

Welcome to E-XFL.COM

Embedded - Microcontrollers - Application Specific: Tailored Solutions for Precision and Performance

Embedded - Microcontrollers - Application Specific

represents a category of microcontrollers designed with unique features and capabilities tailored to specific application needs. Unlike general-purpose microcontrollers, application-specific microcontrollers are optimized for particular tasks, offering enhanced performance, efficiency, and functionality to meet the demands of specialized applications.

What Are <u>Embedded - Microcontrollers -</u> <u>Application Specific</u>?

Application enacific microcontrollars are angineered to

Details

Details	
Product Status	Obsolete
Applications	USB Type C
Core Processor	ARM® Cortex®-M0
Program Memory Type	FLASH (128kB)
Controller Series	-
RAM Size	8K x 8
Interface	I ² C, SPI, UART/USART, USB
Number of I/O	16
Voltage - Supply	2.7V ~ 21.5V
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	40-UFQFN Exposed Pad
Supplier Device Package	40-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cypd3121-40lqxi

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

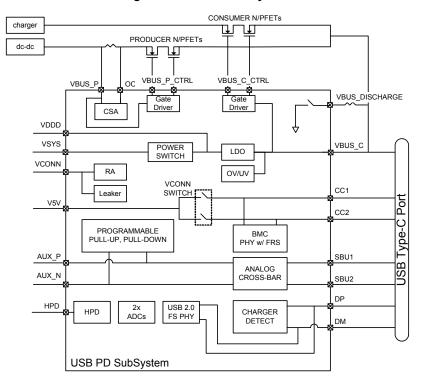
EZ-PD™ CCG3


Contents

EZ-PD CCG3 Block Diagram	4
Functional Overview	5
CPU and Memory Subsystem	5
Crypto Block	
Integrated Billboard Device	5
USB-PD Subsystem (USBPD SS)	
Full-Speed USB Subsystem	
Peripherals	6
GPIO	7
Power Systems Overview	8
Pinouts	9
Available Firmware and Software Tools	13
EZ-PD Configuration Utility	13
CCG3 Programming and Bootloading	
Programming the Device Flash over SWD	
Interface	14
Application Firmware Update over Specific	
Interfaces (I2C, CC, USB)	14
Applications	

Electrical Specifications	23
Absolute Maximum Ratings	23
Device-Level Specifications	24
Digital Peripherals	26
System Resources	28
Ordering Information	34
Ordering Code Definitions	34
Packaging	35
Acronyms	38
Document Conventions	39
Units of Measure	39
References and Links to Applications Collaterals	40
Document History Page	41
Sales, Solutions, and Legal Information	45
Worldwide Sales and Design Support	45
Products	
PSoC® Solutions	45
Cypress Developer Community	45
Technical Support	45

EZ-PD CCG3 Block Diagram



The OV/UV (Over-Voltage/Under-Voltage) block monitors the VBUS_C supply for programmable over-voltage and under-voltage conditions. The CSA amplifies the voltage across an external sense resistor, which is proportional to the current being drawn from the external DC-DC VBUS supply converter. The CSA output can either be measured with an ADC or configured to detect an over-current condition. The VBUS_P and VBUS_C gate drivers control the gates of external power FETs for the VBUS_C and VBUS_P supplies. The gate drivers can be configured to support both P and N type external power FETs. The gate drivers are configured by default for nFET devices. In applications using pFETs, the gate drivers must be appropriately configured. The OV/UV and CSA blocks can generate interrupts to automatically turn off the power FETs for the VBUS_C

discharge switch allows for discharging the VBUS_C line through an external resistor.

The USB-PD sub-system also contains two 8-bit Successive Approximation Register (SAR) ADCs for analog to digital conversions. Each ADC includes an 8-bit DAC and a comparator. The DAC output forms the positive input of the comparator. The negative input of the comparator is from a 4-input multiplexer. The four inputs of the multiplexer are a pair of global analog multiplex busses, an internal bandgap voltage and an internal voltage proportional to the absolute temperature. Each GPIO pin can be connected to the global Analog Multiplex Busses through a switch, which allows either ADC to sample the pin voltage. When sensing the GPIO pin voltage with an ADC, the pin voltage cannot exceed the VDDD or VDDIO supply values.

Figure 2. USB-PD Subsystem

Full-Speed USB Subsystem

The FSUSB subsystem contains a full speed USB device controller as described in the Integrated Billboard Device section.

Peripherals

Serial Communication Blocks (SCB)

EZ-PD CCG3 has four SCBs, which can be configured to implement an I²C, SPI, or UART interface. The hardware I²C blocks implement full multi-master and slave interfaces capable of multimaster arbitration. In the SPI mode, the SCB blocks can be configured to act as master or slave.

In the I²C mode, the SCB blocks are capable of operating at speeds of up to 1 Mbps (Fast Mode Plus) and have flexible buffering options to reduce interrupt overhead and latency for the CPU. These blocks also support I²C that creates a mailbox address range in the memory of EZ-PD CCG3 and effectively reduce I²C communication to reading from and writing to an array in memory. In addition, the blocks support 8-deep FIFOs for receive and transmit which, by increasing the time given for the CPU to read data, greatly reduce the need for clock stretching caused by the CPU not having read data on time.

The I^2C peripherals are compatible with the I^2C Standard-mode, Fast-mode, and Fast-mode Plus devices as defined in the NXP I^2C -bus specification and user manual (UM10204).

The I²C bus I/Os are implemented with GPIO in open-drain modes.

The I^2C port on SCB 1-3 blocks of EZ-PD CCG3 are not completely compliant with the I^2C specification in the following aspects:

- The GPIO cells for SCB 1's I²C port are not overvoltage-tolerant and, therefore, cannot be hot-swapped or powered up independently of the rest of the I²C system.
- Fast-mode Plus has an I_{OL} specification of 20 mA at a V_{OL} of 0.4V. The GPIO cells can sink a maximum of 8-mA I_{OL} with a V_{OL} maximum of 0.6V.
- Fast-mode and Fast-mode Plus specify minimum Fall times, which are not met with the GPIO cell; Slow strong mode can help meet this spec depending on the bus load.

Timer/Counter/PWM Block (TCPWM)

EZ-PD CCG3 has four TCPWM blocks. Each implements a 16-bit timer, counter, pulse-width modulator (PWM), and quadrature decoder functionality.

GPIO

EZ-PD CCG3 has up to 20 GPIOs (these GPIOs can be configured for GPIOs, SCB, SBU, and Aux signals) and SWD pins, which can also be used as GPIOs. The I^2C pins from SCB 0 are overvoltage-tolerant.

The GPIO block implements the following:

- Seven drive strength modes:
 - Input only
 - Weak pull-up with strong pull-down
 - Strong pull-up with weak pull-down
 - $\ensuremath{\square}$ Open drain with strong pull-down
 - Open drain with strong pull-up
 - □ Strong pull-up with strong pull-down
 - Weak pull-up with weak pull-down
- Input threshold select (CMOS or LVTTL)
- Individual control of input and output buffer enabling/disabling in addition to the drive strength modes
- Hold mode for latching previous state (used for retaining I/O state in Deep Sleep mode)
- Selectable slew rates for dV/dt related noise control to improve EMI

During power-on and reset, the I/O pins are forced to the disable state so as not to crowbar any inputs and/or cause excess turn-on current. A multiplexing network known as a high-speed I/O matrix is used to multiplex between various signals that may connect to an I/O pin.

Power Systems Overview

Figure 3 shows an overview of the power system requirement for CCG3. CCG3 shall be able to operate from two possible external supply sources VBUS (4.0 V–21.5 V) or VSYS (2.7 V–5.5 V). The VBUS supply is regulated inside the chip with a low-dropout regulator (LDO) down to 3.3 V level. The chip's internal VDDD rail is intelligently switched between the output of the VBUS regulator and unregulated VSYS. The switched supply, VDDD is either used directly inside some analog blocks or further regulated down to VCCD which powers majority of the core using

regulators. Besides Reset mode, CCG3 has three different power modes: Active, Sleep and Deep Sleep, transitions between which are managed by the Power System. A separate power domain VDDIO is provided for the GPIOs. The VDDD and VCCD pins, both the output of regulators are brought out for connecting a 1- μ F capacitor for the regulator stability only. These pins are not supported as power supplies. When CCG3 is powered from VSYS that is greater than 3.3 V, the dedicated USB regulator allows USB operation.

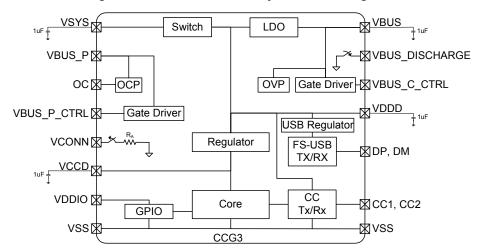


Figure 3. EZ-PD CCG3 Power System Block Diagram

Mode	Description
RESET	Power is Valid and XRES is not asserted. An internal reset source is asserted or SleepController is sequencing the system out of reset.
ACTIVE	Power is Valid and CPU is executing instructions.
	Power is Valid and CPU is not executing instructions. All logic that is not operating is clock gated to save power.
DEEP SLEEP	Main regulator and most hard-IP are shut off. Deep Sleep regulator powers logic, but only low-frequency clock is available.

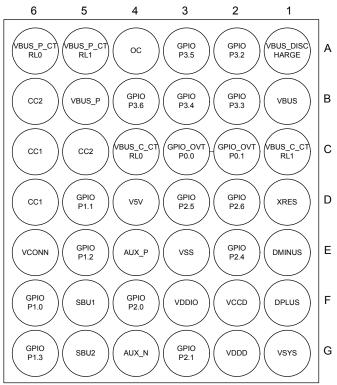
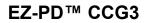



Figure 6. Pinout of 42-WLCSP Bottom (Balls Up) View

CCG3 Programming and Bootloading

There are two ways to program application firmware into a CCG3 device:

- 1. Programming the device flash over SWD Interface
- 2. Application firmware update over specific interfaces (CC, USB, I²C)

Generally, the CCG3 devices are programmed over SWD interface only during development or during the manufacturing process of the end product. Once the end product is manufactured, the CCG3 device's application firmware can be updated via the appropriate bootloader interface.

Programming the Device Flash over SWD Interface

CCG3 family of devices can be programmed using the SWD interface. Cypress provides a programming kit (CY8CKIT-002 MiniProg3 Kit) called MiniProg3 which can be used to program the flash as well as debug firmware. The flash is programmed by downloading the information from a hex file. This hex file is a binary file generated as an output of building the firmware project in PSoC Creator Software. Click here for more information on how to use the MiniProg3 programmer. There are many third party programmers that support mass programming in a manufacturing environment. As shown in the block diagram in Figure 7, the SWD_0_DAT and SWD_0_CLK pins are connected to the host programmer's SWDIO (data) and SWDCLK (clock) pins respectively. During SWD programming, the device can be powered by the host programmer by connecting its VTARG (power supply to the target device) to VSYS pin of CCG3 device. If the CCG3 device is powered using an on-board power supply, it can be programmed using the "Reset Programming" option. For more details, refer to the CYPD3XXX Programming Specifications.

The CYPD3105 device for Thunderbolt cable applications is pre-programmed with a micro-bootloader that allows users to program the flash using the alternate SWD pins (SBU1 for SWD_1_CLK and SBU2 for SWD_1_DAT) that can be connected to the SBU interface of a Type-C connector. Note that this interface can be used to program the flash only once. Subsequent re-programming of this device can be done through the primary SWD interface (SWD_0_CLK and SWD_0_DAT pins). Irrespective of which SWD interface is used for programming the device, once the device is programmed with the hex file provided by Cypress for thunderbolt cable application, subsequent updates to the application firmware can be done over the CC line. Refer to Application Firmware Update over Specific Interfaces (I2C, CC, USB) for more details.

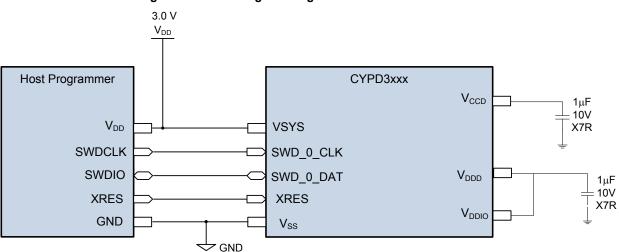
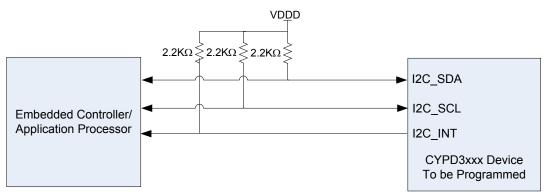


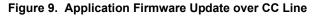
Figure 7. Connecting the Programmer to CYPD3xxx Device

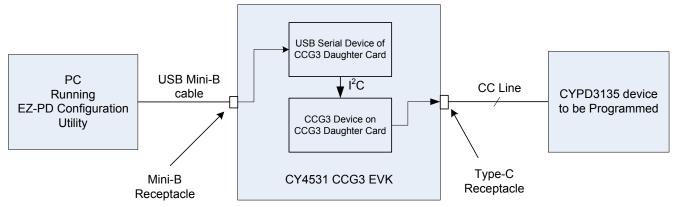
Application Firmware Update over Specific Interfaces (I²C, CC, USB)


The application firmware can be updated over three different interfaces depending on the default firmware programmed into the CCG3 device. Refer to Table 38 for more details on default firmware that various part numbers of the CCG3 family of devices are pre-programmed with (Note that some of the devices have bootloader only and some have bootloader plus application firmware). The application firmware provided by Cypress for all CCG3 applications have dual images. This allows fail-safe update of the alternate image while executing from the current image. For more information, refer to the EZ-PD Configuration Utility User Manual.

Application Firmware Update over I²C Interface

This method primarily applies to CYPD3122, CYPD3125 and CYPD3126 devices of the CCG3 family. In these applications, the CCG3 device interfaces to an on-board application processor or an embedded controller over I²C interface. Refer to Figure 8 for more details. Cypress provides pseudo-code for the host processor for updating the CCG3 device firmware.

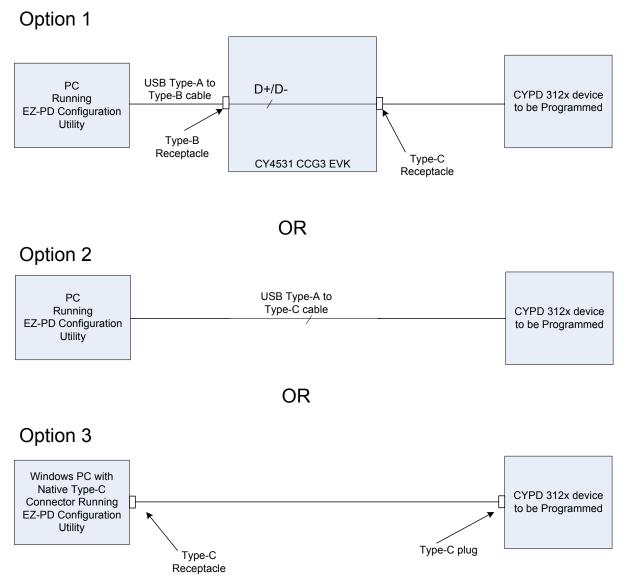




Application Firmware Update over CC Line

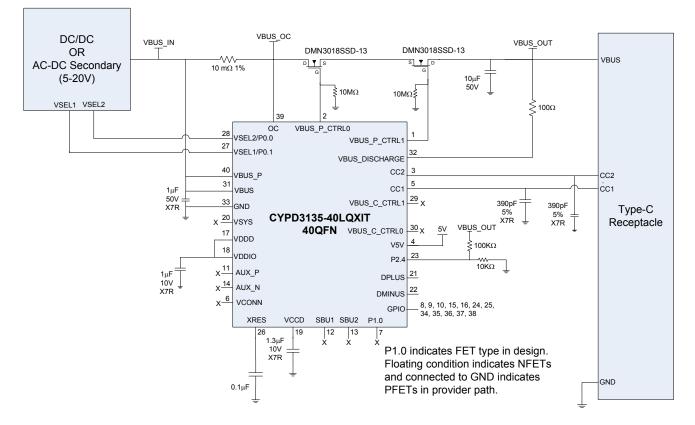
This method primarily applies to CYPD3135 device of the CCG3 family. In these applications, the CY4531 CCG3 EVK can be used to send programming and configuration data as Cypress specific Vendor Defined Messages (VDMs) over the CC line. The

CY4531 CCG3 EVK is connected to the system containing CCG3 device on one end and a Windows PC running the EZ-PDTM Configuration Utility as shown in Figure 9 on the other end to program the CCG3 device.


Application Firmware Update over USB

This method primarily applies to the CYPD3120 and CYPD3121 devices of the CCG3 family. In these applications, the firmware update can be performed over the D+/D- lines (USB2.0) using various possible options as shown in Figure 10. Option 1 is to have a Windows PC running EZ-PDTM Configuration Utility connected to the device to be programmed via the CY4531

CCG3 EVK. This setup can be avoided using option 2, where the user has a Type-A to Type-C cable. This option requires that the system contain the CCG3 device to be programmed to have a Type-C receptacle. The other option (Option 3) is to have a Windows PC with a native Type-C connector as shown in Figure 10.



Applications

Figure 11 illustrates the application diagram of a power adapter using a CCG3 device. In this application, CCG3 is used as DFP (power provider) only. The maximum power profile that can be supported by power adapters is up to 20 V, 100 W using 40-pin QFN CCG3 devices. CCG3 has the ability to drive both types of FETs and the state of GPIO P1.0 (floating or grounded) indicates the type of FET (N-MOS or P-MOS FET) being used in the power provider path.

CCG3 integrates all termination resistors and uses GPIOs (VSEL0 and VSEL1) to indicate the negotiated power profile. If required, the power profile can also be selected using CCG3 serial interfaces (I²C, SPI) or PWM. The VBUS voltage on the Type-C port is monitored using internal circuits to detect undervoltage and overvoltage conditions. To ensure quick discharge of VBUS when the power adapter cable is detached, a discharge path is provided with a resistor connected to the VBUS_DISCHARGE pin of the CCG3 device.

Overcurrent protection is enabled by sensing the current through the 10-m Ω sense resistor using the "OC" and "VBUS_P" pins of the CCG3 device. The VBUS provider through the Type-C connector can be turned on or off using the provider path FETs. The power provider FETs are controlled by high-voltage gate driver outputs (VBUS_P_CTRL0 and VBUS_P_CTRL1 pins of CCG3 device). The CCG3 device is also capable of supporting proprietary charging protocols over the DP and DM lines of the Type-C receptacle. By providing a 5-V source at the V5V pin of the CCG3 device, the device becomes capable of delivering the VCONN supply over either the CC1 or CC2 pins of the Type-C connector.

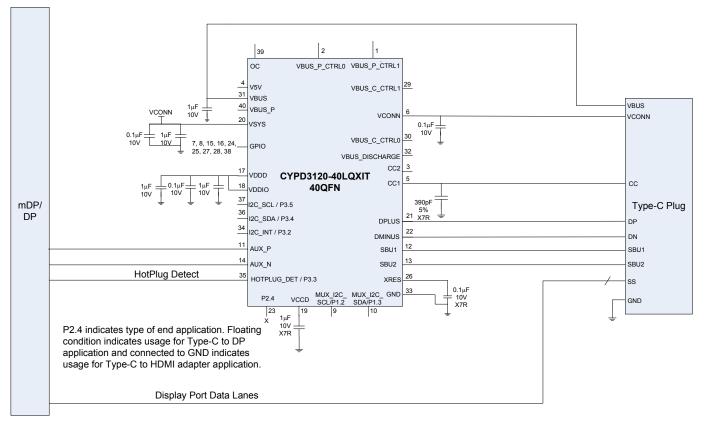


Figure 11. Power Adapter Application Diagram (40-QFN Device)

Figure 13 illustrates a USB Type-C to DisplayPort (4-lane) adapter application, which enables connectivity between a PC that supports a Type-C port with DisplayPort Alternate Mode support and a legacy monitor that has a DisplayPort interface.

The application meets the requirements described in Section 4.2 of the VESA DisplayPort Alt Mode on USB Type-C Standard Version 1.0 (Scenarios 2a and 2b USB Type-C to DisplayPort Cables).

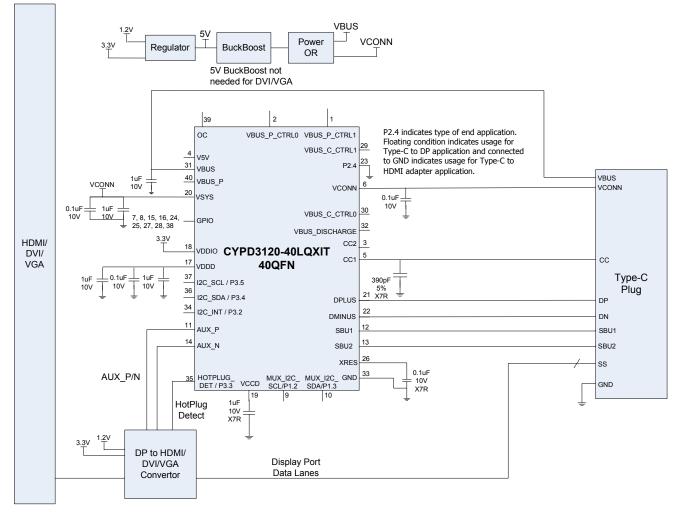


Figure 13. USB Type-C to DisplayPort Adapter Application Diagram

Figure 14 illustrates a USB Type-C to HDMI adapter application, which enables connectivity between a PC that supports a Type-C port with DisplayPort Alternate Mode support and a legacy monitor that has HDMI interface. It enables users of any Notebook that implements USB-Type C to connect to other display types.

This application meets the requirements described in Section 4.3 of the VESA DisplayPort Alt Mode on USB Type-C Standard Version 1.0. This application supports display output at a resolution of up to 4K Ultra HD (3840x2160) at 60 Hz.

Figure 14. USB Type-C to HDMI Adapter Application

Electrical Specifications

Absolute Maximum Ratings

Table 3. Absolute Maximum Ratings

Parameter	Description	Min	Тур	Мах	Units	Details/Conditions
V _{SYS_MAX}	Digital supply relative to V_{SS}	-0.5	-	6	V	
V _{5V}	Max supply voltage relative to V_{SS}	-	-	6	V	
V _{BUS_MAX_ON}	Max supply voltage relative to V_{SS} , V_{BUS} regulator enabled	-	_	26	V	
V	Max supply voltage relative to $V_{SS},$ V_{BUS} regulator enabled 100% of the time		_	24.5	V	
V _{BUS_MAX_OFF}	Max supply voltage relative to V_{SS} , V_{BUS} regulator enabled 25% of the time	_	_	26	V	Absolute max
V _{DDIO_MAX}	Max supply voltage relative to V_{SS}	-	_	6	V	
V _{GPIO_ABS}	GPIO voltage	-0.5	-	VDDIO+0.5	V	
V _{GPIO_OVT_ABS}	OVT GPIO voltage	-0.5	-	6	V	
I _{GPIO_ABS}	Maximum current per GPIO	-25	_	25	mA	
V _{CONN_MAX}	Max voltage relative to V_{SS}	-	_	6	V	
V _{CC_ABS}	Max voltage on CC1 and CC2 pins	-	_	6	V	
I _{GPIO_INJECTION}	GPIO injection current, Max for V_{IH} > VDDD, and Min for V_{IL} < V_{SS}	-0.5	-	0.5	mA	Absolute max, current injected per pin
ESD_HBM	Electrostatic discharge human body model	2200	_	_	V	-
ESD_CDM	Electrostatic discharge charged device model	500	-	-	V	-
LU	Pin current for latch-up	-100	-	100	mA	Tested at 125 °C
ESD_IEC_CON	Electrostatic discharge IEC61000-4-2	8000	-	-	V	Contact discharge on CC1, CC2, VBUS, DPLUS, DMINUS, SBU1 and SBU2 pins
ESD_IEC_AIR	Electrostatic discharge IEC61000-4-2	15000	_	-	V	Air discharge for CC1, CC2, VBUS, DPLUS, DMINUS, SBU1 and SBU2 pins

Table 6. I/O DC Specifications (continued)

Spec ID	Parameter	Description	Min	Тур	Мах	Units	Details/Conditions		
Οντ									
SID.GIO#46		Input current when Pad > VDDIO for OVT inputs	-	-	10.00	μA	Per I ² C specification		

Table 7. I/O AC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID70	T _{RISEF}	Rise time in Fast Strong mode	2	-	12	ns	3.3 V VDDIO, C _{load} = 25 pF
SID71	T _{FALLF}	Fall time in Fast Strong mode	2	1	12	ns	3.3 V VDDIO, C _{load} = 25 pF

XRES

Table 8. XRES DC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID.XRES#1	V _{IH_XRES}	Input voltage HIGH threshold on XRES pin	0.7 × VDDIO	-	-	V	CMOS input
SID.XRES#2	V _{IL_XRES}	Input voltage LOW threshold on XRES pin	-	-	0.3 × VDDIO	V	CMOS input
SID.XRES#3	C _{IN_XRES}	Input capacitance on XRES pin	-	-	7	pF	Guaranteed by charac- terization
SID.XRES#4	V _{HYSXRES}	Input voltage hysteresis on XRES pin	_	0.05 × VDDIO	_	mV	Guaranteed by charac- terization

Digital Peripherals

The following specifications apply to the Timer/Counter/PWM peripherals in the Timer mode.

Pulse Width Modulation (PWM) for GPIO Pins

Table 9. PWM AC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID.TCPWM.3	T _{CPWMFREQ}	Operating frequency	-	-	Fc	MHz	Fc max = CLK_SYS. Maximum = 48 MHz.
SID.TCPWM.4	T _{PWMENEXT}	Input trigger pulse width	2/Fc	-	-	ns	For all trigger events
SID.TCPWM.5	T _{PWMEXT}	Output trigger pulse width	2/Fc	_	-	ns	Minimum possible width of Overflow, Underflow, and CC (Counter equals Compare value) outputs
SID.TCPWM.5A	T _{CRES}	Resolution of counter	1/Fc	-	-	ns	Minimum time between successive counts
SID.TCPWM.5B	PWM _{RES}	PWM resolution	1/Fc	-	-	ns	Minimum pulse width of PWM output
SID.TCPWM.5C	Q _{RES}	Quadrature inputs resolution	1/Fc	_	_	ns	Minimum pulse width between quadrature-phase inputs

I^2C

Table 10. Fixed I²C DC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Мах	Units	Details/Conditions
SID149	I _{I2C1}	Block current consumption at 100 kHz	-	-	60	μA	-
SID150	I _{I2C2}	Block current consumption at 400 kHz	-	-	185	μA	-
SID151	I _{I2C3}	Block current consumption at 1 Mbps	-	-	390	μA	-
SID152	I _{I2C4}	I ² C enabled in Deep Sleep mode	-	-	1.4	μA	-

Table 11. Fixed I²C AC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Мах	Units	Details/Conditions
SID153	F _{I2C1}	Bit rate	-	1	1	Mbps	_

Table 12. Fixed UART DC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Мах	Units	Details/Conditions
SID160	I _{UART1}	Block current consumption at 100 Kb/s	-	-	125	μA	-
SID161	I _{UART2}	Block current consumption at 1000 Kb/s	-	Ι	312	μA	_

Table 13. Fixed UART AC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID162	F _{UART}	Bit rate	-	-	1	Mbps	_

Table 14. Fixed SPI DC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Мах	Units	Details/Conditions
SID163	I _{SPI1}	Block current consumption at 1 Mb/s	-	-	360	μA	-
SID164	I _{SPI2}	Block current consumption at 4 Mb/s	-	-	560	μA	-
SID165	I _{SPI3}	Block current consumption at 8 Mb/s	-	-	600	μA	-

Table 15. Fixed SPI AC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID166	Len	SPI Operating frequency (Master; 6X oversampling)	_	-	8	MHz	-

Table 16. Fixed SPI Master Mode AC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID167	T _{DMO}	MOSI Valid after SClock driving edge	-	-	15	ns	-
SID168	T _{DSI}	MISO Valid before SClock capturing edge	20	-	-		Full clock, late MISO sampling
SID169	т _{нмо}	Previous MOSI data hold time	0	I	_	ne	Referred to slave capturing edge

Table 17. Fixed SPI Slave Mode AC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID170	T _{DMI}	MOSI Valid before Sclock capturing edge	40	-	_	ns	-
SID171	T _{DSO}	MISO Valid after Sclock driving edge	-	-	42 + 3 × T _{CPU}	ns	T _{CPU} = 1/F _{CPU}
SID171A	T _{DSO_EXT}	MISO Valid after Sclock driving edge in Ext Clk mode	-	-	48	ns	-
SID172	T _{HSO}	Previous MISO data hold time	0	-	-	ns	-
SID172A	T _{SSELSCK}	SSEL Valid to first SCK Valid edge	100	-	_	ns	_

System Resources

Power-on-Reset (POR) with Brown Out SWD Interface

Table 18. Imprecise Power On Reset (PRES) (Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Мах	Units	Details/Conditions
SID185	VDIOFIDOD	Power-on Reset (POR) rising trip voltage	0.80	-	1.50	V	-
SID186	V _{FALLIPOR}	POR falling trip voltage	0.70	-	1.4	V	-

Table 19. Precise Power On Reset (POR) (Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID190	V _{FALLPPOR}	Brown-out Detect (BOD) trip voltage in active/sleep modes	1.48	-	1.62	V	-
SID192	V _{FALLDPSLP}	BOD trip voltage in Deep Sleep mode	1.1	-	1.5	V	_

Table 20. SWD Interface Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID.SWD#1	F_SWDCLK1	$3.3 \text{ V} \le \text{VDDIO} \le 5.5 \text{ V}$	-	_	14	MHz	SWDCLK \leq 1/3 CPU clock frequency
SID.SWD#2	F_SWDCLK2	$1.8 \text{ V} \leq \text{VDDIO} \leq 3.3 \text{ V}$	_	_	7	MHz	SWDCLK \leq 1/3 CPU clock frequency
SID.SWD#3	T_SWDI_SETUP	T = 1/f SWDCLK	0.25 × T	_	-	ns	Guaranteed by characterization
SID.SWD#4	T_SWDI_HOLD	T = 1/f SWDCLK	0.25 × T	_	-	ns	Guaranteed by characterization
SID.SWD#5	T_SWDO_VALID	T = 1/f SWDCLK	_	_	0.50 × T	ns	Guaranteed by characterization
SID.SWD#6	T_SWDO_HOLD	T = 1/f SWDCLK	1	-	-	ns	Guaranteed by characterization

Memory

Table 37. Flash AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID.MEM#3	FLASH_ERASE	Row erase time	-	Ι	15.5	ms	_
SID.MEM#4	FLASH_WRITE	Row (Block) write time (erase and program)	-	-	20	ms	_
SID.MEM#8	FLASH_ROW_PGM	Row program time after erase	-	-	7	ms	_
SID178	TBULKERASE	Bulk erase time (64k Bytes)	_	_	35	ms	_
SID180	TDEVPROG	Total device program time	_	-	7.5	S	Guaranteed by characterization
SID182	FRET1	Flash retention, T _A ≤ 55 °C, 100 K P/E cycles	20	-	-	years	Guaranteed by characterization
SID182A	FRET2	Flash retention, T _A ≤ 85 °C, 10 K P/E cycles	10	-	-	years	Guaranteed by characterization
SID182B	FRET3	Flash retention, T _A ≤ 105 °C, 10 K P/E cycles	3	-	-	years	Guaranteed by characterization

Acronyms

Table 42. Acronyms Used in this Document

Acronym	Description
ADC	analog-to-digital converter
AES	advanced encryption standard
AHB	AMBA (advanced microcontroller bus architecture) high-performance bus
API	application programming interface
ARM®	advanced RISC machine, a CPU architecture
BMC	Biphase Mark Code
CC	configuration channel
CCG3	Cable Controller Generation 3
CPU	central processing unit
CRC	cyclic redundancy check, an error-checking protocol
CS	current sense
DFP	downstream facing port
DIO	digital input/output, GPIO with only digital capabil- ities, no analog. See GPIO.
DRP	dual role port
EEPROM	electrically erasable programmable read-only memory
EMCA	electronically marked cable assembly, a USB cable that includes an IC that reports cable characteristics (e.g., current rating) to the Type-C ports
EMI	electromagnetic interference
ESD	electrostatic discharge
FS	full-speed
GPIO	general-purpose input/output
HPD	hot plug detect
IC	integrated circuit
IDE	integrated development environment
I ² C, or IIC	Inter-Integrated Circuit, a communications protocol
ILO	internal low-speed oscillator, see also IMO
IMO	internal main oscillator, see also ILO
IOSS	input/output subsystem
I/O	input/output, see also GPIO
LDO	low-dropout regulator
LVD	low-voltage detect
LVTTL	low-voltage transistor-transistor logic
MCU	microcontroller unit
MMIO	memory mapped input/output
NC	no connect
NMI	nonmaskable interrupt

Acronym	Description
opamp	operational amplifier
OCP	overcurrent protection
OVP	overvoltage protection
PCB	printed circuit board
PD	power delivery
PGA	programmable gain amplifier
PHY	physical layer
POR	power-on reset
PRES	precise power-on reset
PSoC®	Programmable System-on-Chip™
PWM	pulse-width modulator
RAM	random-access memory
RISC	reduced-instruction-set computing
RMS	root-mean-square
RTC	real-time clock
RX	receive
SAR	successive approximation register
SCB	serial communication block
SCL	I ² C serial clock
SDA	I ² C serial data
S/H	sample and hold
SHA	secure hash algorithm
SPI	Serial Peripheral Interface, a communications protocol
SRAM	static random access memory
SWD	serial wire debug, a test protocol
TCPWM	timer/counter pulse-width modulator
Thunder- bolt [™]	Trademark of Intel
ТХ	transmit
Туре-С	a new standard with a slimmer USB connector and a reversible cable, capable of sourcing up to 100 W of power
UART	Universal Asynchronous Transmitter Receiver, a communications protocol
USB	Universal Serial Bus
USB PD	USB Power Delivery
USB-FS	USB Full-Speed
USBIO	USB input/output, CCG2 pins used to connect to a USB port
USBPD SS	USB PD subsystem
VDM	vendor defined messages
XRES	external reset I/O pin

Table 42. Acronyms Used in this Document (continued)

Document History Page (continued)

Document	Document Title: EZ-PD™ CCG3 USB Type-C Port Controller Document Number: 002-03288							
Revision	ECN	Orig. of Change	Submission Date	Description of Change				
*B (cont.)	5007726	VGT	11/25/2015	Updated Analog to Digital Converter: Updated Table 32. Updated Table 33. Updated Packaging: Added Figure 18 (spec 002-04062 *A).				
*C	5080470	VGT	01/11/2016	Updated General Description. Updated Features. Updated Logic Block Diagram. Updated Power Systems Overview. Updated Pinouts: Updated Table 2. Added table "CCG3 Pin Description for 16-SOIC Device". Added figure "Pinout of 16-SOIC Package (Top View)". Updated Applications: Updated Applications: Updated Figure 11. Updated Figure 11. Updated Figure 15. Updated Figure 15. Updated Ordering Information. Updated Packaging: Added spec 51-85022 *E. Added Errata.				
*D	5137796	VGT	03/09/2016	Updated Pinouts: Updated table "CCG3 Pin Description for 16-SOIC Device". Updated figure "Pinout of 16-SOIC Package (Top View)". Updated Applications: Updated Figure 11. Updated Figure 12. Updated Ordering Information Updated Errata. Updated to new template.				
*E	5240836	VGT	04/28/2016	Updated General Description: Updated description. Updated Features: Updated Type-C and USB-PD Support: Updated description. Updated Packages: Updated description. Updated Logic Block Diagram. Updated Logic Block Diagram. Updated Functional Overview: Updated Integrated Billboard Device: Updated description. Updated USB-PD Subsystem (USBPD SS): Updated description. Added Figure 2 and Figure 5.				

Document History Page (continued)

Revision	ECN	Orig. of Change	Submission Date	Description of Change
*E (cont.)	ECN 5240836			Description of Change Updated Power Systems Overview: Updated description. Updated Figure 3. Updated Pinouts: Updated Table 2: Updated details in "Description" column corresponding to VDDIO pin. Removed table "CCG3 Pin Description for 16-SOIC Device". Removed figure "Pinout of 16-SOIC Package (Top View)". Updated Applications: Removed figure "Power Adapter Application Diagram (16-SOIC Device)". Added Figure 12. Updated Table 4. Updated details in "Details/Conditions" column corresponding to "SID.PWR#1_A" Spec ID and "V _{SYS} " parameter. Replaced "V _{DDD} " with "5.5" in "Max" column corresponding to "SID.PWR#13" Spec ID and "V _{DDIO} " parameter. Added "SID.PWR#1_C" and "SID.PWR#1_D" Spec IDs corresponding to "V _{SYS} " parameter and its details. Added "SID.PWR#1_C" and "SID.PWR#1_D" Spec IDs corresponding to "V _{SYS} " parameter. Updated details in "Description" and "Details/Conditions" column corresponding to "SID.PwR#28" Spec ID and "V _{BUS} " parameter. Updated details in "Description" and "Details/Conditions" column corresponding to "SID.9wR#28" Spec ID and "U _{D_D_XR} " parameter. Updated details in "Description" and "Details/Conditions" column corresponding to "SID.9wR#28" Spec ID and "U _{D_XR} " parameter. Updated details in "Description" and "Details/Conditions" columns corresponding to "SID.9wR#28" Spec ID and "U _{D_XR} " pa
				Updated Ordering Code Definitions Updated Packaging: Removed spec 51-85022 *E. Removed Errata. Added Available Firmware and Software Tools, CCG3 Programming and Bootloading, and References and Links to Applications Collaterals.
*F	5342389	VGT	07/28/2016	Added descriptive notes for the application diagrams. Updated Features, Applications and Timer/Counter/PWM Block (TCPWM). Updated Table 2 through Table 6, Table 18, Table 19, Table 22, Table 23, Table 25, and Table 31 through Table 38. Updated Figure 7, Figure 8, Figure , Figure 11, and Figure 19 (package diagram spec 001-42168 *E). Added Figure 5, Figure 13, and Figure 14. Added Table 26, Table 27, Table 37, and Table 39 through Table 41. Added VDM in Acronyms.
*G	5449433	VGT	09/26/2016	Updated Cypress logo and copyright information. Added Table 34 through Table 36. Updated Table 3, Table 4, Table 6, and Table 37. Updated Copyright and Disclaimer. Added Compliance information in Sales, Solutions, and Legal Information.