

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	24MHz
Connectivity	I ² C, IrDA, LINbus, Microwire, SmartCard, SPI, SSP, UART/USART
Peripherals	Brown-out Detect/Reset, CapSense, LCD, LVD, POR, PWM, WDT
Number of I/O	38
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 5.5V
Data Converters	A/D 16x12b SAR; 2xIDAC
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-TQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c4125azi-m443

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Watchdog Timer

A watchdog timer is implemented in the clock block running from the low-frequency clock; this allows watchdog operation during Deep Sleep and generates a watchdog reset or an interrupt if not serviced before the timeout occurs. The watchdog reset is recorded in the Reset Cause register.

Reset

The PSoC 4100M can be reset from a variety of sources including a software reset. Reset events are asynchronous and guarantee reversion to a known state. The reset cause is recorded in a register, which is sticky through reset and allows software to determine the cause of the reset. An XRES pin is reserved for external reset to avoid complications with configuration and multiple pin functions during power-on or reconfiguration.

Voltage Reference

The PSoC 4100M reference system generates all internally required references. A 1% voltage reference spec is provided for the 12-bit ADC. To allow better signal-to-noise ratios (SNR) and better absolute accuracy, it is possible to add an external bypass capacitor to the internal reference using a GPIO pin or to use an external reference for the SAR.

Analog Blocks

12-bit SAR ADC

The 12-bit SAR ADC can operate at a maximum sample rate of 806 Ksamples/second.

The block functionality is augmented for the user by adding a reference buffer to it (trimmable to \pm 1%) and by providing the choice of three internal voltage references: V_{DD}, V_{DD}/2, and

V_{REF} (nominally 1.024 V) as well as an external reference through a GPIO pin. The Sample-and-Hold (S/H) aperture is programmable allowing the gain bandwidth requirements of the amplifier driving the SAR inputs, which determine its settling time, to be relaxed if required. The system performance will be 65 dB for true 12-bit precision if appropriate references are used and system noise levels permit. To improve performance in noisy conditions, it is possible to provide an external bypass (through a fixed pin location) for the internal reference amplifier.

The SAR is connected to a fixed set of pins through an 8-input sequencer (expandable to 16 inputs). The sequencer cycles through selected channels autonomously (sequencer scan) and does so with zero switching overhead (that is, the aggregate sampling bandwidth is equal to 1 Msps, whether it is for a single channel or distributed over several channels). The sequencer switching is effected through a state machine or through firmware-driven switching. A feature provided by the sequencer is buffering of each channel to reduce CPU interrupt service requirements. To accommodate signals with varying source impedance and frequency, it is possible to have different sample times programmable for each channel. In addition, the signal range specification through a pair of range registers (low and high range values) is implemented with a corresponding out-of-range interrupt if the digitized value exceeds the programmed range; this allows fast detection of out-of-range values without the necessity of having to wait for a sequencer scan to be completed and the CPU to read the values and check for out-of-range values in software.

The SAR is able to digitize the output of the on-board temperature sensor for calibration and other temperature-dependent functions. The SAR is not available in Deep Sleep and Hibernate modes as it requires a high-speed clock. The SAR operating range is 1.71 to 5.5 V.

Figure 3. SAR ADC System Diagram

UART Mode: This is a full-feature UART operating at up to 1 Mbps. It supports automotive single-wire interface (LIN), infrared interface (IrDA), and SmartCard (ISO7816) protocols, all of which are minor variants of the basic UART protocol. In addition, it supports the 9-bit multiprocessor mode that allows addressing of peripherals connected over common RX and TX lines. Common UART functions such as parity error, break detect, and frame error are supported. An 8-deep FIFO allows much greater CPU service latencies to be tolerated.

SPI Mode: The SPI mode supports full Motorola SPI, TI SSP (essentially adds a start pulse used to synchronize SPI Codecs), and National Microwire (half-duplex form of SPI). The SPI block can use the FIFO and also supports an EzSPI mode in which data interchange is reduced to reading and writing an array in memory.

GPIO

The PSoC 4100M has 55 GPIOs in the 68-pin QFN package. The GPIO block implements the following:

- Eight drive strength modes including strong push-pull, resistive pull-up and pull-down, weak (resistive) pull-up and pull-down, open drain and open source, input only, and disabled
- Input threshold select (CMOS or LVTTL)
- Individual control of input and output disables
- Hold mode for latching previous state (used for retaining I/O state in Deep Sleep mode and Hibernate modes)
- Selectable slew rates for dV/dt related noise control to improve EMI

The pins are organized in logical entities called ports, which are 8-bit in width. During power-on and reset, the blocks are forced to the disable state so as not to crowbar any inputs and/or cause excess turn-on current. A multiplexing network known as a high-speed I/O matrix is used to multiplex between various signals that may connect to an I/O pin. Pin locations for fixed-function peripherals are also fixed to reduce internal multiplexing complexity.

Data output and pin state registers store, respectively, the values to be driven on the pins and the states of the pins themselves.

Every I/O pin can generate an interrupt if so enabled and each I/O port has an interrupt request (IRQ) and interrupt service routine (ISR) vector associated with it (8 for PSoC 4100M).

The Pins of Port 6 (up to 6 depending on the package) are overvoltage tolerant (V_{IN} can exceed V_{DD}). The overvoltage cells will not sink more than 10 μ A when their inputs exceed V_{DDIO} in compliance with I²C specifications.

Special Function Peripherals

LCD Segment Drive

The PSoC 4100M has an LCD controller, which can drive up to four commons and up to 51 segments. Any pin can be either a common or a segment pin. It uses full digital methods to drive the LCD segments requiring no generation of internal LCD voltages. The two methods used are referred to as digital correlation and PWM.

Digital correlation pertains to modulating the frequency and levels of the common and segment signals to generate the highest RMS voltage across a segment to light it up or to keep the RMS signal zero. This method is good for STN displays but may result in reduced contrast with TN (cheaper) displays.

PWM pertains to driving the panel with PWM signals to effectively use the capacitance of the panel to provide the integration of the modulated pulse-width to generate the desired LCD voltage. This method results in higher power consumption but can result in better results when driving TN displays. LCD operation is supported during Deep Sleep refreshing a small display buffer (4 bits; 1 32-bit register per port).

CapSense

CapSense is supported on all pins in the PSoC 4100M through a CapSense Sigma-Delta (CSD) block that can be connected to any pin through an analog mux bus that any GPIO pin can be connected to via an Analog switch. CapSense functionality can thus be provided on any pin or group of pins in a system under software control. A component is provided for the CapSense block, which provides automatic hardware tuning (Cypress SmartSense[™]), to make it easy for the user.

Shield voltage can be driven on another Mux Bus to provide water tolerance capability. Water tolerance is provided by driving the shield electrode in phase with the sense electrode to keep the shield capacitance from attenuating the sensed input.

Each CSD block has two IDACs which can be used for general purposes if CapSense is not being used.(both IDACs are available in that case) or if CapSense is used without water tolerance (one IDAC is available). The PSoC 4100M has two CSD blocks which can be used independently; one for CapSense and the other for IDACs.

The two CapSense blocks are referred to as CSD0 and CSD1. Capacitance sensing inputs on Ports 0, 1, 2, 3, 4, 6, and 7 are sensed by CSD0. Capacitance sensing inputs on Port 5 are sensed by CSD1.

	68-QFN		64-TQFP	48-TQFP		44-TQFP		
Pin	Name	Pin	Name	Pin	Name	Pin	Name	
8	P2.6	8	P2.6	8	P2.6	8	P2.6	
9	P2.7	9	P2.7	9	P2.7	9	P2.7	
10	VSSA	10	VSSA	10	VSSD	10	VSSD	
11	VDDA	11	VDDA					
12	P6.0	12	P6.0					
13	P6.1	13	P6.1					
14	P6.2	14	P6.2					
15	P6.3							
16	P6.4	15	P6.4					
17	P6.5	16	P6.5					
18	VSSIO	17	VSSIO	10	VSSD	10	VSSD	
19	P3.0	18	P3.0	12	P3.0	11	P3.0	
20	P3.1	19	P3.1	13	P3.1	12	P3.1	
21	P3.2	20	P3.2	14	P3.2	13	P3.2	
22	P3.3	21	P3.3	16	P3.3	14	P3.3	
23	P3.4	22	P3.4	17	P3.4	15	P3.4	
24	P3.5	23	P3.5	18	P3.5	16	P3.5	
25	P3.6	24	P3.6	19	P3.6	17	P3.6	
26	P3.7	25	P3.7	20	P3.7	18	P3.7	
27	VDDIO	26	VDDIO	21	VDDIO	19	VDDD	
28	P4.0	27	P4.0	22	P4.0	20	P4.0	
29	P4.1	28	P4.1	23	P4.1	21	P4.1	
30	P4.2	29	P4.2	24	P4.2	22	P4.2	
31	P4.3	30	P4.3	25	P4.3	23	P4.3	
32	P4.4	31	P4.4					
33	P4.5	32	P4.5					
34	P4.6	33	P4.6					
35	P4.7							
39	P7.0	37	P7.0	26	P7.0			
40	P7.1	38	P7.1	27	P7.1			
41	P7.2							

The pins of Port 6 are overvoltage-tolerant. Pins 36, 37, and 38 are No-Connects on the 68-pin QFN. Pins 34, 35, and 36 are No-Connects on the 64-pin TQFP. Pins 11 and 15 are No-connects in the 48-pin TQFP. All VSS pins must be tied together.

The output drivers of I/O Ports P0 and P7 are connected to VDDD. Output drivers of I/O Ports 1, 2, and 5 are connected to VDDA. Output drivers of I/O Ports 3, 4, and 6 are connected to VDDIO.

Each of the pins shown in the previous table can have multiple programmable functions as shown in the following table. Column headings refer to Analog and Alternate pin functions:

Port/Pin	Analog	Alt. Function 1	Alt. Function 2	Alt. Function 3	Alt. Function 4	Alt. Function 5
P0.0	lpcomp.in_p[0]					scb[0].spi_select1:0
P0.1	lpcomp.in_n[0]					scb[0].spi_select2:0
P0.2	lpcomp.in_p[1]					scb[0].spi_select3:0
P0.3	lpcomp.in_n[1]					
P0.4	wco_in		scb[1].uart_rx:0		scb[1].i2c_scl:0	scb[1].spi_mosi:1
P0.5	wco_out		scb[1].uart_tx:0		scb[1].i2c_sda:0	scb[1].spi_miso:1
P0.6		ext_clk:0	scb[1].uart_cts:0			scb[1].spi_clk:1
P0.7			scb[1].uart_rts:0		wakeup	scb[1].spi_select0:1
P5.0	ctb1.oa0.inp	tcpwm.line[4]:2	scb[2].uart_rx:0		scb[2].i2c_scl:0	scb[2].spi_mosi:0
P5.1	ctb1.oa0.inm	tcpwm.line_compl[4]:2	scb[2].uart_tx:0		scb[2].i2c_sda:0	scb[2].spi_miso:0
P5.2	ctb1.oa0.out	tcpwm.line[5]:2	scb[2].uart_cts:0		lpcomp.comp[0]:1	scb[2].spi_clk:0
P5.3	ctb1.oa1.out	tcpwm.line_compl[5]:2	scb[2].uart_rts:0		lpcomp.comp[1]:1	scb[2].spi_select0:0
P5.4	ctb1.oa1.inm	tcpwm.line[6]:2				scb[2].spi select1:0
P5.5	ctb1.oa1.inp	tcpwm.line_compl[6]:2				scb[2].spi_select2:0
P5.6	ctb1.oa0.inp_alt	tcpwm.line[7]:0				scb[2].spi_select3:0
P5.7	ctb1.oa1.inp_alt	tcpwm.line_compl[7]:0				
P1.0	ctb0.oa0.inp	tcpwm.line[2]:1	scb[0].uart rx:1		scb[0].i2c scl:0	scb[0].spi mosi:1
P1.1	ctb0.oa0.inm	tcpwm.line_compl[2]:1	scb[0].uart_tx:1		scb[0].i2c_sda:0	scb[0].spi_miso:1
P1.2	ctb0.oa0.out	tcpwm.line[3]:1	scb[0].uart_cts:1			scb[0].spi_clk:1
P1.3	ctb0.oa1.out	tcpwm.line_compl[3]:1	scb[0].uart_rts:1			scb[0].spi_select0:1
P1.4	ctb0.oa1.inm	tcpwm.line[6]:1				scb[0].spi_select1:1
P1.5	ctb0.oa1.inp	tcpwm.line_compl[6]:1				scb[0].spi_select2:1
P1.6	ctb0.oa0.inp_alt	tcpwm.line[7]:1				scb[0].spi_select3:1
P1.7	ctb0.oa1.inp_alt	tcpwm.line_compl[7]:1				
P2.0	sarmux.0	tcpwm.line[4]:1			scb[1].i2c_scl:1	scb[1].spi_mosi:2
P2.1	sarmux.1	tcpwm.line_compl[4]:1			scb[1].i2c_sda:1	scb[1].spi_miso:2
P2.2	sarmux.2	tcpwm.line[5]:1				scb[1].spi_clk:2
P2.3	sarmux.3	tcpwm.line_compl[5]:1				scb[1].spi_select0:2
P2.4	sarmux.4	tcpwm.line[0]:1				scb[1].spi_select1:1
P2.5	sarmux.5	tcpwm.line_compl[0]:1				scb[1].spi_select2:1
P2.6	sarmux.6	tcpwm.line[1]:1				scb[1].spi_select3:1
P2.7	sarmux.7	tcpwm.line_compl[1]:1				scb[3].spi_select0:1

PSoC[®] 4: PSoC 4100M Family Datasheet

Port/Pin	Analog	Alt. Function 1	Alt. Function 2	Alt. Function 3	Alt. Function 4	Alt. Function 5
P6.0		tcpwm.line[4]:0	scb[3].uart_rx:0		scb[3].i2c_scl:0	scb[3].spi_mosi:0
P6.1		tcpwm.line_compl[4]:0	scb[3].uart_tx:0		scb[3].i2c_sda:0	scb[3].spi_miso:0
P6.2		tcpwm.line[5]:0	scb[3].uart_cts:0			scb[3].spi_clk:0
P6.3		tcpwm.line_compl[5]:0	scb[3].uart_rts:0			scb[3].spi_select0:0
P6.4		tcpwm.line[6]:0				scb[3].spi_select1:0
P6.5		tcpwm.line_compl[6]:0				scb[3].spi_select2:0
P3.0		tcpwm.line[0]:0	scb[1].uart_rx:1		scb[1].i2c_scl:2	scb[1].spi_mosi:0
P3.1		tcpwm.line_compl[0]:0	scb[1].uart_tx:1		scb[1].i2c_sda:2	scb[1].spi_miso:0
P3.2		tcpwm.line[1]:0	scb[1].uart_cts:1		swd_data	scb[1].spi_clk:0
P3.3		tcpwm.line_compl[1]:0	scb[1].uart_rts:1		swd_clk	scb[1].spi_select0:0
P3.4		tcpwm.line[2]:0				scb[1].spi_select1:0
P3.5		tcpwm.line_compl[2]:0				scb[1].spi_select2:0
P3.6		tcpwm.line[3]:0				scb[1].spi_select3:0
P3.7		tcpwm.line_compl[3]:0				
P4.0			scb[0].uart_rx:0		scb[0].i2c_scl:1	scb[0].spi_mosi:0
P4.1			scb[0].uart_tx:0		scb[0].i2c_sda:1	scb[0].spi_miso:0
P4.2	csd[0].c_mod		scb[0].uart_cts:0		lpcomp.comp[0]:0	scb[0].spi_clk:0
P4.3	csd[0].c_sh_tank		scb[0].uart_rts:0		lpcomp.comp[1]:0	scb[0].spi_select0:0
P4.4						scb[0].spi_select1:2
P4.5						scb[0].spi_select2:2
P4.6						scb[0].spi_select3:2
P4.7						
P7.0		tcpwm.line[0]:2	scb[3].uart_rx:1		scb[3].i2c_scl:1	scb[3].spi_mosi:1
P7.1		tcpwm.line_compl[0]:2	scb[3].uart_tx:1		scb[3].i2c_sda:1	scb[3].spi_miso:1
P7.2		tcpwm.line[1]:2	scb[3].uart_cts:1			scb[3].spi_clk:1

Descriptions of the power pin functions are as follows:

VDDD: Power supply for both analog and digital sections (where there is no V_{DDA} pin).

VDDA: Analog V_{DD} pin where package pins allow; shorted to V_{DDD} otherwise. **VDDIO**: I/O pin power domain.

VSSA: Analog ground pin where package pins allow; shorted to VSS otherwise **VSS**: Ground pin.

VCCD: Regulated Digital supply (1.8 V ±5%).

Port Pins can all be used as LCD Commons, LCD Segment drivers, or CSD sense and shield pins can be connected to AMUXBUS A or B or can all be used as GPIO pins that can be driven by firmware or DSI signals.

Power

The supply voltage range is 1.71 to 5.5 V with all functions and circuits operating over that range.

The PSoC 4100M family allows two distinct modes of power supply operation: Unregulated External Supply and Regulated External Supply modes.

Unregulated External Supply

In this mode, the PSoC 4100M is powered by an External Power Supply that can be anywhere in the range of 1.8 to 5.5 V. This range is also designed for battery-powered operation, for instance, the chip can be powered from a battery system that starts at 3.5V and works down to 1.8 V. In this mode, the internal regulator of the PSoC 4100M supplies the internal logic and the VCCD output of the PSoC 4100M must be bypassed to ground via an external Capacitor (in the range of 1 to 1.6 μ F; X5R ceramic or better).

The grounds, VSSA and VSS, must be shorted together. Bypass capacitors must be used from VDDD and VDDA to ground, typical practice for systems in this frequency range is to use a capacitor in the 1 μF range in parallel with a smaller capacitor (0.1 μF , for example). Note that these are simply rules of thumb and that, for critical applications, the PCB layout, lead inductance, and the Bypass capacitor parasitic should be simulated to design and obtain optimal bypassing.

Power Supply	Bypass Capacitors					
VDDD–VSS and VDDIO-VSS	0.1 μF ceramic at each pin plus bulk capacitor 1 to 10 μF.					
VDDA-VSSA	0.1 μ F ceramic at pin. Additional 1 μ F to 10 μ F bulk capacitor					
VCCD-VSS	1 µF ceramic capacitor at the VCCD pin					
VREF–VSSA (optional)	The internal bandgap may be bypassed with a 1 μ F to 10 μ F capacitor for better ADC performance.					

Regulated External Supply

In this mode, the PSoC 4100M is powered by an external power supply that must be within the range of 1.71 to 1.89 V (1.8 \pm 5%); note that this range needs to include power supply ripple. VCCD and VDDD pins are shorted together and bypassed. The internal regulator is disabled in firmware.

Development Support

The PSoC 4100M family has a rich set of documentation, development tools, and online resources to assist you during your development process. Visit www.cypress.com/go/psoc4 to find out more.

Documentation

A suite of documentation supports the PSoC 4100M family to ensure that you can find answers to your questions quickly. This section contains a list of some of the key documents.

Software User Guide: A step-by-step guide for using PSoC Creator. The software user guide shows you how the PSoC Creator build process works in detail, how to use source control with PSoC Creator, and much more.

Component Datasheets: The flexibility of PSoC allows the creation of new peripherals (components) long after the device has gone into production. Component data sheets provide all of the information needed to select and use a particular component, including a functional description, API documentation, example code, and AC/DC specifications.

Application Notes: PSoC application notes discuss a particular application of PSoC in depth; examples include brushless DC motor control and on-chip filtering. Application notes often include example projects in addition to the application note document.

Technical Reference Manual: The Technical Reference Manual (TRM) contains all the technical detail you need to use a PSoC device, including a complete description of all PSoC registers.

Online

In addition to print documentation, the Cypress PSoC forums connect you with fellow PSoC users and experts in PSoC from around the world, 24 hours a day, 7 days a week.

Tools

With industry standard cores, programming, and debugging interfaces, the PSoC 4100M family is part of a development tool ecosystem. Visit us at www.cypress.com/go/psoccreator for the latest information on the revolutionary, easy to use PSoC Creator IDE, supported third party compilers, programmers, debuggers, and development kits.

Electrical Specifications

Absolute Maximum Ratings

Table 1. Absolute Maximum Ratings^[1]

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID1	V _{DD_ABS}	Analog or digital supply relative to V_{SS} ($V_{SSD} = V_{SSA}$)	-0.5	-	6	V	Absolute maximum
SID2	V _{CCD_ABS}	Direct digital core voltage input relative to V_{SSD}	-0.5	_	1.95	V	Absolute maximum
SID3	V _{GPIO_ABS}	GPIO voltage; V _{DDD} or V _{DDA}	-0.5	-	V _{DD} +0.5	V	Absolute maximum
SID4	I _{GPIO_ABS}	Current per GPIO	-25	-	25	mA	Absolute maximum
SID5	I _{G-PIO_injection}	GPIO injection current per pin	-0.5	-	0.5	mA	Absolute maximum
BID44	ESD_HBM	Electrostatic discharge human body model	2200	-	-	V	
BID45	ESD_CDM	Electrostatic discharge charged device model	500	-	_	V	
BID46	LU	Pin current for latch-up	-140	_	140	mA	

Device Level Specifications

All specifications are valid for –40 °C \leq TA \leq 105 °C and TJ \leq 125 °C, except where noted. Specifications are valid for 1.71 V to 5.5 V, except where noted.

Table 2. DC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details / Conditions
SID53	V _{DD}	Power Supply Input Voltage ($V_{DDA} = V_{DDD} = V_{DD}$)	1.8	_	5.5	V	With regulator enabled
SID255	V _{DDD}	Power Supply Input Voltage unregulated	1.71	1.8	1.89	V	Internally unregulated Supply
SID54	V _{CCD}	Output voltage (for core logic)	_	1.8	-	V	
SID55	C _{EFC}	External Regulator voltage bypass	1	1.3	1.6	μF	X5R ceramic or better
SID56	C _{EXC}	Power supply decoupling capacitor	-	1	-	μF	X5R ceramic or better
Active Mod	e, V _{DD} = 1.71 V	to 5.5 V, –40 °C to +105 °C					•
SID6	I _{DD1}	Execute from Flash; CPU at 6 MHz	-	2.2	2.8	mA	
SID7	I _{DD2}	Execute from Flash; CPU at 12 MHz	-	3.7	4.2	mA	
SID8	I _{DD3}	Execute from Flash; CPU at 24 MHz	_	6.7	7.2	mA	
Sleep Mode	e, −40 °C to +10	95 °C					
SID21	I _{DD16}	I ² C wakeup, WDT, and Comparators on. Regulator Off.	_	1.75	2.1	mA	V _{DD} = 1.71 to 1.89, 6 MHz
SID22	I _{DD17}	I ² C wakeup, WDT, and Comparators on.	_	1.7	2.1	mA	V _{DD} = 1.8 to 5.5, 6 MHz
SID23	I _{DD18}	I ² C wakeup, WDT, and Comparators on. Regulator Off.	_	2.35	2.8	mA	V _{DD} = 1.71 to 1.89, 12 MHz
SID24	I _{DD19}	I ² C wakeup, WDT, and Comparators on.	_	2.25	2.8	mA	V _{DD} = 1.8 to 5.5, 12 MHz

Note

Usage above the absolute maximum conditions listed in Table 1 may cause permanent damage to the device. Exposure to absolute maximum conditions for extended periods of time may affect device reliability. The maximum storage temperature is 150 °C in compliance with JEDEC Standard JESD22-A103, High Temperature Storage Life. When used below absolute maximum conditions but above normal operating conditions, the device may not operate to specification.

Table 2. DC Specifications (continued)

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details / Conditions	
Deep Sleep	Mode, –40 °C	to + 60 °C						
SID30	I _{DD25}	I ² C wakeup and WDT on. Regulator Off.	_	1.55	20	μA	V _{DD} = 1.71 to 1.89	
SID31	I _{DD26}	I ² C wakeup and WDT on.	_	1.35	15	μA	V _{DD} = 1.8 to 3.6	
SID32	I _{DD27}	I ² C wakeup and WDT on.	_	1.5	15	μA	V _{DD} = 3.6 to 5.5	
Deep Sleep Mode, +85 °C								
SID33	I _{DD28}	I ² C wakeup and WDT on. Regulator Off.	_	_	60	μA	V _{DD} = 1.71 to 1.89	
SID34	I _{DD29}	I ² C wakeup and WDT on.	_	-	45	μA	V _{DD} = 1.8 to 3.6	
SID35	I _{DD30}	I ² C wakeup and WDT on.	_	-	30	μA	V _{DD} = 3.6 to 5.5	
Deep Sleep	Mode, +105 °C							
SID33Q	I _{DD28Q}	I ² C wakeup and WDT on. Regulator Off.	_	-	135	μA	V _{DD} = 1.71 to 1.89	
SID34Q	I _{DD29Q}	I ² C wakeup and WDT on.	_	-	180	μA	V _{DD} = 1.8 to 3.6	
SID35Q	I _{DD30Q}	I ² C wakeup and WDT on.	_	-	140	μA	V _{DD} = 3.6 to 5.5	
Hibernate M	lode, –40 °C to	+ 60 °C						
SID39	I _{DD34}	Regulator Off.	_	150	3000	nA	V _{DD} = 1.71 to 1.89	
SID40	I _{DD35}		_	150	1000	nA	V _{DD} = 1.8 to 3.6	
SID41	I _{DD36}		_	150	1100	nA	V _{DD} = 3.6 to 5.5	
Hibernate M	lode, +85 °C							
SID42	I _{DD37}	Regulator Off.	-	-	4500	nA	V _{DD} = 1.71 to 1.89	
SID43	I _{DD38}		-	-	3500	nA	V _{DD} = 1.8 to 3.6	
SID44	I _{DD39}		-	-	3500	nA	V _{DD} = 3.6 to 5.5	
Hibernate M	lode, +105 °C							
SID42Q	I _{DD37Q}	Regulator Off.	_	1	19.4	μA	V _{DD} = 1.71 to 1.89	
SID43Q	I _{DD38Q}		_	-	17	μA	V _{DD} = 1.8 to 3.6	
SID44Q	I _{DD39Q}		-	-	16	μA	V _{DD} = 3.6 to 5.5	
Stop Mode,	+85 °C							
SID304	I _{DD43A}	Stop Mode current; V_{DD} = 3.6 V	_	35	85	nA	T = -40 °C to +60 °C	
SID304A	I _{DD43B}	Stop Mode current; V_{DD} = 3.6 V	_	-	1450	nA	T = +85 °C	
Stop Mode,	+105 °C							
SID304Q	I _{DD43AQ}	Stop Mode current; V_{DD} = 3.6 V	_	-	5645	nA		
XRES curre	ent							
SID307	I _{DD_XR}	Supply current while XRES asserted	_	2	5	mA		

XRES

Table 6. XRES DC Specifications

Spec ID#	Parameter	Description	Min	Тур	Мах	Units	Details/ Conditions
SID77	V _{IH}	Input voltage high threshold	0.7 × V _{DDD}	-	-	V	CMOS Input
SID78	V _{IL}	Input voltage low threshold	-	-	0.3 × V _{DDD}	V	CMOS Input
SID79	R _{PULLUP}	Pull-up resistor	3.5	5.6	8.5	kΩ	
SID80	C _{IN}	Input capacitance	-	3	-	pF	
SID81	V _{HYSXRES}	Input voltage hysteresis	_	100	_	mV	Guaranteed by characterization
SID82	IDIODE	Current through protection diode to $V_{DDD}\!/\!V_{SS}$	_	-	100	μA	Guaranteed by characterization

Table 7. XRES AC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID83	T _{RESETWIDTH}	Reset pulse width	1	_	_	μs	Guaranteed by characterization

Analog Peripherals

Opamp

Table 8. Opamp Specifications

(Guaranteed by Characterization)

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
	I _{DD}	Opamp block current. No load.	_	-	-	_	
SID269	I _{DD_HI}	Power = high	-	1100	1850	μA	
SID270	I _{DD_MED}	Power = medium	-	550	950	μA	
SID271	I _{DD_LOW}	Power = low	-	150	350	μA	
	GBW	Load = 20 pF, 0.1 mA. V _{DDA} = 2.7 V	_	-	-	_	
SID272	GBW_HI	Power = high	6	-	-	MHz	
SID273	GBW_MED	Power = medium	4	-	_	MHz	
SID274	GBW_LO	Power = low	-	1	-	MHz	
	I _{OUT_MAX}	$V_{DDA} \ge 2.7 \text{ V}, 500 \text{ mV}$ from rail	-	-	-	-	
SID275	IOUT MAX HI	Power = high	10	-	-	mA	
SID276	I _{OUT_MAX_MID}	Power = medium	10	-	-	mA	
SID277	IOUT_MAX_LO	Power = low	-	5	-	mA	
	I _{OUT}	V _{DDA} = 1.71 V, 500 mV from rail	-	-	-	-	
SID278	I _{OUT_MAX_HI}	Power = high	4	-	-	mA	
SID279	IOUT MAX MID	Power = medium	4	-	-	mA	
SID280	I _{OUT_MAX_LO}	Power = low	-	2	-	mA	
SID281	V _{IN}	Input voltage range	-0.05	-	VDDA - 0.2	V	Charge-pump on, $V_{DDA} \ge$ 2.7 V
SID282	V _{CM}	Input common mode voltage	-0.05	_	VDDA - 0.2	V	Charge-pump on, $V_{DDA} \ge 2.7 \text{ V}$
	V _{OUT}	$V_{DDA} \ge 2.7 V$	-	-	-		
SID283	V _{OUT_1}	Power = high, Iload=10 mA	0.5	-	VDDA - 0.5	V	
SID284	V _{OUT_2}	Power = high, Iload=1 mA	0.2	-	VDDA - 0.2	V	
SID285	V _{OUT_3}	Power = medium, lload=1 mA	0.2	_	VDDA - 0.2	V	
SID286	V _{OUT_4}	Power = low, lload=0.1 mA	0.2	_	VDDA - 0.2	V	
SID288	V _{OS TR}	Offset voltage, trimmed	1	±0.5	1	mV	High mode
SID288A	V _{OS TR}	Offset voltage, trimmed	-	±1	-	mV	Medium mode
SID288B	V _{OS TR}	Offset voltage, trimmed	-	±2	-	mV	Low mode
SID290	V _{OS DR TR}	Offset voltage drift, trimmed	-10	±3	10	µV/°C	High mode. T _A ≤ 85 °C.
SID290Q	V _{OS DR TR}	Offset voltage drift, trimmed	15	±3	15	µV/°C	High mode. T _A ≤ 105 °C
SID290A	V _{OS DR TR}	Offset voltage drift, trimmed	-	±10	-	μV/°C	Medium mode
SID290B	V _{OS DR TR}	Offset voltage drift, trimmed	-	±10	-	µV/°C	Low mode
SID291	CMRR	DC Common mode rejection ratio. High-power mode. Common Model voltage range from 0.5 V to VDDA - 0.5 V.	60	70	-	dB	V _{DDD} = 3.6 V
SID292	PSRR	At 1 kHz, 100-mV ripple	70	85	-	dB	V _{DDD} = 3.6 V
	Noise		-	-	-	-	

Table 8. Opamp Specifications

(Guaranteed by Characterization) (continued)

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID293	V _{N1}	Input referred, 1 Hz - 1GHz, power =	-	94	-	μVrms	
SID294	V _{N2}	Input referred, 1 kHz, power = high	_	72	_	nV/rtHz	
SID295	V _{N3}	Input referred, 10kHz, power = high	_	28	_	nV/rtHz	
SID296	V _{N4}	Input referred, 100kHz, power = high	-	15	-	nV/rtHz	
SID297	Cload	Stable up to maximum load. Perfor- mance specs at 50 pF.	_	_	125	pF	
SID298	Slew_rate	Cload = 50 pF, Power = High, $V_{DDA} \ge$ 2.7 V	6	-	-	V/µs	
SID299	T_op_wake	From disable to enable, no external RC dominating	-	25	-	μs	
SID299A	OL_GAIN	Open Loop Gain	-	90	-	dB	
	Comp_mode	Comparator mode; 50 mV drive, Trise = Tfall (approx.)	-	-	-		
SID300	T _{PD1}	Response time; power = high	-	150	-	ns	
SID301	T _{PD2}	Response time; power = medium	-	400	-	ns	
SID302	T _{PD3}	Response time; power = low	-	2000	-	ns	
SID303	Vhyst_op	Hysteresis	-	10	-	mV	
Deep Sleep Mode		Mode 2 is lowest current range. Mode 1 has higher GBW.					Deep Sleep mode. $V_{DDA} \ge 2.7 V.$
SID_DS_1	IDD_HI_M1	Mode 1, High current	-	1400	-	uA	25 °C
SID_DS_2	IDD_MED_M1	Mode 1, Medium current	-	700	-	uA	25 °C
SID_DS_3	IDD_LOW_M1	Mode 1, Low current	-	200	-	uA	25 °C
SID_DS_4	IDD_HI_M2	Mode 2, High current	-	120	-	uA	25 °C
SID_DS_5	IDD_MED_M2	Mode 2, Medium current	-	60	-	uA	25 °C
SID_DS_6	IDD_LOW_M2	Mode 2, Low current	-	15	-	uA	25 °C
SID_DS_7	GBW_HI_M1	Mode 1, High current	-	4	-	MHz	25 °C
SID_DS_8	GBW_MED_M1	Mode 1, Medium current	-	2	-	MHz	25 °C
SID_DS_9	GBW_LOW_M1	Mode 1, Low current	_	0.5	-	MHz	25 °C
SID_DS_10	GBW_HI_M2	Mode 2, High current	-	0.5	-	MHz	20-pF load, no DC load 0.2 V to V _{DDA} -1.5 V
SID_DS_11	GBW_MED_M2	Mode 2, Medium current	-	0.2	-	MHz	20-pF load, no DC load 0.2 V to V _{DDA} -1.5 V
SID_DS_12	GBW_LOW_M2	Mode 2, Low current	-	0.1	-	MHz	20-pF load, no DC load 0.2 V to V _{DDA} -1.5 V
SID_DS_13	VOS_HI_M1	Mode 1, High current	-	5	-	mV	With trim 25 °C, 0.2 V to V _{DDA} -1.5 V
SID_DS_14	VOS_MED_M1	Mode 1, Medium current	-	5	-	mV	With trim 25 °C, 0.2 V to V _{DDA} -1.5 V
SID_DS_15	VOS_LOW_M1	Mode 1, Low current	-	5	-	mV	With trim 25 °C, 0.2 V to V _{DDA} -1.5 V
SID_DS_16	VOS_HI_M2	Mode 2, High current	-	5	-	mV	With trim 25 °C, 0.2 V to V _{DDA} -1.5 V
SID_DS_17	VOS_MED_M2	Mode 2, Medium current	-	5	-	mV	With trim 25 °C, 0.2 V to V _{DDA} -1.5 V

Table 8. Opamp Specifications

(Guaranteed by Characterization) (continued)

Spec ID#	Parameter	Description	Min	Тур	Мах	Units	Details/ Conditions
SID_DS_18	VOS_LOW_M2	Mode 2, Low current	-	5	-	mV	With trim 25 °C, 0.2 V to V _{DDA} -1.5 V
SID_DS_19	IOUT_HI_M1	Mode 1, High current	-	10	-	mA	Output is 0.5 V to VDDA-0.5 V
SID_DS_20	IOUT_MED_M1	Mode 1, Medium current	-	10	-	mA	Output is 0.5 V to VDDA-0.5 V
SID_DS_21	IOUT_LOW_M1	Mode 1, Low current	-	4	-	mA	Output is 0.5 V to VDDA-0.5 V
SID_DS_22	IOUT_HI_M2	Mode 2, High current	-	1	-	mA	Output is 0.5 V to V _{DDA} -0.5 V
SID_DS_23	IOUT_MED_M2	Mode 2, Medium current	-	1	-	mA	Output is 0.5 V to V _{DDA} -0.5 V
SID_DS_24	IOUT_LOW_M2	Mode 2, Low current	-	0.5	-	mA	Output is 0.5 V to V _{DDA} -0.5 V

Comparator

Table 9. Comparator DC Specifications

Spec ID#	Parameter	Description	Min	Тур	Мах	Units	Details/ Conditions
SID85	V _{OFFSET2}	Input offset voltage, Common Mode voltage range from 0 to V _{DD} -1	I	-	±4	mV	
SID85A	V _{OFFSET3}	Input offset voltage. Ultra low-power mode ($V_{DDD} \ge 2.2 \text{ V}$ for Temp < 0 °C, $V_{DDD} \ge 1.8 \text{ V}$ for Temp > 0 °C).	-	±12	-	mV	
SID86	V _{HYST}	Hysteresis when enabled, Common Mode voltage range from 0 to V_{DD} -1.	_	10	35	mV	Guaranteed by charac- terization
SID87	V _{ICM1}	Input common mode voltage in normal mode	0	-	V _{DDD} -0.1	V	Modes 1 and 2.
SID247	V _{ICM2}	Input common mode voltage in low power mode	0	-	V _{DDD}	V	
SID247A	V _{ICM3}	Input common mode voltage in ultra low power mode ($V_{DDD} \ge 2.2$ V for Temp < 0 °C, $V_{DDD} \ge 1.8$ V for Temp > 0 °C)	0	-	V _{DDD} – 1.15	V	
SID88	CMRR	Common mode rejection ratio	50	-	-	dB	$V_{DDD} \ge 2.7 V.$ Guaranteed by charac- terization
SID88A	CMRR	Common mode rejection ratio	42	-	-	dB	V _{DDD} < 2.7 V. Guaranteed by charac- terization
SID89	I _{CMP1}	Block current, normal mode	-	-	400	μA	Guaranteed by charac- terization
SID248	I _{CMP2}	Block current, low power mode	-	-	100	μA	Guaranteed by charac- terization
SID259	I _{CMP3}	Block current, ultra low power mode (V _{DDD} ≥ 2.2 V for Temp < 0 °C, V _{DDD} ≥ 1.8 V for Temp > 0 °C)	-	6	28	μA	Guaranteed by charac- terization
SID90	Z _{CMP}	DC input impedance of comparator	35	-	-	MΩ	Guaranteed by charac- terization

LCD Direct Drive

Table 18. LCD Direct Drive DC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID154	ILCDLOW	Operating current in low power mode	_	5	_	μA	16 × 4 small segment disp. at 50 Hz
SID155	C _{LCDCAP}	LCD capacitance per segment/common driver	-	500	5000	pF	Guaranteed by Design
SID156	LCD _{OFFSET}	Long-term segment offset	-	20	-	mV	
SID157	I _{LCDOP1}	PWM Mode current. 5-V bias. 24-MHz IMO	-	0.6	-	mA	32 × 4 segments. 50 Hz, 25 °C
SID158	I _{LCDOP2}	PWM Mode current. 3.3-V bias. 24-MHz IMO.	-	0.5	-	mA	32 × 4 segments. 50 Hz, 25 °C

Table 19. LCD Direct Drive AC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID159	F _{LCD}	LCD frame rate	10	50	150	Hz	

Table 20. Fixed UART DC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID160	I _{UART1}	Block current consumption at 100 Kbits/sec	-	-	55	μA	
SID161	I _{UART2}	Block current consumption at 1000 Kbits/sec	-	-	312	μA	

Table 21. Fixed UART AC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID162	F _{UART}	Bit rate	1	-	1	Mbps	

SPI Specifications

Table 22. Fixed SPI DC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID163	I _{SPI1}	Block current consumption at 1 Mbits/sec	-	-	360	μA	
SID164	I _{SPI2}	Block current consumption at 4 Mbits/sec	-	-	560	μA	
SID165	I _{SPI3}	Block current consumption at 8 Mbits/sec	-	-	600	μA	

Table 23. Fixed SPI AC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID166	F _{SPI}	SPI operating frequency (master; 6X oversampling)	Ι	-	8	MHz	

Table 36. ILO AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID234	T _{STARTILO1}	ILO startup time	-	-	2	ms	Guaranteed by character- ization
SID236	T _{ILODUTY}	ILO duty cycle	40	50	60	%	Guaranteed by character- ization
SID237	F _{ILOTRIM1}	32 kHz trimmed frequency	15	32	50	kHz	Max ILO frequency is 70 kHz if T _A > 85 °C

Table 37. External Clock Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID305	ExtClkFreq	External Clock input Frequency	0	Ι	48	MHz	Guaranteed by character- ization
SID306	ExtClkDuty	Duty cycle; Measured at V _{DD/2}	45	-	55	%	Guaranteed by character- ization

Table 38. Watch Crystal Oscillator (WCO) Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details / Conditions
IMO WCO-	PLL calibrated	i mode					·
SID330	IMO _{WCO1}	Frequency variation with IMO set to 3 MHz	-0.6	-	0.6	%	Does not include WCO tolerance
SID331	IMO _{WCO2}	Frequency variation with IMO set to 5 MHz	-0.4	-	0.4	%	Does not include WCO tolerance
SID332	IMO _{WCO3}	Frequency variation with IMO set to 7 MHz or 9 MHz	-0.3	-	0.3	%	Does not include WCO tolerance
SID333	IMO _{WCO4}	All other IMO frequency settings	-0.2	-	0.2	%	Does not include WCO tolerance
WCO Spec	ifications						
SID398	F _{WCO}	Crystal frequency	_	32.768		kHz	
SID399	F _{TOL}	Frequency tolerance	-	50	250	ppm	With 20-ppm crystal.
SID400	ESR	Equivalent series resistance	-	50	_	kΩ	
SID401	PD	Drive level	-	-	1	μW	
SID402	T _{START}	Startup time	-	-	500	ms	
SID403	CL	Crystal load capacitance	6	-	12.5	pF	
SID404	C ₀	Crystal shunt capacitance	-	1.35	_	pF	
SID405	I _{WCO1}	Operating current (high power mode)	-	-	8	uA	

Table 39. Block Specs

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID257	T _{WS24} *	Number of wait states at 24 MHz	1	-	_		CPU execution from Flash
SID260	V _{REFSAR}	Trimmed internal reference to SAR	-1	-	+1	%	Percentage of Vbg (1.024 V). Guaranteed by character- ization
SID261	FSARINTREF	SAR operating speed without external reference bypass	_	-	100	ksps	12-bit resolution. Guaranteed by characterization
SID262	T _{CLKSWITCH}	Clock switching from clk1 to clk2 in clk1 periods	3	-	4	Periods	Guaranteed by design
* T _{WS24} is g	uaranteed by des	ign		•			

Ordering Information

The PSoC 4100M family part numbers and features are listed in the following table.

			Features							Package										
Category	NGM	Max CPU Speed (MHz)	Flash (KB)	SRAM (KB)	UDB	Opamp (CTBm)	CSD	IDAC (1X7-Bit, 1-8-Bit)	Direct LCD Drive	12-bit SAR ADC	LP Comparators	TCPWM Blocks	SCB Blocks	CAN	GPIO	44-TQFP	48-TQFP	64-TQFP (0.5-mm pitch)	64-TQFP (0.8-mm pitch)	68-QFN
4125	CY8C4125AZI-M433	24	32	4	0	2	-	-	-	806 ksps	2	8	4	-	38	-	~	-	-	-
	CY8C4125AZI-M443	24	32	4	0	2	~	-	~	806 ksps	2	8	4	-	38	-	~	-	_	-
	CY8C4125AZI-M445	24	32	4	0	2	~	-	~	806 ksps	2	8	4	-	51	-	-	~	_	-
	CY8C4125LTI-M445	24	32	4	0	2	~	-	~	806 ksps	2	8	4	-	55	-	-	-	_	~
	CY8C4125AXI-M445	24	32	4	0	2	~	-	~	806 ksps	2	8	4	-	51	-	-	-	~	-
4126	CY8C4126AZI-M443	24	64	8	0	2	~	-	~	806 ksps	2	8	4	-	38	-	~	-	_	-
	CY8C4126AXI-M443	24	64	8	0	2	~	-	~	806 ksps	2	8	4	-	36	~	-	_	_	-
	CY8C4126AZI-M445	24	64	8	0	2	~	-	~	806 ksps	2	8	4	-	51	-	-	~	_	-
	CY8C4126AZI-M475	24	64	8	0	4	-	~	-	806 ksps	2	8	4	-	51	-	-	~	_	-
	CY8C4126LTI-M445	24	64	8	0	2	~	-	~	806 ksps	2	8	4	-	55	-	-	-	_	~
	CY8C4126LTI-M475	24	64	8	0	4	-	~	-	806 ksps	2	8	4	-	55	-	-	-	_	~
	CY8C4126AXI-M445	24	64	8	0	2	~	-	~	806 ksps	2	8	4	-	51	-	1	-	~	-
4127	CY8C4127LTI-M475	24	128	16	0	4	~	~	_	806 ksps	2	8	4	-	55	-	-	_	_	~
	CY8C4127AZI-M475	24	128	16	0	4	-	~	-	806 ksps	2	8	4	-	51	-	-	~	-	-
	CY8C4127AZI-M485	24	128	16	0	4	~	~	~	806 ksps	2	8	4	-	51	-	-	~	-	-
	CY8C4127AXI-M485	24	128	16	0	4	~	~	~	806 ksps	2	8	4	-	51	-	-	-	~	-

Packaging

The description of the PSoC4100M package dimensions follows.

Spec ID#	Package	Description	Package Dwg #
PKG_1	68-pin QFN	68 QFN, 8 mm x 8 mm x 1.0 mm height with 0.4 mm pitch	001-09618
PKG_2	64-pin TQFP	64 TQFP, 10 mm x10 mm x 1.4 mm height with 0.5 mm pitch	51-85051
PKG_4	64-pin TQFP	64 TQFP, 14 mm x14 mm x 1.4 mm height with 0.8 mm pitch	51-85046
PKG_5	48-pin TQFP	48 TQFP, 7 mm x 7 mm x 1.4 mm height with 0.5 mm pitch	51-85135
PKG_6	44-pin TQFP	44 TQFP, 10 mm x 10 mm x 1.4 mm height with 0.8 mm pitch	51-85064

Table 40. Package Characteristics

Parameter	Description	Conditions	Min	Тур	Max	Units
T _A	Operating ambient temperature		-40	25	85	°C
TJ	Operating junction temperature		-40	_	100	°C
T _{JA}	Package θ _{JA} (68-pin QFN)		-	16.8	_	°C/Watt
T _{JC}	Package θ _{JC} (68-pin QFN)		-	2.9	_	°C/Watt
T _{JA}	Package θ _{JA} (64-pin TQFP, 0.5-mm pitch)		-	56	_	°C/Watt
T _{JC}	Package θ _{JC} (64-pin TQFP, 0.5-mm pitch)		-	19.5	-	°C/Watt
T _{JA}	Package θ _{JA} (64-pin TQFP, 0.8-mm pitch)		-	66.4	_	°C/Watt
T _{JC}	Package θ _{JC} (64-pin TQFP, 0.8-mm pitch)		-	18.2	_	°C/Watt
T _{JA}	Package θ _{JA} (48-pin TQFP, 0.5-mm pitch)		-	67.3	_	°C/Watt
T _{JC}	Package θ _{JC} (48-pin TQFP, 0.5-mm pitch)		-	30.4	_	°C/Watt
T _{JA}	Package θ _{JA} (44-pin TQFP, 0.8-mm pitch)		-	57	_	°C/Watt
T _{JC}	Package θ _{JC} (44-pin TQFP, 0.8-mm pitch)		-	25.9	_	°C/Watt

Table 41. Solder Reflow Peak Temperature

Package	Maximum Peak Temperature	Maximum Time at Peak Temperature
All packages	260 °C	30 seconds

Table 42. Package Moisture Sensitivity Level (MSL), IPC/JEDEC J-STD-2

Package	MSL
All packages	MSL 3

Figure 9. 44-Pin 10 × 10 × 1.4 mm TQFP Package Outline

NDTE:

2. BDDY LENGTH DIMENSION DOES NOT INCLUDE MOLD PROTRUSION/END FLASH MOLD PROTRUSION/END FLASH SHALL NOT EXCEED 0.0098 in (0.25 mm) PER SIDE BDDY LENGTH DIMENSIONS ARE MAX PLASTIC BODY SIZE INCLUDING MOLD MISMATCH

3. DIMENSIONS IN MILLIMETERS

51-85064 *G

Acronyms

Table 43. Acronyms Used in this Document

Acronym	Description
abus	analog local bus
ADC	analog-to-digital converter
AG	analog global
AHB	AMBA (advanced microcontroller bus archi- tecture) high-performance bus, an ARM data transfer bus
ALU	arithmetic logic unit
AMUXBUS	analog multiplexer bus
API	application programming interface
APSR	application program status register
ARM®	advanced RISC machine, a CPU architecture
ATM	automatic thump mode
BW	bandwidth
CAN	Controller Area Network, a communications protocol
CMRR	common-mode rejection ratio
CPU	central processing unit
CRC	cyclic redundancy check, an error-checking protocol
DAC	digital-to-analog converter, see also IDAC, VDAC
DFB	digital filter block
DIO	digital input/output, GPIO with only digital capabilities, no analog. See GPIO.
DMIPS	Dhrystone million instructions per second
DMA	direct memory access, see also TD
DNL	differential nonlinearity, see also INL
DNU	do not use
DR	port write data registers
DSI	digital system interconnect
DWT	data watchpoint and trace
ECC	error correcting code
ECO	external crystal oscillator
EEPROM	electrically erasable programmable read-only memory
EMI	electromagnetic interference
EMIF	external memory interface
EOC	end of conversion
EOF	end of frame
EPSR	execution program status register
ESD	electrostatic discharge

Table 43. Ac	cronyms Used in this Document (continued)		
Acronym	Description		
ETM	embedded trace macrocell		
FIR	finite impulse response, see also IIR		
FPB	flash patch and breakpoint		
FS	full-speed		
GPIO	general-purpose input/output, applies to a PSoC pin		
HVI	high-voltage interrupt, see also LVI, LVD		
IC	integrated circuit		
IDAC	current DAC, see also DAC, VDAC		
IDE	integrated development environment		
I ² C, or IIC	Inter-Integrated Circuit, a communications protocol		
IIR	infinite impulse response, see also FIR		
ILO	internal low-speed oscillator, see also IMO		
IMO	internal main oscillator, see also ILO		
INL	integral nonlinearity, see also DNL		
I/O	input/output, see also GPIO, DIO, SIO, USBIO		
IPOR	initial power-on reset		
IPSR	interrupt program status register		
IRQ	interrupt request		
ITM	instrumentation trace macrocell		
LCD	liquid crystal display		
LIN	Local Interconnect Network, a communications protocol.		
LR	link register		
LUT	lookup table		
LVD	low-voltage detect, see also LVI		
LVI	low-voltage interrupt, see also HVI		
LVTTL	low-voltage transistor-transistor logic		
MAC	multiply-accumulate		
MCU	microcontroller unit		
MISO	master-in slave-out		
NC	no connect		
NMI	nonmaskable interrupt		
NRZ	non-return-to-zero		
NVIC	nested vectored interrupt controller		
NVL	nonvolatile latch, see also WOL		
opamp	operational amplifier		
PAL	programmable array logic, see also PLD		
PC	program counter		
РСВ	printed circuit board		

Document Conventions

Units of Measure

Table 44. Units of Measure

Symbol	Unit of Measure
°C	degrees Celsius
dB	decibel
fF	femto farad
Hz	hertz
KB	1024 bytes
kbps	kilobits per second
Khr	kilohour
kHz	kilohertz
kΩ	kilo ohm
ksps	kilosamples per second
LSB	least significant bit
Mbps	megabits per second
MHz	megahertz
MΩ	mega-ohm
Msps	megasamples per second
μΑ	microampere
μF	microfarad
μH	microhenry
μs	microsecond
μV	microvolt
μW	microwatt
mA	milliampere
ms	millisecond
mV	millivolt
nA	nanoampere
ns	nanosecond
nV	nanovolt
Ω	ohm
pF	picofarad
ppm	parts per million
ps	picosecond
S	second
sps	samples per second
sqrtHz	square root of hertz
V	volt