

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	24MHz
Connectivity	I ² C, IrDA, LINbus, Microwire, SmartCard, SPI, SSP, UART/USART
Peripherals	Brown-out Detect/Reset, CapSense, LCD, LVD, POR, PWM, WDT
Number of I/O	51
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 5.5V
Data Converters	A/D 16x12b SAR; 2xIDAC
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c4126azi-m445

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

More Information

Cypress provides a wealth of data at www.cypress.com to help you to select the right PSoC device for your design, and to help you to quickly and effectively integrate the device into your design. For a comprehensive list of resources, see the knowledge base article KBA86521, How to Design with PSoC 3, PSoC 4, and PSoC 5LP. Following is an abbreviated list for PSoC 4:

- Overview: PSoC Portfolio, PSoC Roadmap
- Product Selectors: PSoC 1, PSoC 3, PSoC 4, PSoC 5LP In addition, PSoC Creator includes a device selection tool.
- Application notes: Cypress offers a large number of PSoC application notes covering a broad range of topics, from basic to advanced level. Recommended application notes for getting started with PSoC 4 are:
 - □ AN79953: Getting Started With PSoC 4
 - □ AN88619: PSoC 4 Hardware Design Considerations
 - □ AN86439: Using PSoC 4 GPIO Pins

PSoC Creator

- □ AN57821: Mixed Signal Circuit Board Layout
- □ AN81623: Digital Design Best Practices
- □ AN73854: Introduction To Bootloaders
- AN89610: ARM Cortex Code Optimization

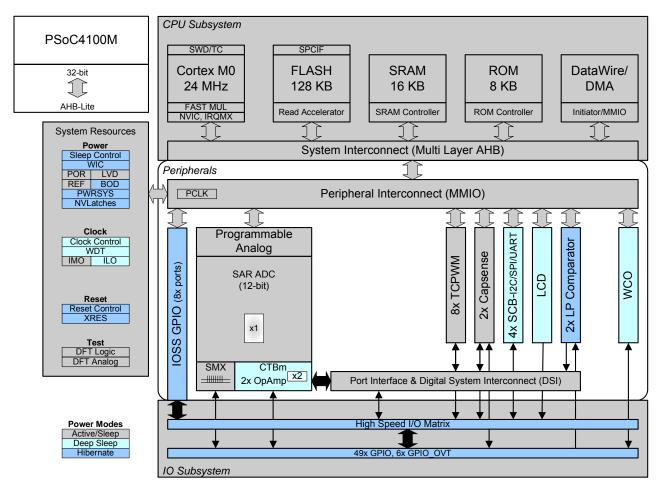
- Technical Reference Manual (TRM) is in two documents:
- □ Architecture TRM details each PSoC 4 functional block.
- □ Registers TRM describes each of the PSoC 4 registers.
- Development Kits:
 - CY8CKIT-042, PSoC 4 Pioneer Kit, is an easy-to-use and inexpensive development platform. This kit includes connectors for Arduino[™] compatible shields and Digilent® Pmod[™] daughter cards.
 - CY8CKIT-049 is a very low-cost prototyping platform. It is a low-cost alternative to sampling PSoC 4 devices.
 - CY8CKIT-001 is a common development platform for any one of the PSoC 1, PSoC 3, PSoC 4, or PSoC 5LP families of devices.

The MiniProg3 device provides an interface for flash programming and debug.

PSoC Creator is a free Windows-based Integrated Design Environment (IDE). It enables concurrent hardware and firmware design of PSoC 3, PSoC 4, and PSoC 5LP based systems. Create designs using classic, familiar schematic capture supported by over 100 pre-verified, production-ready PSoC Components; see the list of component datasheets. With PSoC Creator, you can:

- 1. Drag and drop component icons to build your hardware system design in the main design workspace
- 2. Codesign your application firmware with the PSoC hardware, using the PSoC Creator IDE C compiler
- 3. Configure components using the configuration tools
- 4. Explore the library of 100+ components
- 5. Review component datasheets

Figure 1. Multiple-Sensor Example Project in PSoC Creator


Contents

PSoC 4100M Block Diagram	4
Functional Definition	
CPU and Memory Subsystem	
System Resources	
Analog Blocks	
Fixed Function Digital	
GPIO	
Special Function Peripherals	8
Pinouts	9
Power	. 13
Unregulated External Supply	. 13
Regulated External Supply	
Development Support	. 14
Documentation	
Online	
Tools	
Electrical Specifications	. 15
Absolute Maximum Ratings	
Device Level Specifications	. 15

Analog Peripherals	19
Digital Peripherals	24
Memory	26
System Resources	
Ordering Information	
Part Numbering Conventions	31
Packaging	32
Acronyms	
Document Conventions	
Units of Measure	37
Revision History	38
Sales, Solutions, and Legal Information	
Worldwide Sales and Design Support	39
Products	39
PSoC® Solutions	
Cypress Developer Community	39
Technical Support	39

PSoC 4100M Block Diagram

The PSoC 4100-M devices include extensive support for programming, testing, debugging, and tracing both hardware and firmware.

The ARM Serial_Wire Debug (SWD) interface supports all programming and debug features of the device.

Complete debug-on-chip functionality enables full-device debugging in the final system using the standard production device. It does not require special interfaces, debugging pods, simulators, or emulators. Only the standard programming connections are required to fully support debug.

The PSoC Creator Integrated Development Environment (IDE) provides fully integrated programming and debug support for PSoC 4100-M devices. The SWD interface is fully compatible with industry-standard third-party tools. The PSoC 4100-M family provides a level of security not possible with multi-chip application solutions or with microcontrollers. This is due to its ability to disable debug features, robust flash protection, and

because it allows customer-proprietary functionality to be implemented in on-chip programmable blocks.

The debug circuits are enabled by default and can only be disabled in firmware. If not enabled, the only way to re-enable them is to erase the entire device, clear flash protection, and reprogram the device with new firmware that enables debugging.

Additionally, all device interfaces can be permanently disabled (device security) for applications concerned about phishing attacks due to a maliciously reprogrammed device or attempts to defeat security by starting and interrupting flash programming sequences. Because all programming, debug, and test interfaces are disabled when maximum device security is enabled, PSoC 4100-M with device security enabled may not be returned for failure analysis. This is a trade-off the PSoC 4100-M allows the customer to make.

Watchdog Timer

A watchdog timer is implemented in the clock block running from the low-frequency clock; this allows watchdog operation during Deep Sleep and generates a watchdog reset or an interrupt if not serviced before the timeout occurs. The watchdog reset is recorded in the Reset Cause register.

Reset

The PSoC 4100M can be reset from a variety of sources including a software reset. Reset events are asynchronous and guarantee reversion to a known state. The reset cause is recorded in a register, which is sticky through reset and allows software to determine the cause of the reset. An XRES pin is reserved for external reset to avoid complications with configuration and multiple pin functions during power-on or reconfiguration.

Voltage Reference

The PSoC 4100M reference system generates all internally required references. A 1% voltage reference spec is provided for the 12-bit ADC. To allow better signal-to-noise ratios (SNR) and better absolute accuracy, it is possible to add an external bypass capacitor to the internal reference using a GPIO pin or to use an external reference for the SAR.

Analog Blocks

12-bit SAR ADC

The 12-bit SAR ADC can operate at a maximum sample rate of 806 Ksamples/second.

The block functionality is augmented for the user by adding a reference buffer to it (trimmable to \pm 1%) and by providing the choice of three internal voltage references: V_{DD}, V_{DD}/2, and

V_{REF} (nominally 1.024 V) as well as an external reference through a GPIO pin. The Sample-and-Hold (S/H) aperture is programmable allowing the gain bandwidth requirements of the amplifier driving the SAR inputs, which determine its settling time, to be relaxed if required. The system performance will be 65 dB for true 12-bit precision if appropriate references are used and system noise levels permit. To improve performance in noisy conditions, it is possible to provide an external bypass (through a fixed pin location) for the internal reference amplifier.

The SAR is connected to a fixed set of pins through an 8-input sequencer (expandable to 16 inputs). The sequencer cycles through selected channels autonomously (sequencer scan) and does so with zero switching overhead (that is, the aggregate sampling bandwidth is equal to 1 Msps, whether it is for a single channel or distributed over several channels). The sequencer switching is effected through a state machine or through firmware-driven switching. A feature provided by the sequencer is buffering of each channel to reduce CPU interrupt service requirements. To accommodate signals with varying source impedance and frequency, it is possible to have different sample times programmable for each channel. In addition, the signal range specification through a pair of range registers (low and high range values) is implemented with a corresponding out-of-range interrupt if the digitized value exceeds the programmed range; this allows fast detection of out-of-range values without the necessity of having to wait for a sequencer scan to be completed and the CPU to read the values and check for out-of-range values in software.

The SAR is able to digitize the output of the on-board temperature sensor for calibration and other temperature-dependent functions. The SAR is not available in Deep Sleep and Hibernate modes as it requires a high-speed clock. The SAR operating range is 1.71 to 5.5 V.

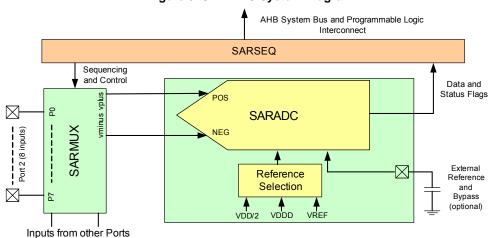


Figure 3. SAR ADC System Diagram

Pinouts

The following is the pin list for the PSoC 4100M. This shows the power supply and port pins (for example, P0.0 is Pin 0 of Port 0).

	68-QFN		64-TQFP		48-TQFP		44-TQFP
Pin	Name	Pin	Name	Pin	Name	Pin	Name
42	P0.0	39	P0.0	28	P0.0	24	P0.0
43	P0.1	40	P0.1	29	P0.1	25	P0.1
44	P0.2	41	P0.2	30	P0.2	26	P0.2
45	P0.3	42	P0.3	31	P0.3	27	P0.3
46	P0.4	43	P0.4	32	P0.4	28	P0.4
47	P0.5	44	P0.5	33	P0.5	29	P0.5
48	P0.6	45	P0.6	34	P0.6	30	P0.6
49	P0.7	46	P0.7	35	P0.7	31	P0.7
50	XRES	47	XRES	36	XRES	32	XRES
51	VCCD	48	VCCD	37	VCCD	33	VCCD
52	VSSD	49	VSSD	38	VSSD	DN	VSSD
53	VDDD	50	VDDD	39	VDDD	34	VDDD
				40	VDDA	35	VDDA
54	P5.0	51	P5.0				
55	P5.1	52	P5.1				
56	P5.2	53	P5.2				
57	P5.3	54	P5.3				
58	P5.4						
59	P5.5	55	P5.5				
60	VDDA	56	VDDA	40	VDDA	35	VDDA
61	VSSA	57	VSSA	41	VSSA	36	VSSA
62	P1.0	58	P1.0	42	P1.0	37	P1.0
63	P1.1	59	P1.1	43	P1.1	38	P1.1
64	P1.2	60	P1.2	44	P1.2	39	P1.2
65	P1.3	61	P1.3	45	P1.3	40	P1.3
66	P1.4	62	P1.4	46	P1.4	41	P1.4
67	P1.5	63	P1.5	47	P1.5	42	P1.5
68	P1.6	64	P1.6	48	P1.6	43	P1.6
1	P1.7/VREF	1	P1.7/VREF	1	P1.7/VREF	44	P1.7/VREF
						1	VSSD
2	P2.0	2	P2.0	2	P2.0	2	P2.0
3	P2.1	3	P2.1	3	P2.1	3	P2.1
4	P2.2	4	P2.2	4	P2.2	4	P2.2
5	P2.3	5	P2.3	5	P2.3	5	P2.3
6	P2.4	6	P2.4	6	P2.4	6	P2.4
7	P2.5	7	P2.5	7	P2.5	7	P2.5

	68-QFN		64-TQFP	48-TQFP			44-TQFP
Pin	Name	Pin	Name	Pin	Name	Pin	Name
8	P2.6	8	P2.6	8	P2.6	8	P2.6
9	P2.7	9	P2.7	9	P2.7	9	P2.7
10	VSSA	10	VSSA	10	VSSD	10	VSSD
11	VDDA	11	VDDA				
12	P6.0	12	P6.0				
13	P6.1	13	P6.1				
14	P6.2	14	P6.2				
15	P6.3						
16	P6.4	15	P6.4				
17	P6.5	16	P6.5				
18	VSSIO	17	VSSIO	10	VSSD	10	VSSD
19	P3.0	18	P3.0	12	P3.0	11	P3.0
20	P3.1	19	P3.1	13	P3.1	12	P3.1
21	P3.2	20	P3.2	14	P3.2	13	P3.2
22	P3.3	21	P3.3	16	P3.3	14	P3.3
23	P3.4	22	P3.4	17	P3.4	15	P3.4
24	P3.5	23	P3.5	18	P3.5	16	P3.5
25	P3.6	24	P3.6	19	P3.6	17	P3.6
26	P3.7	25	P3.7	20	P3.7	18	P3.7
27	VDDIO	26	VDDIO	21	VDDIO	19	VDDD
28	P4.0	27	P4.0	22	P4.0	20	P4.0
29	P4.1	28	P4.1	23	P4.1	21	P4.1
30	P4.2	29	P4.2	24	P4.2	22	P4.2
31	P4.3	30	P4.3	25	P4.3	23	P4.3
32	P4.4	31	P4.4				
33	P4.5	32	P4.5				
34	P4.6	33	P4.6				
35	P4.7						
39	P7.0	37	P7.0	26	P7.0		
40	P7.1	38	P7.1	27	P7.1		
41	P7.2						

The pins of Port 6 are overvoltage-tolerant. Pins 36, 37, and 38 are No-Connects on the 68-pin QFN. Pins 34, 35, and 36 are No-Connects on the 64-pin TQFP. Pins 11 and 15 are No-connects in the 48-pin TQFP. All VSS pins must be tied together.

The output drivers of I/O Ports P0 and P7 are connected to VDDD. Output drivers of I/O Ports 1, 2, and 5 are connected to VDDA. Output drivers of I/O Ports 3, 4, and 6 are connected to VDDIO.

Each of the pins shown in the previous table can have multiple programmable functions as shown in the following table. Column headings refer to Analog and Alternate pin functions:

Port/Pin	Analog	Alt. Function 1	Alt. Function 2	Alt. Function 3	Alt. Function 4	Alt. Function 5
P0.0	lpcomp.in_p[0]					scb[0].spi_select1:0
P0.1	lpcomp.in_n[0]					scb[0].spi_select2:0
P0.2	lpcomp.in_p[1]					scb[0].spi_select3:0
P0.3	lpcomp.in_n[1]					
P0.4	wco_in		scb[1].uart_rx:0		scb[1].i2c_scl:0	scb[1].spi_mosi:1
P0.5	wco_out		scb[1].uart_tx:0		scb[1].i2c_sda:0	scb[1].spi_miso:1
P0.6		ext_clk:0	scb[1].uart_cts:0			scb[1].spi_clk:1
P0.7			scb[1].uart_rts:0		wakeup	scb[1].spi_select0:1
P5.0	ctb1.oa0.inp	tcpwm.line[4]:2	scb[2].uart_rx:0		scb[2].i2c_scl:0	scb[2].spi_mosi:0
P5.1	ctb1.oa0.inm	tcpwm.line_compl[4]:2	scb[2].uart_tx:0		scb[2].i2c_sda:0	scb[2].spi_miso:0
P5.2	ctb1.oa0.out	tcpwm.line[5]:2	scb[2].uart_cts:0		lpcomp.comp[0]:1	scb[2].spi_clk:0
P5.3	ctb1.oa1.out	tcpwm.line_compl[5]:2	scb[2].uart_rts:0		lpcomp.comp[1]:1	scb[2].spi_select0:0
P5.4	ctb1.oa1.inm	tcpwm.line[6]:2				scb[2].spi_select1:0
P5.5	ctb1.oa1.inp	tcpwm.line_compl[6]:2				scb[2].spi_select2:0
P5.6	ctb1.oa0.inp_alt	tcpwm.line[7]:0				scb[2].spi_select3:0
P5.7	ctb1.oa1.inp_alt	tcpwm.line_compl[7]:0				
P1.0	ctb0.oa0.inp	tcpwm.line[2]:1	scb[0].uart_rx:1		scb[0].i2c_scl:0	scb[0].spi_mosi:1
P1.1	ctb0.oa0.inm	tcpwm.line_compl[2]:1	scb[0].uart_tx:1		scb[0].i2c_sda:0	scb[0].spi_miso:1
P1.2	ctb0.oa0.out	tcpwm.line[3]:1	scb[0].uart_cts:1			scb[0].spi_clk:1
P1.3	ctb0.oa1.out	tcpwm.line_compl[3]:1	scb[0].uart_rts:1			scb[0].spi_select0:1
P1.4	ctb0.oa1.inm	tcpwm.line[6]:1				scb[0].spi_select1:1
P1.5	ctb0.oa1.inp	tcpwm.line_compl[6]:1				scb[0].spi_select2:1
P1.6	ctb0.oa0.inp_alt	tcpwm.line[7]:1				scb[0].spi_select3:1
P1.7	ctb0.oa1.inp_alt	tcpwm.line_compl[7]:1				
P2.0	sarmux.0	tcpwm.line[4]:1			scb[1].i2c_scl:1	scb[1].spi_mosi:2
P2.1	sarmux.1	tcpwm.line_compl[4]:1			scb[1].i2c_sda:1	scb[1].spi_miso:2
P2.2	sarmux.2	tcpwm.line[5]:1				scb[1].spi_clk:2
P2.3	sarmux.3	tcpwm.line_compl[5]:1				scb[1].spi_select0:2
P2.4	sarmux.4	tcpwm.line[0]:1				scb[1].spi_select1:1
P2.5	sarmux.5	tcpwm.line_compl[0]:1				scb[1].spi_select2:1
P2.6	sarmux.6	tcpwm.line[1]:1				scb[1].spi_select3:1
P2.7	sarmux.7	tcpwm.line_compl[1]:1				scb[3].spi_select0:1

Power

The supply voltage range is 1.71 to 5.5 V with all functions and circuits operating over that range.

The PSoC 4100M family allows two distinct modes of power supply operation: Unregulated External Supply and Regulated External Supply modes.

Unregulated External Supply

In this mode, the PSoC 4100M is powered by an External Power Supply that can be anywhere in the range of 1.8 to 5.5 V. This range is also designed for battery-powered operation, for instance, the chip can be powered from a battery system that starts at 3.5V and works down to 1.8 V. In this mode, the internal regulator of the PSoC 4100M supplies the internal logic and the VCCD output of the PSoC 4100M must be bypassed to ground via an external Capacitor (in the range of 1 to 1.6 μ F; X5R ceramic or better).

The grounds, VSSA and VSS, must be shorted together. Bypass capacitors must be used from VDDD and VDDA to ground, typical practice for systems in this frequency range is to use a capacitor in the 1 μF range in parallel with a smaller capacitor (0.1 μF , for example). Note that these are simply rules of thumb and that, for critical applications, the PCB layout, lead inductance, and the Bypass capacitor parasitic should be simulated to design and obtain optimal bypassing.

Power Supply	Bypass Capacitors
VDDD–VSS and VDDIO-VSS	0.1 μ F ceramic at each pin plus bulk capacitor 1 to 10 μ F.
VDDA-VSSA	0.1 μ F ceramic at pin. Additional 1 μ F to 10 μ F bulk capacitor
VCCD-VSS	1 μ F ceramic capacitor at the VCCD pin
VREF–VSSA (optional)	The internal bandgap may be bypassed with a 1 μ F to 10 μ F capacitor for better ADC performance.

Regulated External Supply

In this mode, the PSoC 4100M is powered by an external power supply that must be within the range of 1.71 to 1.89 V (1.8 \pm 5%); note that this range needs to include power supply ripple. VCCD and VDDD pins are shorted together and bypassed. The internal regulator is disabled in firmware.

Development Support

The PSoC 4100M family has a rich set of documentation, development tools, and online resources to assist you during your development process. Visit www.cypress.com/go/psoc4 to find out more.

Documentation

A suite of documentation supports the PSoC 4100M family to ensure that you can find answers to your questions quickly. This section contains a list of some of the key documents.

Software User Guide: A step-by-step guide for using PSoC Creator. The software user guide shows you how the PSoC Creator build process works in detail, how to use source control with PSoC Creator, and much more.

Component Datasheets: The flexibility of PSoC allows the creation of new peripherals (components) long after the device has gone into production. Component data sheets provide all of the information needed to select and use a particular component, including a functional description, API documentation, example code, and AC/DC specifications.

Application Notes: PSoC application notes discuss a particular application of PSoC in depth; examples include brushless DC motor control and on-chip filtering. Application notes often include example projects in addition to the application note document.

Technical Reference Manual: The Technical Reference Manual (TRM) contains all the technical detail you need to use a PSoC device, including a complete description of all PSoC registers.

Online

In addition to print documentation, the Cypress PSoC forums connect you with fellow PSoC users and experts in PSoC from around the world, 24 hours a day, 7 days a week.

Tools

With industry standard cores, programming, and debugging interfaces, the PSoC 4100M family is part of a development tool ecosystem. Visit us at www.cypress.com/go/psoccreator for the latest information on the revolutionary, easy to use PSoC Creator IDE, supported third party compilers, programmers, debuggers, and development kits.

Table 2. DC Specifications (continued)

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details / Conditions
Deep Sleep	Mode, –40 °C	to + 60 °C					
SID30	I _{DD25}	I ² C wakeup and WDT on. Regulator Off.	_	1.55	20	μA	V _{DD} = 1.71 to 1.89
SID31	I _{DD26}	I ² C wakeup and WDT on.	_	1.35	15	μA	V _{DD} = 1.8 to 3.6
SID32	I _{DD27}	I ² C wakeup and WDT on.	_	1.5	15	μA	V _{DD} = 3.6 to 5.5
Deep Sleep	Mode, +85 °C	· · · · · · · · · · · · · · · · · · ·				1	
SID33	I _{DD28}	I ² C wakeup and WDT on. Regulator Off.	_	-	60	μA	V _{DD} = 1.71 to 1.89
SID34	I _{DD29}	I ² C wakeup and WDT on.	_	-	45	μA	V _{DD} = 1.8 to 3.6
SID35	I _{DD30}	I ² C wakeup and WDT on.	-	-	30	μA	V _{DD} = 3.6 to 5.5
Deep Sleep	Mode, +105 °C	;				1	
SID33Q	I _{DD28Q}	I ² C wakeup and WDT on. Regulator Off.	_	-	135	μA	V _{DD} = 1.71 to 1.89
SID34Q	I _{DD29Q}	I ² C wakeup and WDT on.	-	-	180	μA	V _{DD} = 1.8 to 3.6
SID35Q	I _{DD30Q}	I ² C wakeup and WDT on.	_	-	140	μA	V _{DD} = 3.6 to 5.5
Hibernate M	Node, –40 °C to	• + 60 °C				1	
SID39	I _{DD34}	Regulator Off.	_	150	3000	nA	V _{DD} = 1.71 to 1.89
SID40	I _{DD35}		_	150	1000	nA	V _{DD} = 1.8 to 3.6
SID41	I _{DD36}		_	150	1100	nA	V _{DD} = 3.6 to 5.5
Hibernate M	/lode, +85 °C	•			•	•	
SID42	I _{DD37}	Regulator Off.	-	-	4500	nA	V _{DD} = 1.71 to 1.89
SID43	I _{DD38}		-	-	3500	nA	V _{DD} = 1.8 to 3.6
SID44	I _{DD39}		-	-	3500	nA	V _{DD} = 3.6 to 5.5
Hibernate M	/lode, +105 °C	•			•	•	
SID42Q	I _{DD37Q}	Regulator Off.	_	-	19.4	μA	V _{DD} = 1.71 to 1.89
SID43Q	I _{DD38Q}		-	-	17	μA	V _{DD} = 1.8 to 3.6
SID44Q	I _{DD39Q}		-	-	16	μA	V _{DD} = 3.6 to 5.5
Stop Mode,	+85 °C	•			•	•	
SID304	I _{DD43A}	Stop Mode current; V _{DD} = 3.6 V	_	35	85	nA	T = -40 °C to $+60$ °C
SID304A	I _{DD43B}	Stop Mode current; V _{DD} = 3.6 V	-	-	1450	nA	T = +85 °C
Stop Mode,	+105 °C	· · · · · · · · · · · · · · · · · · ·			•		
SID304Q	I _{DD43AQ}	Stop Mode current; V _{DD} = 3.6 V	_	-	5645	nA	
XRES curre		· · · · · · · · · · · · · · · · · · ·		1		1	1
SID307	I _{DD_XR}	Supply current while XRES asserted	_	2	5	mA	

Table 3. AC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID48	F _{CPU}	CPU frequency	DC	-	24	MHz	$1.71 \leq V_{DD} \leq 5.5$
SID49	T _{SLEEP}	Wakeup from sleep mode	-	0	_	μs	Guaranteed by characterization
SID50	T _{DEEPSLEEP}	Wakeup from Deep Sleep mode	-	-	25	μs	24 MHz IMO. Guaranteed by characterization
SID51	T _{HIBERNATE}	Wakeup from Hibernate mode	-	-	0.7	ms	Guaranteed by characterization
SID51A	T _{STOP}	Wakeup from Stop mode	-	-	2	ms	Guaranteed by characterization
SID52	T _{RESETWIDTH}	External reset pulse width	1	-	_	μs	Guaranteed by characterization

GPIO

Table 4. GPIO DC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID57	V _{IH} ^[2]	Input voltage high threshold	0.7 × V _{DDD}	-	-	V	CMOS Input
SID57A	IIHS	Input current when Pad > V _{DDIO} for OVT inputs	-	-	10	μA	Per I ² C Spec
SID58	V _{IL}	Input voltage low threshold	-	-	0.3 × V _{DDD}	V	CMOS Input
SID241	V _{IH} [2]	LVTTL input, V _{DDD} < 2.7 V	0.7× V _{DDD}	-	-	V	
SID242	V _{IL}	LVTTL input, V _{DDD} < 2.7 V	-	_	0.3 × V _{DDD}	V	
SID243	V _{IH} ^[2]	LVTTL input, $V_{DDD} \ge 2.7 V$	2.0	-	_	V	
SID244	V _{IL}	LVTTL input, $V_{DDD} \ge 2.7 V$	-	-	0.8	V	
SID59	V _{OH}	Output voltage high level	V _{DDD} -0.6	-	-	V	I _{OH} = 4 mA at 3 V V _{DDD}
SID60	V _{OH}	Output voltage high level	V _{DDD} -0.5	-	-	V	I _{OH} = 1 mA at 1.8 V V _{DDD}
SID61	V _{OL}	Output voltage low level	-	-	0.6	V	I _{OL} = 4 mA at 1.8 V V _{DDD}
SID62	V _{OL}	Output voltage low level	-	-	0.6	V	I _{OL} = 8 mA at 3 V V _{DDD}
SID62A	V _{OL}	Output voltage low level	_	-	0.4	V	I _{OL} = 3 mA at 3 V V _{DDD}
SID63	R _{PULLUP}	Pull-up resistor	3.5	5.6	8.5	kΩ	
SID64	R _{PULLDOWN}	Pull-down resistor	3.5	5.6	8.5	kΩ	
SID65	IIL	Input leakage current (absolute value)	_	_	2	nA	25 °C, V _{DDD} = 3.0 V. Guaranteed by characterization

Analog Peripherals

Opamp

Table 8. Opamp Specifications

(Guaranteed by Characterization)

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
	I _{DD}	Opamp block current. No load.	-	-	-	_	
SID269	I _{DD_HI}	Power = high	-	1100	1850	μA	
SID270	I _{DD_MED}	Power = medium	-	550	950	μA	
SID271	I _{DD_LOW}	Power = low	-	150	350	μA	
	GBW	Load = 20 pF, 0.1 mA. V _{DDA} = 2.7 V	-	-	-	-	
SID272	GBW_HI	Power = high	6	_	-	MHz	
SID273	GBW_MED	Power = medium	4	_	-	MHz	
SID274	GBW_LO	Power = low	-	1	-	MHz	
	I _{OUT_MAX}	$V_{DDA} \ge 2.7 \text{ V}, 500 \text{ mV}$ from rail	-	_	-	-	
SID275	I _{OUT_MAX_HI}	Power = high	10	-	-	mA	
SID276	I _{OUT_MAX_MID}	Power = medium	10	_	-	mA	
SID277	IOUT_MAX_LO	Power = low	-	5	-	mA	
	I _{OUT}	V _{DDA} = 1.71 V, 500 mV from rail	-	_	-	-	
SID278	I _{OUT_MAX_HI}	Power = high	4	_	-	mA	
SID279	IOUT_MAX_MID	Power = medium	4	_	-	mA	
SID280	IOUT_MAX_LO	Power = low	-	2	-	mA	
SID281	V _{IN}	Input voltage range	-0.05	-	VDDA - 0.2	V	Charge-pump on, $V_{DDA} \ge$ 2.7 V
SID282	V _{CM}	Input common mode voltage	-0.05	-	VDDA - 0.2	V	Charge-pump on, $V_{DDA} \ge 2.7 \text{ V}$
	V _{OUT}	$V_{DDA} \ge 2.7 V$	-	_	-		
SID283	V _{OUT_1}	Power = high, Iload=10 mA	0.5	-	VDDA - 0.5	V	
SID284	V _{OUT_2}	Power = high, Iload=1 mA	0.2	-	VDDA - 0.2	V	
SID285	V _{OUT_3}	Power = medium, lload=1 mA	0.2	-	VDDA - 0.2	V	
SID286	V _{OUT_4}	Power = low, lload=0.1 mA	0.2	-	VDDA - 0.2	V	
SID288	V _{OS_TR}	Offset voltage, trimmed	1	±0.5	1	mV	High mode
SID288A	V _{OS_TR}	Offset voltage, trimmed	-	±1	-	mV	Medium mode
SID288B	V _{OS_TR}	Offset voltage, trimmed	-	±2	-	mV	Low mode
SID290	V _{OS_DR_TR}	Offset voltage drift, trimmed	-10	±3	10	μV/°C	High mode. T _A ≤ 85 °C.
SID290Q	V _{OS_DR_TR}	Offset voltage drift, trimmed	15	±3	15	μV/°C	High mode. T _A ≤ 105 °C
SID290A	V _{OS_DR_TR}	Offset voltage drift, trimmed	-	±10	-	μV/°C	Medium mode
SID290B	V _{OS_DR_TR}	Offset voltage drift, trimmed	-	±10	-	μV/°C	Low mode
SID291	CMRR	DC Common mode rejection ratio. High-power mode. Common Model voltage range from 0.5 V to VDDA - 0.5 V.	60	70	_	dB	V _{DDD} = 3.6 V
SID292	PSRR	At 1 kHz, 100-mV ripple	70	85	_	dB	V _{DDD} = 3.6 V
	Noise		-	_	-	_	

Table 8. Opamp Specifications

(Guaranteed by Characterization) (continued)

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID_DS_18	VOS_LOW_M2	Mode 2, Low current	Ι	5	-	mV	With trim 25 °C, 0.2 V to V_{DDA} -1.5 V
SID_DS_19	IOUT_HI_M1	Mode 1, High current	_	10	-	mA	Output is 0.5 V to VDDA-0.5 V
SID_DS_20	IOUT_MED_M1	Mode 1, Medium current	_	10	-	mA	Output is 0.5 V to VDDA-0.5 V
SID_DS_21	IOUT_LOW_M1	Mode 1, Low current	_	4	-	mA	Output is 0.5 V to VDDA-0.5 V
SID_DS_22	IOUT_HI_M2	Mode 2, High current	-	1	-	mA	Output is 0.5 V to V _{DDA} -0.5 V
SID_DS_23	IOUT_MED_M2	Mode 2, Medium current	-	1	-	mA	Output is 0.5 V to V _{DDA} -0.5 V
SID_DS_24	IOUT_LOW_M2	Mode 2, Low current	-	0.5	-	mA	Output is 0.5 V to V _{DDA} -0.5 V

Comparator

Table 9. Comparator DC Specifications

Spec ID#	Parameter	Description	Min	Тур	Мах	Units	Details/ Conditions
SID85	V _{OFFSET2}	Input offset voltage, Common Mode voltage range from 0 to V_{DD} -1	-	-	±4	mV	
SID85A	V _{OFFSET3}	Input offset voltage. Ultra low-power mode ($V_{DDD} \ge 2.2$ V for Temp < 0 °C, $V_{DDD} \ge 1.8$ V for Temp > 0 °C).	-	±12	-	mV	
SID86	V _{HYST}	Hysteresis when enabled, Common Mode voltage range from 0 to V_{DD} -1.	-	10	35	mV	Guaranteed by charac- terization
SID87	V _{ICM1}	Input common mode voltage in normal mode	0	-	V _{DDD} -0.1	V	Modes 1 and 2.
SID247	V _{ICM2}	Input common mode voltage in low power mode	0	-	V _{DDD}	V	
SID247A	V _{ICM3}	Input common mode voltage in ultra low power mode ($V_{DDD} \ge 2.2$ V for Temp < 0 °C, $V_{DDD} \ge 1.8$ V for Temp > 0 °C)	0	-	V _{DDD} – 1.15	V	
SID88	CMRR	Common mode rejection ratio	50	-	-	dB	$V_{DDD} \ge 2.7$ V. Guaranteed by characterization
SID88A	CMRR	Common mode rejection ratio	42	-	-	dB	V _{DDD} < 2.7 V. Guaranteed by charac- terization
SID89	I _{CMP1}	Block current, normal mode	-	-	400	μA	Guaranteed by charac- terization
SID248	I _{CMP2}	Block current, low power mode	_	-	100	μA	Guaranteed by charac- terization
SID259	I _{CMP3}	Block current, ultra low power mode ($V_{DDD} \ge 2.2 \text{ V}$ for Temp < 0 °C, $V_{DDD} \ge 1.8 \text{ V}$ for Temp > 0 °C)	-	6	28	μA	Guaranteed by charac- terization
SID90	Z _{CMP}	DC input impedance of comparator	35	-	-	MΩ	Guaranteed by charac- terization

System Resources

Power-on-Reset (POR) with Brown Out

Table 28. Imprecise Power On Reset (PRES)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID185	V _{RISEIPOR}	Rising trip voltage	0.80	_	1.45	V	Guaranteed by charac- terization
SID186	V _{FALLIPOR}	Falling trip voltage	0.75	_	1.4	V	Guaranteed by charac- terization
SID187	V _{IPORHYST}	Hysteresis	15	_	200	mV	Guaranteed by charac- terization

Table 29. Precise Power On Reset (POR)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID190	V _{FALLPPOR}	BOD trip voltage in active and sleep modes	1.64	-	-	V	Guaranteed by charac- terization
SID192	V _{FALLDPSLP}	BOD trip voltage in Deep Sleep	1.4	_	_	V	Guaranteed by charac- terization

Voltage Monitors

Table 30. Voltage Monitors DC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID195	V _{LVI1}	LVI_A/D_SEL[3:0] = 0000b	1.71	1.75	1.79	V	
SID196	V _{LVI2}	LVI_A/D_SEL[3:0] = 0001b	1.76	1.80	1.85	V	
SID197	V _{LVI3}	LVI_A/D_SEL[3:0] = 0010b	1.85	1.90	1.95	V	
SID198	V _{LVI4}	LVI_A/D_SEL[3:0] = 0011b	1.95	2.00	2.05	V	
SID199	V _{LVI5}	LVI_A/D_SEL[3:0] = 0100b	2.05	2.10	2.15	V	
SID200	V _{LVI6}	LVI_A/D_SEL[3:0] = 0101b	2.15	2.20	2.26	V	
SID201	V _{LVI7}	LVI_A/D_SEL[3:0] = 0110b	2.24	2.30	2.36	V	
SID202	V _{LVI8}	LVI_A/D_SEL[3:0] = 0111b	2.34	2.40	2.46	V	
SID203	V _{LVI9}	LVI_A/D_SEL[3:0] = 1000b	2.44	2.50	2.56	V	
SID204	V _{LVI10}	LVI_A/D_SEL[3:0] = 1001b	2.54	2.60	2.67	V	
SID205	V _{LVI11}	LVI_A/D_SEL[3:0] = 1010b	2.63	2.70	2.77	V	
SID206	V _{LVI12}	LVI_A/D_SEL[3:0] = 1011b	2.73	2.80	2.87	V	
SID207	V _{LVI13}	LVI_A/D_SEL[3:0] = 1100b	2.83	2.90	2.97	V	
SID208	V _{LVI14}	LVI_A/D_SEL[3:0] = 1101b	2.93	3.00	3.08	V	
SID209	V _{LVI15}	LVI_A/D_SEL[3:0] = 1110b	3.12	3.20	3.28	V	
SID210	V _{LVI16}	LVI_A/D_SEL[3:0] = 1111b	4.39	4.50	4.61	V	
SID211	LVI_IDD	Block current	-	_	100	μA	Guaranteed by charac- terization

Table 31. Voltage Monitors AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID212	T _{MONTRIP}	Voltage monitor trip time	-	-	1	μs	Guaranteed by character- ization

SWD Interface

Table 32. SWD Interface Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID213	F_SWDCLK1	$3.3 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	_	_	14	MHz	SWDCLK ≤ 1/3 CPU clock frequency
SID214	F_SWDCLK2	$1.71 \text{ V} \leq \text{V}_{DD} \leq 3.3 \text{ V}$	_	_	7	MHz	SWDCLK ≤ 1/3 CPU clock frequency
SID215	T_SWDI_SETUP	T = 1/f SWDCLK	0.25*T	_	_	ns	Guaranteed by characterization
SID216	T_SWDI_HOLD	T = 1/f SWDCLK	0.25*T	-	_	ns	Guaranteed by characterization
SID217	T_SWDO_VALID	T = 1/f SWDCLK	_	_	0.5*T	ns	Guaranteed by characterization
SID217A	T_SWDO_HOLD	T = 1/f SWDCLK	1	-	_	ns	Guaranteed by characterization

Internal Main Oscillator

Table 33. IMO DC Specifications

(Guaranteed by Design)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID218	I _{IMO1}	IMO operating current at 48 MHz	-	-	1000	μA	
SID219	I _{IMO2}	IMO operating current at 24 MHz	_	-	325	μΑ	
SID220	I _{IMO3}	IMO operating current at 12 MHz	_	-	225	μA	
SID221	I _{IMO4}	IMO operating current at 6 MHz	_	-	180	μA	
SID222	I _{IMO5}	IMO operating current at 3 MHz	-	—	150	μA	

Table 34. IMO AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID223	F _{IMOTOL1}	Frequency variation from 3 to 48 MHz	-	-	±2	%	±3% if T _A > 85 °C and IMO frequency < 24 MHz
SID226	T _{STARTIMO}	IMO startup time	-	-	12	μs	
SID227	T _{JITRMSIMO1}	RMS Jitter at 3 MHz	-	156	_	ps	
SID228	T _{JITRMSIMO2}	RMS Jitter at 24 MHz	-	145	-	ps	
SID229	T _{JITRMSIMO3}	RMS Jitter at 48 MHz	-	139	-	ps	

Internal Low-Speed Oscillator

Table 35. ILO DC Specifications

(Guaranteed by Design)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID231	I _{ILO1}	ILO operating current at 32 kHz	_	0.3	1.05	μA	Guaranteed by Characterization
SID233	I _{ILOLEAK}	ILO leakage current	-	2	15	nA	Guaranteed by Design

Table 36. ILO AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID234	T _{STARTILO1}	ILO startup time	_	-	2	ms	Guaranteed by character- ization
SID236	T _{ILODUTY}	ILO duty cycle	40	50	60	%	Guaranteed by character- ization
SID237	F _{ILOTRIM1}	32 kHz trimmed frequency	15	32	50		Max ILO frequency is 70 kHz if T _A > 85 °C

Table 37. External Clock Specifications

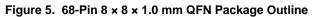
Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID305	ExtClkFreq	External Clock input Frequency	0	Ι	48		Guaranteed by character- ization
SID306	ExtClkDuty	Duty cycle; Measured at V _{DD/2}	45	-	55		Guaranteed by character- ization

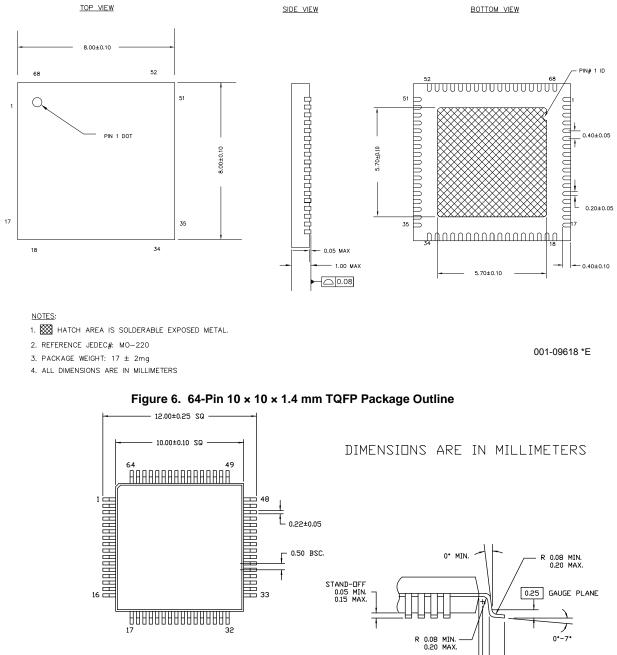
Table 38. Watch Crystal Oscillator (WCO) Specifications

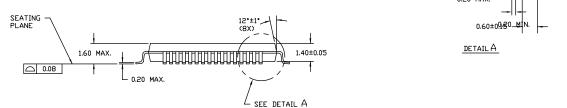
Spec ID	Parameter	Description	Min	Тур	Max	Units	Details / Conditions
IMO WCO-	PLL calibrated	1 mode					
SID330	IMO _{WCO1}	Frequency variation with IMO set to 3 MHz	-0.6	-	0.6	%	Does not include WCO tolerance
SID331	IMO _{WCO2}	Frequency variation with IMO set to 5 MHz	-0.4	-	0.4	%	Does not include WCO tolerance
SID332	IMO _{WCO3}	Frequency variation with IMO set to 7 MHz or 9 MHz	-0.3	-	0.3	%	Does not include WCO tolerance
SID333	IMO _{WCO4}	All other IMO frequency settings	-0.2	-	0.2	%	Does not include WCO tolerance
WCO Spec	ifications	·					
SID398	F _{WCO}	Crystal frequency	_	32.768		kHz	
SID399	F _{TOL}	Frequency tolerance	_	50	250	ppm	With 20-ppm crystal.
SID400	ESR	Equivalent series resistance	_	50	-	kΩ	
SID401	PD	Drive level	_	-	1	μW	
SID402	T _{START}	Startup time	_	-	500	ms	
SID403	CL	Crystal load capacitance	6	_	12.5	pF	
SID404	C ₀	Crystal shunt capacitance	-	1.35	-	pF	
SID405	I _{WCO1}	Operating current (high power mode)	-	-	8	uA	

Table 39. Block Specs

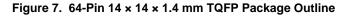
Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID257	T _{WS24} *	Number of wait states at 24 MHz	1	-	-		CPU execution from Flash
SID260	V _{REFSAR}	Trimmed internal reference to SAR	-1	-	+1	%	Percentage of Vbg (1.024 V). Guaranteed by character- ization
SID261	F _{SARINTREF}	SAR operating speed without external reference bypass	-	-	100	ksps	12-bit resolution. Guaranteed by characterization
SID262	T _{CLKSWITCH}	Clock switching from clk1 to clk2 in clk1 periods	3	-	4	Periods	Guaranteed by design
* T _{WS24} is g	uaranteed by des	ign					

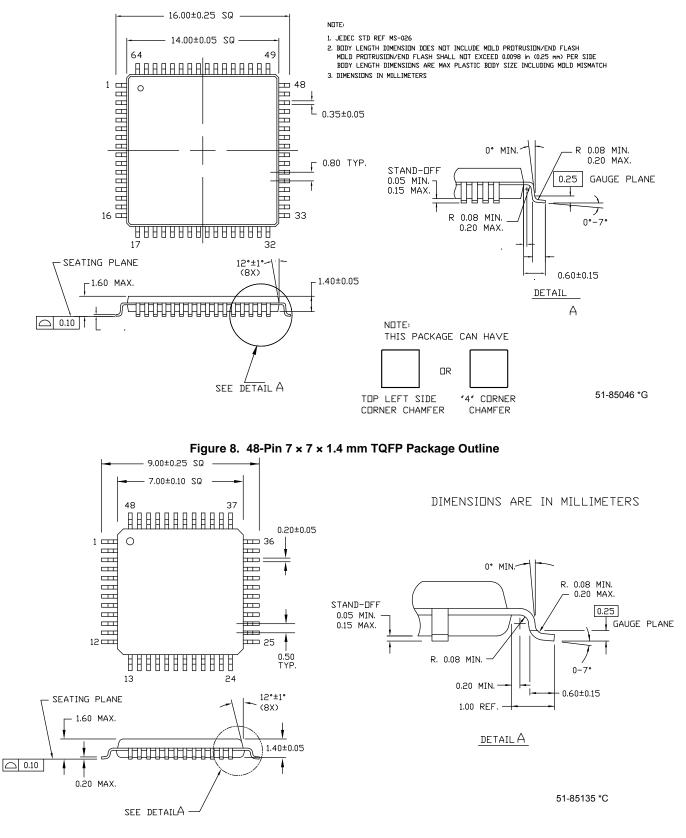



Ordering Information


The PSoC 4100M family part numbers and features are listed in the following table.

		Features								Package										
Category	NAM	Max CPU Speed (MHz)	Flash (KB)	SRAM (KB)	UDB	Opamp (CTBm)	CSD	IDAC (1X7-Bit, 1-8-Bit)	Direct LCD Drive	12-bit SAR ADC	LP Comparators	TCPWM Blocks	SCB Blocks	CAN	GPIO	44-TQFP	48-TQFP	64-TQFP (0.5-mm pitch)	64-TQFP (0.8-mm pitch)	68-QFN
4125	CY8C4125AZI-M433	24	32	4	0	2	-	-	-	806 ksps	2	8	4	-	38	-	~	-	-	-
	CY8C4125AZI-M443	24	32	4	0	2	~	-	~	806 ksps	2	8	4	-	38	-	~	-	-	-
	CY8C4125AZI-M445	24	32	4	0	2	~	-	~	806 ksps	2	8	4	_	51	-	-	~	-	_
	CY8C4125LTI-M445	24	32	4	0	2	~	-	~	806 ksps	2	8	4	-	55	-	-	-	-	~
	CY8C4125AXI-M445	24	32	4	0	2	~	-	~	806 ksps	2	8	4	_	51	_	_	_	~	_
4126	CY8C4126AZI-M443	24	64	8	0	2	~	-	~	806 ksps	2	8	4	-	38	-	~	-	-	-
	CY8C4126AXI-M443	24	64	8	0	2	~	-	~	806 ksps	2	8	4	-	36	~	-	-	-	-
	CY8C4126AZI-M445	24	64	8	0	2	~	-	~	806 ksps	2	8	4	-	51	-	-	~	-	—
	CY8C4126AZI-M475	24	64	8	0	4	-	~	Ι	806 ksps	2	8	4	Ι	51	-	-	>	Ι	—
	CY8C4126LTI-M445	24	64	8	0	2	~	-	~	806 ksps	2	8	4	-	55	-	-	-	-	~
	CY8C4126LTI-M475	24	64	8	0	4	-	~	Ι	806 ksps	2	8	4	Ι	55	-	-	Ι	Ι	~
	CY8C4126AXI-M445	24	64	8	0	2	~	-	~	806 ksps	2	8	4	Ι	51	-	-	Ι	~	-
4127	CY8C4127LTI-M475	24	128	16	0	4	~	~	-	806 ksps	2	8	4	-	55	-	-	-	-	~
	CY8C4127AZI-M475	24	128	16	0	4	-	~	-	806 ksps	2	8	4	-	51	-	-	~	-	-
	CY8C4127AZI-M485	24	128	16	0	4	~	~	~	806 ksps	2	8	4	-	51	-	-	~	-	-
	CY8C4127AXI-M485	24	128	16	0	4	~	~	>	806 ksps	2	8	4	I	51	-	-	Ι	~	-





51-85051 *D

Acronyms

Table 43. Acronyms Used in this Document

Acronym	Description							
abus	analog local bus							
ADC	analog-to-digital converter							
AG	analog global							
АНВ	AMBA (advanced microcontroller bus archi- tecture) high-performance bus, an ARM data transfer bus							
ALU	arithmetic logic unit							
AMUXBUS	analog multiplexer bus							
API	application programming interface							
APSR	application program status register							
ARM®	advanced RISC machine, a CPU architecture							
ATM	automatic thump mode							
BW	bandwidth							
CAN	Controller Area Network, a communications protocol							
CMRR	common-mode rejection ratio							
CPU	central processing unit							
CRC	cyclic redundancy check, an error-checking protocol							
DAC	digital-to-analog converter, see also IDAC, VDAC							
DFB	digital filter block							
DIO	digital input/output, GPIO with only digital capabilities, no analog. See GPIO.							
DMIPS	Dhrystone million instructions per second							
DMA	direct memory access, see also TD							
DNL	differential nonlinearity, see also INL							
DNU	do not use							
DR	port write data registers							
DSI	digital system interconnect							
DWT	data watchpoint and trace							
ECC	error correcting code							
ECO	external crystal oscillator							
EEPROM	electrically erasable programmable read-only memory							
EMI	electromagnetic interference							
EMIF	external memory interface							
EOC	end of conversion							
EOF	end of frame							
EPSR	execution program status register							
ESD	electrostatic discharge							

Acronym	Description								
ETM	embedded trace macrocell								
FIR	finite impulse response, see also IIR								
FPB	flash patch and breakpoint								
FS	full-speed								
GPIO	general-purpose input/output, applies to a PSoC pin								
HVI	high-voltage interrupt, see also LVI, LVD								
IC	integrated circuit								
IDAC	current DAC, see also DAC, VDAC								
IDE	integrated development environment								
I ² C, or IIC	Inter-Integrated Circuit, a communications protocol								
lir	infinite impulse response, see also FIR								
ILO	internal low-speed oscillator, see also IMO								
IMO	internal main oscillator, see also ILO								
INL	integral nonlinearity, see also DNL								
I/O	input/output, see also GPIO, DIO, SIO, USBIO								
IPOR	initial power-on reset								
IPSR	interrupt program status register								
IRQ	interrupt request								
ITM	instrumentation trace macrocell								
LCD	liquid crystal display								
LIN	Local Interconnect Network, a communications protocol.								
LR	link register								
LUT	lookup table								
LVD	low-voltage detect, see also LVI								
LVI	low-voltage interrupt, see also HVI								
LVTTL	low-voltage transistor-transistor logic								
MAC	multiply-accumulate								
MCU	microcontroller unit								
MISO	master-in slave-out								
NC	no connect								
NMI	nonmaskable interrupt								
NRZ	non-return-to-zero								
NVIC	nested vectored interrupt controller								
NVL	nonvolatile latch, see also WOL								
opamp	operational amplifier								
PAL	programmable array logic, see also PLD								
PC	program counter								
PCB	printed circuit board								