment

Pin no.			I/O			I/O type		
LQFP32*1, QFN32*2	SH-DIP32*3	Pin name	circuit type*4	Function	Input	Output	OD*5	PU*6
		P02		General-purpose I/O port				
		INT02		External interrupt input pin	Hysteresis/			
15	19	AN02	E	8/10-bit A/D converter analog input pin	analog	CMOS		0
		SCK		LIN-UART clock I/O pin				
		P03		General-purpose I/O port				
		INT03		External interrupt input pin	Hysteresis/			
16	20	AN03	E	8/10-bit A/D converter analog input pin	analog	CMOS		0
		SOT		LIN-UART data output pin				
		P04		General-purpose I/O port				
		INT04		External interrupt input pin		CMOS		
17	21	AN04	F	8/10-bit A/D converter analog input pin	CMOS/ analog			0
		SIN		LIN-UART data input pin	analog			
		EC0		8/16-bit composite timer ch. 0 clock input pin				
		P05		General-purpose I/O port		CMOS		
		INT05		External interrupt input pin			_	
18	22	AN05	Е	8/10-bit A/D converter analog input pin	Hysteresis/ analog			0
		TO00		8/16-bit composite timer ch. 0 output pin				
		P06		General-purpose I/O port				
		INT06		External interrupt input pin				
19	23	AN06	Е	8/10-bit A/D converter analog input pin	Hysteresis/ analog	CMOS	—	0
		TO01		8/16-bit composite timer ch. 0 output pin				
		P07		General-purpose I/O port				
20	24	INT07	Е	External interrupt input pin	Hysteresis/	CMOS		0
		AN07	_	8/10-bit A/D converter analog input pin	analog			Ŭ
		P10		General-purpose I/O port				
21	25	PPG10	G	8/16-bit PPG ch. 1 output pin	Hysteresis	CMOS	—	0
		CMP0_O		Comparator digital output pin				

9. Pin Connection

· Treatment of unused pins

If an unused input pin is left unconnected, a component may be permanently damaged due to malfunctions or latchups. Always pull up or pull down an unused input pin through a resistor of at least 2 k Ω . Set an unused input/output pin to the output state and leave it unconnected, or set it to the input state and treat it the same as an unused input pin. If there is an unused output pin, leave it unconnected.

Power supply pins

To reduce unnecessary electro-magnetic emission, prevent malfunctions of strobe signals due to an increase in the ground level, and conform to the total output current standard, always connect the Vcc pin and the Vss pin to the power supply and ground outside the device. In addition, connect the current supply source to the Vcc pin and the Vss pin with low impedance.

It is also advisable to connect a ceramic capacitor of approximately 0.1 μ F as a bypass capacitor between the V_{cc} pin and the V_{ss} pin at a location close to this device.

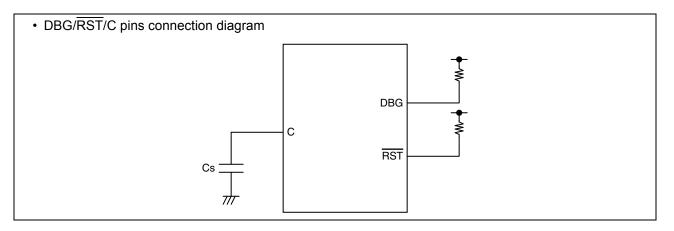
DBG pin

Connect the DBG pin to an external pull-up resistor of 2 k Ω or above.

After power-on, ensure that the DBG pin does not stay at "L" level until the reset output is released.

The DBG pin becomes a communication pin in debug mode. Since the actual pull-up resistance depends on the tool used and the interconnection length, refer to the tool document when selecting a pull-up resistor.

RST pin


Connect the $\overline{\text{RST}}$ pin to an external pull-up resistor of 2 k Ω or above.

To prevent the device from unintentionally entering the reset mode due to noise, minimize the interconnection length between a pull-up resistor and the $\overline{\text{RST}}$ pin and that between a pull-up resistor and the V_{CC} pin when designing the layout of the printed circuit board.

The PF2/RST pin functions as the reset input/output pin after power-on. In addition, the reset output of the PF2/RST pin can be enabled by the RSTOE bit in the SYSC register, and the reset input function and the general-purpose I/O function can be selected by the RSTEN bit in the SYSC register.

• C pin

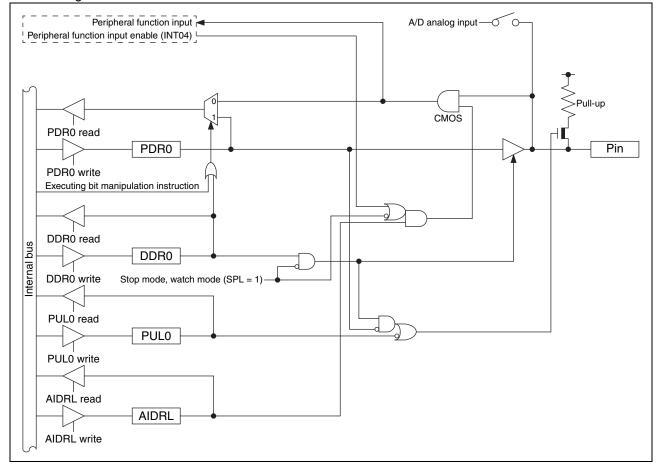
Use a ceramic capacitor or a capacitor with equivalent frequency characteristics. The decoupling capacitor for the V_{CC} pin must have a capacitance equal to or larger than the capacitance of Cs. For the connection to a decoupling capacitor Cs, see the diagram below. To prevent the device from unintentionally entering a mode to which the device is not set to transit due to noise, minimize the distance between the C pin and Cs and the distance between Cs and the Vss pin when designing the layout of a printed circuit board.

Note on serial communication

In serial communication, reception of wrong data may occur due to noise or other causes. Therefore, design a printed

Address	Register abbreviation	Register name	R/W	Initial value
0x0F80	WRARH0	Wild register address setting register (upper) ch. 0	R/W	0b0000000
0x0F81	WRARL0	Wild register address setting register (lower) ch. 0	R/W	0b0000000
0x0F82	WRDR0	Wild register data setting register ch. 0	R/W	0b0000000
0x0F83	WRARH1	Wild register address setting register (upper) ch. 1	R/W	0b0000000
0x0F84	WRARL1	Wild register address setting register (lower) ch. 1	R/W	0b0000000
0x0F85	WRDR1	Wild register data setting register ch. 1	R/W	0b0000000
0x0F86	WRARH2	Wild register address setting register (upper) ch. 2	R/W	0b0000000
0x0F87	WRARL2	Wild register address setting register (lower) ch. 2	R/W	0b0000000
0x0F88	WRDR2	Wild register data setting register ch. 2	R/W	0b0000000
0x0F89 to 0x0F91	_	(Disabled)	_	
0x0F92	T01CR0	8/16-bit composite timer 01 status control register 0	R/W	0b00000000
0x0F93	T00CR0	8/16-bit composite timer 00 status control register 0	R/W	0b0000000
0x0F94	T01DR	8/16-bit composite timer 01 data register	R/W	0b0000000
0x0F95	T00DR	8/16-bit composite timer 00 data register	R/W	0b0000000
0x0F96	TMCR0	8/16-bit composite timer 00/01 timer mode control register	R/W	0b00000000
0x0F97	T11CR0	8/16-bit composite timer 11 status control register 0	R/W	0b00000000
0x0F98	T10CR0	8/16-bit composite timer 10 status control register 0	R/W	0b00000000
0x0F99	T11DR	8/16-bit composite timer 11 data register	R/W	0b0000000
0x0F9A	T10DR	8/16-bit composite timer 10 data register	R/W	0b00000000
0x0F9B	TMCR1	8/16-bit composite timer 10/11 timer mode control register	R/W	0b00000000
0x0F9C	PPS01	8/16-bit PPG01 cycle setting buffer register	R/W	0b11111111
0x0F9D	PPS00	8/16-bit PPG00 cycle setting buffer register	R/W	0b11111111
0x0F9E	PDS01	8/16-bit PPG01 duty setting buffer register	R/W	0b11111111
0x0F9F	PDS00	8/16-bit PPG00 duty setting buffer register	R/W	0b11111111
0x0FA0	PPS11	8/16-bit PPG11 cycle setting buffer register	R/W	0b11111111
0x0FA1	PPS10	8/16-bit PPG10 cycle setting buffer register	R/W	0b11111111
0x0FA2	PDS11	8/16-bit PPG11 duty setting buffer register	R/W	0b11111111
0x0FA3	PDS10	8/16-bit PPG10 duty setting buffer register	R/W	0b11111111
0x0FA4	PPGS	8/16-bit PPG start register	R/W	0b00000000
0x0FA5	REVC	8/16-bit PPG output inversion register	R/W	0b0000000
0x0FA6	PPS21	8/16-bit PPG21 cycle setting buffer register	R/W	0b11111111
0x0FA7	PPS20	8/16-bit PPG20 cycle setting buffer register	R/W	0b11111111

Address	Register abbreviation	Register name	R/W	Initial value
0x0FCE	OPDBRH5	16-bit MPG output data buffer register (upper) ch. 5	R/W	0b0000000
0x0FCF	OPDBRL5	16-bit MPG output data buffer register (lower) ch. 5	R/W	0b0000000
0x0FD0	OPDBRH6	16-bit MPG output data buffer register (upper) ch. 6	R/W	0b0000000
0x0FD1	OPDBRL6	16-bit MPG output data buffer register (lower) ch. 6	R/W	0b0000000
0x0FD2	OPDBRH7	16-bit MPG output data buffer register (upper) ch. 7	R/W	0b0000000
0x0FD3	OPDBRL7	16-bit MPG output data buffer register (lower) ch. 7	R/W	0b0000000
0x0FD4	OPDBRH8	16-bit MPG output data buffer register (upper) ch. 8	R/W	0b0000000
0x0FD5	OPDBRL8	16-bit MPG output data buffer register (lower) ch. 8	R/W	0b0000000
0x0FD6	OPDBRH9	16-bit MPG output data buffer register (upper) ch. 9	R/W	0b0000000
0x0FD7	OPDBRL9	16-bit MPG output data buffer register (lower) ch. 9	R/W	0b0000000
0x0FD8	OPDBRHA	16-bit MPG output data buffer register (upper) ch. A	R/W	0b0000000
0x0FD9	OPDBRLA	16-bit MPG output data buffer register (lower) ch. A	R/W	0b0000000
0x0FDA	OPDBRHB	16-bit MPG output data buffer register (upper) ch. B	R/W	0b0000000
0x0FDB	OPDBRLB	16-bit MPG output data buffer register (lower) ch. B	R/W	0b0000000
0x0FDC	OPDUR	16-bit MPG output data register (upper)	R	0b0000XXXX
0x0FDD	OPDLR	16-bit MPG output data register (lower)	R	0bXXXXXXXX
0x0FDE	CPCUR	16-bit MPG compare clear register (upper)	R/W	0bXXXXXXXX
0x0FDF	CPCLR	16-bit MPG compare clear register (lower)	R/W	0bXXXXXXXX
0x0FE0, 0x0FE1	—	(Disabled)	_	—
0x0FE2	TMBUR	16-bit MPG timer buffer register (upper)	R	0bXXXXXXXX
0x0FE3	TMBLR	16-bit MPG timer buffer register (lower)	R	0bXXXXXXXX
0x0FE4	CRTH	Main CR clock trimming register (upper)	R/W	0b000XXXXX
0x0FE5	CRTL	Main CR clock trimming register (lower)	R/W	0b000XXXXX
0x0FE6		(Disabled)	—	—
0x0FE7	CRTDA	Main CR clock temperature dependent adjustment register	R/W	0b000XXXXX
0x0FE8	SYSC	System configuration register	R/W	0b11000011
0x0FE9	CMCR	Clock monitoring control register	R/W	0b0000000
0x0FEA	CMDR	Clock monitoring data register	R	0b0000000
0x0FEB	WDTH	Watchdog timer selection ID register (upper)	R	0bXXXXXXXX
0x0FEC	WDTL	Watchdog timer selection ID register (lower)	R	0bXXXXXXXX
0x0FED, 0x0FEE	_	(Disabled)	_	_
0x0FEF	WICR	Interrupt pin selection circuit control register	R/W	0b01000000
0x0FF0 to 0x0FFF	_	(Disabled)	_	_



P04/INT04/AN04/SIN/EC0 pin

This pin has the following peripheral functions:

- External interrupt circuit input pin (INT04)
- 8/10-bit A/D converter analog input pin (ÁN04)
- LIN-UART data input pin (SIN)
- 8/16-bit composite timer ch. 0 clock input pin (EC0)

Block diagram of P04/INT04/AN04/SIN/EC0

15.2 Port 1

Port 1 is a general-purpose I/O port. This section focuses on its functions as a general-purpose I/O port. For details of peripheral functions, refer to their respective chapters in "New 8FX MB95630H Series Hardware Manual".

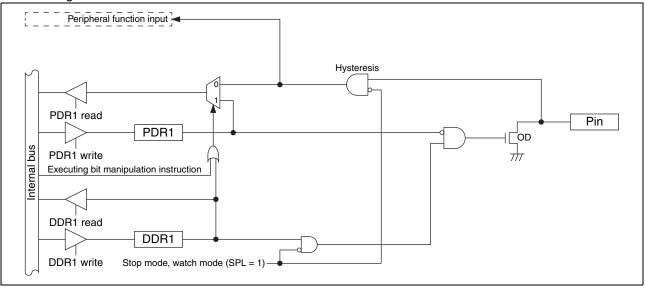
15.2.1 Port 1 configuration

- Port 1 is made up of the following elements.
- · General-purpose I/O pins/peripheral function I/O pins
- Port 1 data register (PDR1)
- Port 1 direction register (DDR1)
- Port 1 pull-up register (PUL1)

15.2.2 Block diagrams of port 1

- P10/PPG10/ČMP0_O pin
 - This pin has the following peripheral functions:
 - 8/16-bit PPG ch. 1 output pin (PPG10)
 - Comparator digital output pin (CMP0_O)
- P11/PPG11 pin
 - This pin has the following peripheral function:
 - 8/16-bit PPG ch. 1 output pin (PPG11)
- P13/PPG00 pin
 - This pin has the following peripheral function:
 - 8/16-bit PPG ch. 0 output pin (PPG00)
- P15/UO0/PPG20 pin

This pin has the following peripheral functions:


- UART/SIO ch. 0 data output pin (UO0)
- 8/16-bit PPG ch. 2 output pin (PPG20)

- P12/DBG/EC0 pin
 - This pin has the following peripheral functions:
 - DBG input pin (DBG)
 - 8/16-bit composite timer ch. 0 clock input pin (EC0)

Block diagram of P12/DBG/EC0

• P14/UCK0/PPG01 pin

- This pin has the following peripheral functions:
- UART/SIO ch. 0 clock I/O pin (UCK0)
- 8/16-bit PPG ch. 0 output pin (PPG01)

to "0".

- Reading the PDR1 register returns the pin value, regardless of whether the peripheral function uses that pin as its input pin. However, if the read-modify-write (RMW) type of instruction is used to read the PDR1 register, the PDR1 register value is returned.
- Operation at reset

If the CPU is reset, all bits in the DDR1 register are initialized to "0" and port input is enabled.

- Operation in stop mode and watch mode
 - If the pin state setting bit in the standby control register (STBC:SPL) is set to "1" and the device transits to stop
 mode or watch mode, the pin is compulsorily made to enter the high impedance state regardless of the DDR1 register value. The input of that pin is locked to "L" level and blocked in order to prevent leaks due to input open. However, if the interrupt input of P14/UCK0 and P16/UI0 is enabled by the external interrupt control register ch. 0
 (EIC00) of the external interrupt circuit and the interrupt pin selection circuit control register (WICR) of the interrupt
 pin selection circuit, the input is enabled and is not blocked.
 - If the pin state setting bit is "0", the state of the port I/O or that of the peripheral function I/O remains unchanged and the output level is maintained.

• Operation of the pull-up register

Setting the bit in the PUL1 register to "1" makes the pull-up resistor be internally connected to the pin. When the pin output is "L" level, the pull-up resistor is disconnected regardless of the value of the PUL1 register.

15.3 Port 6

Port 6 is a general-purpose I/O port. This section focuses on its functions as a general-purpose I/O port. For details of peripheral functions, refer to their respective chapters in "New 8FX MB95630H Series Hardware Manual".

15.3.1 Port 6 configuration

Port 6 is made up of the following elements.

- General-purpose I/O pins/peripheral function I/O pins
- Port 6 data register (PDR6)
- Port 6 direction register (DDR6)
- Port 6 pull-up register (PUL6)

15.3.2 Block diagrams of port 6

P60/INT08/SDA/DTTI pin

This pin has the following peripheral functions:

- External interrupt circuit input pin (INT08)
- I²C bus interface ch. 0 data I/O pin (SDA)
- MPG waveform sequencer input pin (DTTI)

P61/INT09/SCL/TI1 pin

This pin has the following peripheral functions:

- External interrupt circuit input pin (INT09)
- I²C bus interface ch. 0 clock I/O pin (SCL)
- 16-bit reload timer ch. 1 input pin (TI1)

- Operation as an input port
 - A pin becomes an input port if the bit in the DDRF register corresponding to that pin is set to "0".
 - For a pin shared with other peripheral functions, disable the output of such peripheral functions.
 - If data is written to the PDRF register, the value is stored in the output latch but is not output to the pin set as an input port.
 - Reading the PDRF register returns the pin value. However, if the read-modify-write (RMW) type of instruction is used to read the PDRF register, the PDRF register value is returned.
- · Operation at reset

If the CPU is reset, all bits in the DDRF register are initialized to "0" and port input is enabled.

- · Operation in stop mode and watch mode
 - If the pin state setting bit in the standby control register (STBC:SPL) is set to "1" and the device transits to stop mode or watch mode, the pin is compulsorily made to enter the high impedance state regardless of the DDRF register value. The input of that pin is locked to "L" level and blocked in order to prevent leaks due to input open.
 - If the pin state setting bit is "0", the state of the port I/O or that of the peripheral function I/O remains unchanged and the output level is maintained.

15.5 Port G

Port G is a general-purpose I/O port. This section focuses on its functions as a general-purpose I/O port. For details of peripheral functions, refer to their respective chapters in "New 8FX MB95630H Series Hardware Manual".

15.5.1 Port G configuration

- Port G is made up of the following elements.
- · General-purpose I/O pins/peripheral function I/O pins
- Port G data register (PDRG)
- Port G direction register (DDRG)
- Port G pull-up register (PULG)

15.5.2 Block diagram of port G

PG1/X0A/SNI1 pin

This pin has the following peripheral functions:

- Subclock input oscillation pin (X0A)
- Trigger input pin for the position detection function of the MPG waveform sequencer (SNI1)
- PG2/X1A/SNI2 pin
 - This pin has the following peripheral functions:
 - Subclock I/O oscillation pin (X1A)
 - Trigger input pin for the position detection function of the MPG waveform sequencer (SNI2)

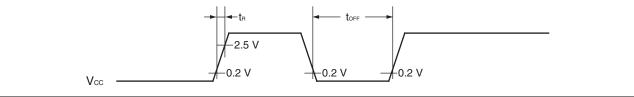
- If data is written to the PDRG register, the value is stored in the output latch and is output to the pin set as an output port as it is.
- Reading the PDRG register returns the PDRG register value.
- Operation as an input port
 - A pin becomes an input port if the bit in the DDRG register corresponding to that pin is set to "0".
 - For a pin shared with other peripheral functions, disable the output of such peripheral functions.
 - If data is written to the PDRG register, the value is stored in the output latch but is not output to the pin set as an input port.
 - Reading the PDRG register returns the pin value. However, if the read-modify-write (RMW) type of instruction is used to read the PDRG register, the PDRG register value is returned.
- Operation as a peripheral function input pin
 - To set a pin as an input port, set the bit in the DDRG register corresponding to the input pin of a peripheral function to "0".
 - Reading the PDRG register returns the pin value, regardless of whether the peripheral function uses that pin as its input pin. However, if the read-modify-write (RMW) type of instruction is used to read the PDRG register, the PDRG register value is returned.
- · Operation at reset

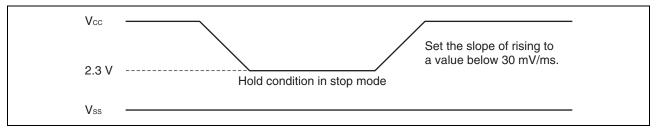
If the CPU is reset, all bits in the DDRG register are initialized to "0" and port input is enabled.

- Operation in stop mode and watch mode
 - If the pin state setting bit in the standby control register (STBC:SPL) is set to "1" and the device transits to stop mode or watch mode, the pin is compulsorily made to enter the high impedance state regardless of the DDRG register value. The input of that pin is locked to "L" level and blocked in order to prevent leaks due to input open.
 - If the pin state setting bit is "0", the state of the port I/O or that of the peripheral function I/O remains unchanged and the output level is maintained.
- Operation of the pull-up register

Setting the bit in the PULG register to "1" makes the pull-up resistor be internally connected to the pin. When the pin output is "L" level, the pull-up resistor is disconnected regardless of the value of the PULG register.

16. Interrupt Source Table

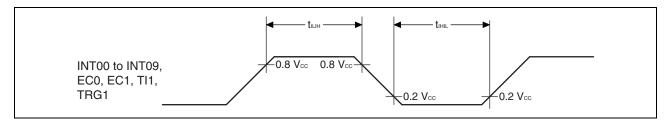

	Interrupt		r table ress		pt level register	Priority order of interrupt sources
Interrupt source	request number	Upper	Lower	Register	Bit	of the same level (occurring simultaneously)
External interrupt ch. 0	IRQ00	0xFFFA	0xFFFB	ILR0	L00 [1:0]	High
External interrupt ch. 4			UNITID	ILINU	200[1.0]	
External interrupt ch. 1	IRQ01	0xFFF8	0xFFF9	ILR0	L01 [1:0]	T
External interrupt ch. 5	integer				201[1.0]	
External interrupt ch. 2	IRQ02	0xFFF6	0xFFF7	ILR0	L02 [1:0]	
External interrupt ch. 6	II (QUZ				202 [1.0]	
External interrupt ch. 3	IRQ03	0xFFF4	0xFFF5	ILR0	L03 [1:0]	
External interrupt ch. 7	11/000		0/1113	ILINU	203 [1.0]	
UART/SIO ch. 0	IRQ04	0xFFF2	0xFFF3	ILR1	L04 [1:0]	
MPG (DTTI)			0/1113		204[1.0]	
8/16-bit composite timer ch. 0	IRQ05	0xFFF0	0xFFF1	ILR1	L05 [1:0]	
(lower)	11/000				203[1.0]	
8/16-bit composite timer ch. 0	IRQ06	0xFFEE	0xFFEF	ILR1	L06 [1:0]	
(upper)		UXFFEE	UXFFEF		200[1.0]	
LIN-UART (reception)	IRQ07	0xFFEC	0xFFED	ILR1	L07 [1:0]	
LIN-UART (transmission)	IRQ08	0xFFEA	0xFFEB	ILR2	L08 [1:0]	
8/16-bit PPG ch. 1 (lower)	IRQ09	0xFFE8	0xFFE9	ILR2	L09 [1:0]	
8/16-bit PPG ch. 1 (upper)	IRQ10	0xFFE6	0xFFE7	ILR2	L10 [1:0]	
8/16-bit PPG ch. 2 (upper)	IRQ11	0xFFE4	0xFFE5	ILR2	L11 [1:0]	
8/16-bit PPG ch. 0 (upper)	IRQ12	0xFFE2	0xFFE3	ILR3	L12 [1:0]	
8/16-bit PPG ch. 0 (lower)	IRQ13	0xFFE0	0xFFE1	ILR3	L13 [1:0]	
8/16-bit composite timer ch. 1						
(upper)	IRQ14	0xFFDE	0xFFDF	ILR3	L14 [1:0]	
8/16-bit PPG ch. 2 (lower)	IRQ15	0xFFDC	0xFFDD	ILR3	L15 [1:0]	
16-bit reload timer ch. 1						
MPG (write timing/compare clear)	IRQ16	0xFFDA	0xFFDB	ILR4	L16 [1:0]	
I ² C bus interface						
16-bit PPG timer ch. 1						
MPG (position detection/compare	IRQ17	0xFFD8	0xFFD9	ILR4	L17 [1:0]	
interrupt)						
8/10-bit Á/D converter	IRQ18	0xFFD6	0xFFD7	ILR4	L18 [1:0]	
Time-base timer	IRQ19	0xFFD4		ILR4	L19 [1:0]	
Watch prescaler						
Comparator	IRQ20	0xFFD2	0xFFD3	ILR5	L20 [1:0]	
External interrupt ch. 8	IDCC		0 FFD /		1.04.54.65	
External interrupt ch. 9	IRQ21	0xFFD0	0xFFD1	ILR5	L21 [1:0]	
8/16-bit composite timer ch. 1	IDCCC				1 00 14 07	
(lower)	IRQ22	0xFFCE	0xFFCF	ILR5	L22 [1:0]	
Flash memory	IRQ23	0xFFCC	0xFFCD	ILR5	L23 [1:0]	Low


18.4.4 Power-on Reset

 $(V_{SS} = 0.0 V, T_A = -40^{\circ}C to +85^{\circ}C)$

Ol Condition	Condition				
		Min	Max	Unit	Remarks
			50	ms	
		1		ms	Wait time until power-on
			1		

Note: A sudden change of power supply voltage may activate the power-on reset function. When changing the power supply voltage during the operation, set the slope of rising to a value below within 30 mV/ms as shown below.

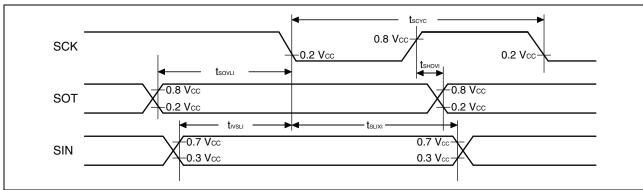


18.4.5 Peripheral Input Timing

(Vcc = 5.0 V \pm 10%, Vss = 0.0 V, T_A = -40°C to +85°C)

Parameter	Symbol	Pin name	Va	lue	Unit
Farameter	Symbol	FIII IIailie	Min	Мах	Unit
Peripheral input "H" pulse width	tı∟ıн	INT00 to INT09, EC0, EC1, TI1,	2 t MCLK*		ns
Peripheral input "L" pulse width	tını∟	TRG1	2 t MCLK*		ns

*: See "Source Clock/Machine Clock" for tMCLK.


Sampling is executed at the rising edge of the sampling clock*1, and serial clock delay is enabled*2. (ESCR register : SCES bit = 0, ECCR register : SCDE bit = 1)

Parameter	Symbol Pin nam		Condition	Va	Unit	
Parameter	Symbol	Pin name	Condition	Min	Max	– Unit
Serial clock cycle time	tscyc	SCK		5 tmclk*3	—	ns
$SCK^{\uparrow} \to SOT$ delay time	t shovi	SCK, SOT	Internal clock	-50	+50	ns
Valid SIN $ ightarrow$ SCK \downarrow	tivsli		operation output pin: $C_{L} = 80 \text{ pF} + 1 \text{ TTL}$	tмськ*3 + 80	—	ns
$SCK{\downarrow}{ o}$ valid SIN hold time	tslixi	SCK, SIN		0	—	ns
$SOT o SCK {\downarrow} delay$ time	tsovli	SCK, SOT		3 t мськ* ³ – 70	—	ns

*1: There is a function used to choose whether the sampling of reception data is performed at a rising edge or a falling edge of the serial clock.

*2: The serial clock delay function is a function used to delay the output signal of the serial clock for half the clock.

*3: See "Source Clock/Machine Clock" for tMCLK.

Sampling is executed at the falling edge of the sampling clock*1, and serial clock delay is enabled*2. (ESCR register : SCES bit = 1, ECCR register : SCDE bit = 1)

(Vcc = 5.0 V±10%, Vss = 0.0 V, T_A = -40°C to +85°C)

 $(V_{CC} = 5.0 V \pm 10\%, V_{SS} = 0.0 V, T_{A} = -40^{\circ}C to +85^{\circ}C)$

Parameter	Symbol Pin name		Condition	Va	Unit	
Farameter	Symbol	Fininame	Condition	Min	Мах	Unit
Serial clock cycle time	tscyc	SCK		5 tмськ* ³	_	ns
$SCK\!\!\downarrow ightarrow SOT$ delay time	tslovi	SCK, SOT	Internal clock	-50	+50	ns
Valid SIN $ ightarrow$ SCK \uparrow	t ivshi		operation output pin:	tмськ*3 + 80	_	ns
$SCK^{\uparrow} \to valid SIN hold time$	t shixi	SCK, SIN	C∟ = 80 pF + 1 TTL	0	_	ns
$SOT o SCK^{\uparrow}delay$ time	tsovнi	SCK, SOT		3tMCLK*3 - 70	_	ns

*1: There is a function used to choose whether the sampling of reception data is performed at a rising edge or a falling edge of the serial clock.

*2: The serial clock delay function is a function used to delay the output signal of the serial clock for half the clock.

*3: See "Source Clock/Machine Clock" for tMCLK.

(Continued)

	Querry Pin			Value*2			
Parameter	Symbol	name	Condition	Min	Max	Unit	Remarks
START condition detection	thd;sta	SCL, SDA		2 tмськ – 20	_	ns	No START condition is detected when 1 tмс∟к is used at reception.
STOP condition detection	tsu;sto	SCL, SDA		2 tмськ – 20	_	ns	No STOP condition is detected when 1 tMCLK is used at reception.
RESTART condition detection condition	tsu;sta	SCL, SDA	R = 1.7 kΩ, C = 50 pF*1	2 tмськ – 20	_	ns	No RESTART condition is detected when 1 tmclκ is used at reception.
Bus free time	t BUF	SCL, SDA	C = 50 pr ·	2 tmclk – 20	_	ns	At reception
Data hold time	t hd;dat	SCL, SDA	SDA SCL, SDA SCL, SDA SCL,	2 tmclk – 20	_	ns	At slave transmission mode
Data setup time	tsu;dat	SCL, SDA		$t_{\text{LOW}} - 3 t_{\text{MCLK}} - 20$	_	ns	At slave transmission mode
Data hold time	t hd;dat	SCL, SDA		0		ns	At reception
Data setup time	t su;dat	SCL, SDA		tмськ – 20	_	ns	At reception
SDA↓ → SCL↑ (with wakeup function in use)	twakeup	SCL, SDA		Oscillation stabilization wait time +2 tмськ – 20	_	ns	

(Vcc = 5.0 V±10%, Vss = 0.0 V, T_A = -40°C to +85°C)

*1: R represents the pull-up resistor of the SCL and SDA lines, and C the load capacitor of the SCL and SDA lines.

*2: • See "Source Clock/Machine Clock" for tMCLK.

• m represents the CS[4:3] bits in the I²C clock control register ch. 0 (ICCR0).

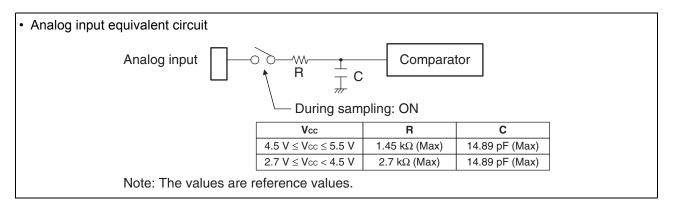
• n represents the CS[2:0] bits in the I²C clock control register ch. 0 (ICCR0).

- The actual timing of the I²C bus interface is determined by the values of m and n set by the machine clock (tmcLk) and the CS[4:0] bits in the ICCR0 register.
- Standard-mode:

m and n can be set to values in the following range: $0.9 \text{ MHz} < t_{\text{MCLK}}$ (machine clock) < 16.25 MHz. The usable frequencies of the machine clock are determined by the settings of m and n as shown below.

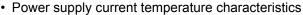
	(m, n) = (1, 8)	: 0.9 MHz < t _{MCLK} \leq 1 MHz
	(m, n) = (1, 22), (5, 4), (6, 4), (7, 4), (8, 4)	: 0.9 MHz < t _{MCLK} \leq 2 MHz
	(m, n) = (1, 38), (5, 8), (6, 8), (7, 8), (8, 8)	: 0.9 MHz < t _{MCLK} \leq 4 MHz
	(m, n) = (1, 98), (5, 22), (6, 22), (7, 22)	: 0.9 MHz < t _{MCLK} \leq 10 MHz
	(m, n) = (8, 22)	: 0.9 MHz < tмс∟к ≤ 16.25 MHz
•	Fast-mode:	
	m and n can be set to values in the following	range: 3.3 MHz < tMCLK (machine clock) < 16.25 MHz.
	The usable frequencies of the machine clock	are determined by the settings of m and n as shown below.
	(m, n) = (1, 8)	: 3.3 MHz < t _{MCLK} \leq 4 MHz
	(m, n) = (1, 22), (5, 4)	: 3.3 MHz < tмс∟к ≤ 8 MHz
	(m, n) = (1, 38), (6, 4), (7, 4), (8, 4)	: 3.3 MHz < tмс∟к ≤ 10 MHz
	(m, n) = (5, 8)	: 3.3 MHz < tмс∟к ≤ 16.25 MHz

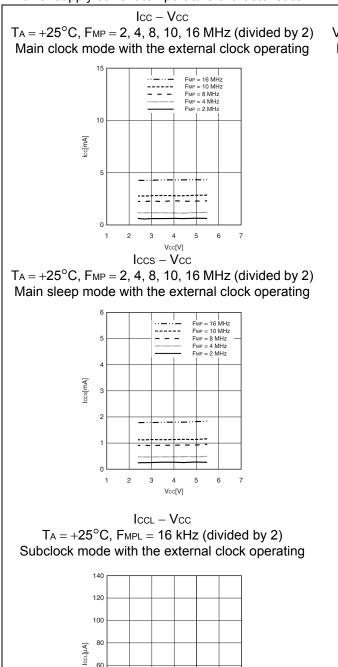
18.5 A/D Converter

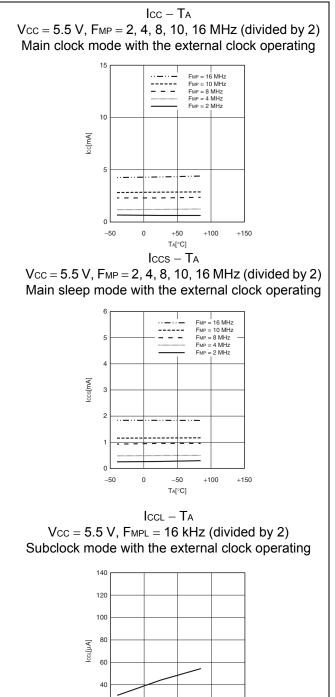

18.5.1 A/D Converter Electrical Characteristics

_		Value				Remarks
Parameter	Symbol	Min Typ Max		Unit		
Resolution		—		10	bit	
Total error		-3		+3	LSB	
Linearity error	—	-2.5	—	+2.5	LSB	
Differential linearity error		-1.9	—	+1.9	LSB	
Zero transition voltage	Vот	Vss – 1.5 LSB	Vss + 0.5 LSB	Vss + 2.5 LSB	V	
Full-scale transition voltage	Vfst	Vcc – 4.5 LSB	Vcc – 2 LSB	Vcc + 0.5 LSB	V	
Compare time	—	3	—	10	μs	$2.7~V \le Vcc \le 5.5~V$
Sampling time	_	0.941	_	œ	μs	$2.7 V \le V_{CC} \le 5.5 V$, with external impedance < $3.3 k\Omega$ and external capacitance = 10 pF
Analog input current	Iain	-0.3		+0.3	μA	
Analog input voltage	VAIN	Vss		Vcc	V	

18.5.2 Notes on Using A/D Converter


• External impedance of analog input and its sampling time


The A/D converter of the MB95630H Series has a sample and hold circuit. If the external impedance is too high to keep sufficient sampling time, the analog voltage charged to the capacitor of the internal sample and hold circuit is insufficient, adversely affecting A/D conversion precision. Therefore, to satisfy the A/D conversion precision standard, considering the relationship between the external impedance and minimum sampling time, either adjust the register value and operating frequency or decrease the external impedance so that the sampling time is longer than the minimum value. In addition, if sufficient sampling time cannot be secured, connect a capacitor of about 0.1 μ F to the analog input pin.



19. Sample Characteristics

20

0

-50

0

+50

T_A[°C]

+100

+150

60

40

20

0

1 2 3 4 5 6 7

Vcc[V]

Document History Page

Revision	ECN	002-04627 Orig. of	Submission	Description of Change	
	2011	Change	Date		
**	-	AKIH	06/07/2013	Migrated to Cypress and assigned document number 002-04627. No change to document contents or format.	
*A	5193921	AKIH	03/29/2016	Updated to Cypress template Added "MB95F636KPMC-G-UNE2" in "Ordering Information"	
*В	5443796	HTER	02/06/2017	Changed three package codes as the following from "FPT-32P-M30" to "LQB032" from "LCC-32P-M19" to "WNP032" in chapter: 1.Product Line-up (Page 5) 2.Packages And Corresponding Products (Page 5) 4.Pin Assignment (Page 6, 7) 5.Pin Functions (Page 11) 21.Ordering Information (Page 97) 28.Package Dimensions (Page 98 to 100). Added three Part numbers - MB95F633KPMC-G-UNE2 - MB95F633KPMC-G-UNE2 in chapter 21.Ordering Information (Page 97). Deleted four Part numbers - MB95F632KPMC-G-SNE2 - MB95F633KPMC-G-SNE2 - MB95F634KPMC-G-SNE2 - MB95F634KPMC-G-SNE2 - MB95F636KPMC-G-SNE2 - MB95F636KPMC-G-SNE2 in chapter 21.Ordering Information (Page 97).	
*C	5746267	AESATP12	05/23/2017	Updated logo and copyright.	
*D	5895915	HUAL	09/27/2017	Added Part number "MB95F633HPMC-G-UNERE2" and Packing information Modified from "MB95F634HPMC-G-SNE2" to "MB95F634HPMC-G-UNE2" in 21.Ordering Information (Page 97)	