

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details	5
---------	---

E·XF

Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	24MHz
Connectivity	I ² C, IrDA, LINbus, Microwire, SmartCard, SPI, SSP, UART/USART
Peripherals	Brown-out Detect/Reset, CapSense, LCD, LVD, POR, PWM, WDT
Number of I/O	55
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 5.5V
Data Converters	A/D 16x12b SAR; 2xIDAC
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	68-VFQFN Exposed Pad
Supplier Device Package	68-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c4126lti-m475

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

More Information

Cypress provides a wealth of data at www.cypress.com to help you to select the right PSoC device for your design, and to help you to quickly and effectively integrate the device into your design. For a comprehensive list of resources, see the knowledge base article KBA86521, How to Design with PSoC 3, PSoC 4, and PSoC 5LP. Following is an abbreviated list for PSoC 4:

- Overview: PSoC Portfolio, PSoC Roadmap
- Product Selectors: PSoC 1, PSoC 3, PSoC 4, PSoC 5LP In addition, PSoC Creator includes a device selection tool.
- Application notes: Cypress offers a large number of PSoC application notes covering a broad range of topics, from basic to advanced level. Recommended application notes for getting started with PSoC 4 are:
 - □ AN79953: Getting Started With PSoC 4
 - □ AN88619: PSoC 4 Hardware Design Considerations
 - □ AN86439: Using PSoC 4 GPIO Pins

PSoC Creator

- □ AN57821: Mixed Signal Circuit Board Layout
- □ AN81623: Digital Design Best Practices
- □ AN73854: Introduction To Bootloaders
- □ AN89610: ARM Cortex Code Optimization

- Technical Reference Manual (TRM) is in two documents:
- □ Architecture TRM details each PSoC 4 functional block.
- □ Registers TRM describes each of the PSoC 4 registers.
- Development Kits:
 - CY8CKIT-042, PSoC 4 Pioneer Kit, is an easy-to-use and inexpensive development platform. This kit includes connectors for Arduino[™] compatible shields and Digilent® Pmod[™] daughter cards.
 - CY8CKIT-049 is a very low-cost prototyping platform. It is a low-cost alternative to sampling PSoC 4 devices.
 - CY8CKIT-001 is a common development platform for any one of the PSoC 1, PSoC 3, PSoC 4, or PSoC 5LP families of devices.

The MiniProg3 device provides an interface for flash programming and debug.

PSoC Creator is a free Windows-based Integrated Design Environment (IDE). It enables concurrent hardware and firmware design of PSoC 3, PSoC 4, and PSoC 5LP based systems. Create designs using classic, familiar schematic capture supported by over 100 pre-verified, production-ready PSoC Components; see the list of component datasheets. With PSoC Creator, you can:

- 1. Drag and drop component icons to build your hardware system design in the main design workspace
- 2. Codesign your application firmware with the PSoC hardware, using the PSoC Creator IDE C compiler
- 3. Configure components using the configuration tools
- 4. Explore the library of 100+ components
- 5. Review component datasheets

Figure 1. Multiple-Sensor Example Project in PSoC Creator

Contents

PSoC 4100M Block Diagram	4
Functional Definition	5
CPU and Memory Subsystem	5
System Resources	5
Analog Blocks	6
Fixed Function Digital	7
GPIO	8
Special Function Peripherals	8
Pinouts	9
Power	. 13
Unregulated External Supply	. 13
Regulated External Supply	. 13
Development Support	. 14
Documentation	. 14
Online	. 14
Tools	. 14
Electrical Specifications	. 15
Absolute Maximum Ratings	. 15
Device Level Specifications	. 15

Analog Peripherals	19
Digital Peripherals	24
Memory	26
System Resources	27
Ordering Information	30
Part Numbering Conventions	31
Packaging	32
Acronyms	35
Document Conventions	37
Units of Measure	37
Revision History	38
Sales, Solutions, and Legal Information	39
Worldwide Sales and Design Support	39
Products	39
PSoC® Solutions	39
Cypress Developer Community	39
Technical Support	39

PSoC 4100M Block Diagram

The PSoC 4100-M devices include extensive support for programming, testing, debugging, and tracing both hardware and firmware.

The ARM Serial_Wire Debug (SWD) interface supports all programming and debug features of the device.

Complete debug-on-chip functionality enables full-device debugging in the final system using the standard production device. It does not require special interfaces, debugging pods, simulators, or emulators. Only the standard programming connections are required to fully support debug.

The PSoC Creator Integrated Development Environment (IDE) provides fully integrated programming and debug support for PSoC 4100-M devices. The SWD interface is fully compatible with industry-standard third-party tools. The PSoC 4100-M family provides a level of security not possible with multi-chip application solutions or with microcontrollers. This is due to its ability to disable debug features, robust flash protection, and

because it allows customer-proprietary functionality to be implemented in on-chip programmable blocks.

The debug circuits are enabled by default and can only be disabled in firmware. If not enabled, the only way to re-enable them is to erase the entire device, clear flash protection, and reprogram the device with new firmware that enables debugging.

Additionally, all device interfaces can be permanently disabled (device security) for applications concerned about phishing attacks due to a maliciously reprogrammed device or attempts to defeat security by starting and interrupting flash programming sequences. Because all programming, debug, and test interfaces are disabled when maximum device security is enabled, PSoC 4100-M with device security enabled may not be returned for failure analysis. This is a trade-off the PSoC 4100-M allows the customer to make.

UART Mode: This is a full-feature UART operating at up to 1 Mbps. It supports automotive single-wire interface (LIN), infrared interface (IrDA), and SmartCard (ISO7816) protocols, all of which are minor variants of the basic UART protocol. In addition, it supports the 9-bit multiprocessor mode that allows addressing of peripherals connected over common RX and TX lines. Common UART functions such as parity error, break detect, and frame error are supported. An 8-deep FIFO allows much greater CPU service latencies to be tolerated.

SPI Mode: The SPI mode supports full Motorola SPI, TI SSP (essentially adds a start pulse used to synchronize SPI Codecs), and National Microwire (half-duplex form of SPI). The SPI block can use the FIFO and also supports an EzSPI mode in which data interchange is reduced to reading and writing an array in memory.

GPIO

The PSoC 4100M has 55 GPIOs in the 68-pin QFN package. The GPIO block implements the following:

- Eight drive strength modes including strong push-pull, resistive pull-up and pull-down, weak (resistive) pull-up and pull-down, open drain and open source, input only, and disabled
- Input threshold select (CMOS or LVTTL)
- Individual control of input and output disables
- Hold mode for latching previous state (used for retaining I/O state in Deep Sleep mode and Hibernate modes)
- Selectable slew rates for dV/dt related noise control to improve EMI

The pins are organized in logical entities called ports, which are 8-bit in width. During power-on and reset, the blocks are forced to the disable state so as not to crowbar any inputs and/or cause excess turn-on current. A multiplexing network known as a high-speed I/O matrix is used to multiplex between various signals that may connect to an I/O pin. Pin locations for fixed-function peripherals are also fixed to reduce internal multiplexing complexity.

Data output and pin state registers store, respectively, the values to be driven on the pins and the states of the pins themselves.

Every I/O pin can generate an interrupt if so enabled and each I/O port has an interrupt request (IRQ) and interrupt service routine (ISR) vector associated with it (8 for PSoC 4100M).

The Pins of Port 6 (up to 6 depending on the package) are overvoltage tolerant (V_{IN} can exceed V_{DD}). The overvoltage cells will not sink more than 10 μ A when their inputs exceed V_{DDIO} in compliance with I²C specifications.

Special Function Peripherals

LCD Segment Drive

The PSoC 4100M has an LCD controller, which can drive up to four commons and up to 51 segments. Any pin can be either a common or a segment pin. It uses full digital methods to drive the LCD segments requiring no generation of internal LCD voltages. The two methods used are referred to as digital correlation and PWM.

Digital correlation pertains to modulating the frequency and levels of the common and segment signals to generate the highest RMS voltage across a segment to light it up or to keep the RMS signal zero. This method is good for STN displays but may result in reduced contrast with TN (cheaper) displays.

PWM pertains to driving the panel with PWM signals to effectively use the capacitance of the panel to provide the integration of the modulated pulse-width to generate the desired LCD voltage. This method results in higher power consumption but can result in better results when driving TN displays. LCD operation is supported during Deep Sleep refreshing a small display buffer (4 bits; 1 32-bit register per port).

CapSense

CapSense is supported on all pins in the PSoC 4100M through a CapSense Sigma-Delta (CSD) block that can be connected to any pin through an analog mux bus that any GPIO pin can be connected to via an Analog switch. CapSense functionality can thus be provided on any pin or group of pins in a system under software control. A component is provided for the CapSense block, which provides automatic hardware tuning (Cypress SmartSense[™]), to make it easy for the user.

Shield voltage can be driven on another Mux Bus to provide water tolerance capability. Water tolerance is provided by driving the shield electrode in phase with the sense electrode to keep the shield capacitance from attenuating the sensed input.

Each CSD block has two IDACs which can be used for general purposes if CapSense is not being used.(both IDACs are available in that case) or if CapSense is used without water tolerance (one IDAC is available). The PSoC 4100M has two CSD blocks which can be used independently; one for CapSense and the other for IDACs.

The two CapSense blocks are referred to as CSD0 and CSD1. Capacitance sensing inputs on Ports 0, 1, 2, 3, 4, 6, and 7 are sensed by CSD0. Capacitance sensing inputs on Port 5 are sensed by CSD1.

Pinouts

The following is the pin list for the PSoC 4100M. This shows the power supply and port pins (for example, P0.0 is Pin 0 of Port 0).

	68-QFN	64-TQFP 48-TQFP 44-TQFP			44-TQFP		
Pin	Name	Pin	Name	Pin	Name	Pin	Name
42	P0.0	39	P0.0	28	P0.0	24	P0.0
43	P0.1	40	P0.1	29	P0.1	25	P0.1
44	P0.2	41	P0.2	30	P0.2	26	P0.2
45	P0.3	42	P0.3	31	P0.3	27	P0.3
46	P0.4	43	P0.4	32	P0.4	28	P0.4
47	P0.5	44	P0.5	33	P0.5	29	P0.5
48	P0.6	45	P0.6	34	P0.6	30	P0.6
49	P0.7	46	P0.7	35	P0.7	31	P0.7
50	XRES	47	XRES	36	XRES	32	XRES
51	VCCD	48	VCCD	37	VCCD	33	VCCD
52	VSSD	49	VSSD	38	VSSD	DN	VSSD
53	VDDD	50	VDDD	39	VDDD	34	VDDD
				40	VDDA	35	VDDA
54	P5.0	51	P5.0				
55	P5.1	52	P5.1				
56	P5.2	53	P5.2				
57	P5.3	54	P5.3				
58	P5.4						
59	P5.5	55	P5.5				
60	VDDA	56	VDDA	40	VDDA	35	VDDA
61	VSSA	57	VSSA	41	VSSA	36	VSSA
62	P1.0	58	P1.0	42	P1.0	37	P1.0
63	P1.1	59	P1.1	43	P1.1	38	P1.1
64	P1.2	60	P1.2	44	P1.2	39	P1.2
65	P1.3	61	P1.3	45	P1.3	40	P1.3
66	P1.4	62	P1.4	46	P1.4	41	P1.4
67	P1.5	63	P1.5	47	P1.5	42	P1.5
68	P1.6	64	P1.6	48	P1.6	43	P1.6
1	P1.7/VREF	1	P1.7/VREF	1	P1.7/VREF	44	P1.7/VREF
						1	VSSD
2	P2.0	2	P2.0	2	P2.0	2	P2.0
3	P2.1	3	P2.1	3	P2.1	3	P2.1
4	P2.2	4	P2.2	4	P2.2	4	P2.2
5	P2.3	5	P2.3	5	P2.3	5	P2.3
6	P2.4	6	P2.4	6	P2.4	6	P2.4
7	P2.5	7	P2.5	7	P2.5	7	P2.5

Each of the pins shown in the previous table can have multiple programmable functions as shown in the following table. Column headings refer to Analog and Alternate pin functions:

Port/Pin	Analog	Alt. Function 1	Alt. Function 2	Alt. Function 3	Alt. Function 4	Alt. Function 5
P0.0	lpcomp.in_p[0]					scb[0].spi_select1:0
P0.1	lpcomp.in_n[0]					scb[0].spi_select2:0
P0.2	lpcomp.in_p[1]					scb[0].spi_select3:0
P0.3	lpcomp.in_n[1]					
P0.4	wco_in		scb[1].uart_rx:0		scb[1].i2c_scl:0	scb[1].spi_mosi:1
P0.5	wco_out		scb[1].uart_tx:0		scb[1].i2c_sda:0	scb[1].spi_miso:1
P0.6		ext_clk:0	scb[1].uart_cts:0			scb[1].spi_clk:1
P0.7			scb[1].uart_rts:0		wakeup	scb[1].spi_select0:1
P5.0	ctb1.oa0.inp	tcpwm.line[4]:2	scb[2].uart_rx:0		scb[2].i2c_scl:0	scb[2].spi_mosi:0
P5.1	ctb1.oa0.inm	tcpwm.line_compl[4]:2	scb[2].uart_tx:0		scb[2].i2c_sda:0	scb[2].spi_miso:0
P5.2	ctb1.oa0.out	tcpwm.line[5]:2	scb[2].uart_cts:0		lpcomp.comp[0]:1	scb[2].spi_clk:0
P5.3	ctb1.oa1.out	tcpwm.line_compl[5]:2	scb[2].uart_rts:0		lpcomp.comp[1]:1	scb[2].spi_select0:0
P5.4	ctb1.oa1.inm	tcpwm.line[6]:2				scb[2].spi select1:0
P5.5	ctb1.oa1.inp	tcpwm.line_compl[6]:2				scb[2].spi_select2:0
P5.6	ctb1.oa0.inp_alt	tcpwm.line[7]:0				scb[2].spi_select3:0
P5.7	ctb1.oa1.inp_alt	tcpwm.line_compl[7]:0				
P1.0	ctb0.oa0.inp	tcpwm.line[2]:1	scb[0].uart rx:1		scb[0].i2c scl:0	scb[0].spi mosi:1
P1.1	ctb0.oa0.inm	tcpwm.line_compl[2]:1	scb[0].uart_tx:1		scb[0].i2c_sda:0	scb[0].spi_miso:1
P1.2	ctb0.oa0.out	tcpwm.line[3]:1	scb[0].uart_cts:1			scb[0].spi_clk:1
P1.3	ctb0.oa1.out	tcpwm.line_compl[3]:1	scb[0].uart_rts:1			scb[0].spi_select0:1
P1.4	ctb0.oa1.inm	tcpwm.line[6]:1				scb[0].spi_select1:1
P1.5	ctb0.oa1.inp	tcpwm.line_compl[6]:1				scb[0].spi_select2:1
P1.6	ctb0.oa0.inp_alt	tcpwm.line[7]:1				scb[0].spi_select3:1
P1.7	ctb0.oa1.inp_alt	tcpwm.line_compl[7]:1				
P2.0	sarmux.0	tcpwm.line[4]:1			scb[1].i2c_scl:1	scb[1].spi_mosi:2
P2.1	sarmux.1	tcpwm.line_compl[4]:1			scb[1].i2c_sda:1	scb[1].spi_miso:2
P2.2	sarmux.2	tcpwm.line[5]:1				scb[1].spi_clk:2
P2.3	sarmux.3	tcpwm.line_compl[5]:1				scb[1].spi_select0:2
P2.4	sarmux.4	tcpwm.line[0]:1				scb[1].spi_select1:1
P2.5	sarmux.5	tcpwm.line_compl[0]:1				scb[1].spi_select2:1
P2.6	sarmux.6	tcpwm.line[1]:1				scb[1].spi_select3:1
P2.7	sarmux.7	tcpwm.line_compl[1]:1				scb[3].spi_select0:1

Electrical Specifications

Absolute Maximum Ratings

Table 1. Absolute Maximum Ratings^[1]

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID1	V _{DD_ABS}	Analog or digital supply relative to V_{SS} ($V_{SSD} = V_{SSA}$)	-0.5	-	6	V	Absolute maximum
SID2	V _{CCD_ABS}	Direct digital core voltage input relative to V_{SSD}	-0.5	_	1.95	V	Absolute maximum
SID3	V _{GPIO_ABS}	GPIO voltage; V _{DDD} or V _{DDA}	-0.5	-	V _{DD} +0.5	V	Absolute maximum
SID4	I _{GPIO_ABS}	Current per GPIO	-25	-	25	mA	Absolute maximum
SID5	I _{G-PIO_injection}	GPIO injection current per pin	-0.5	-	0.5	mA	Absolute maximum
BID44	ESD_HBM	Electrostatic discharge human body model	2200	-	-	V	
BID45	ESD_CDM	Electrostatic discharge charged device model	500	-	_	V	
BID46	LU	Pin current for latch-up	-140	_	140	mA	

Device Level Specifications

All specifications are valid for –40 °C \leq TA \leq 105 °C and TJ \leq 125 °C, except where noted. Specifications are valid for 1.71 V to 5.5 V, except where noted.

Table 2. DC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details / Conditions
SID53	V _{DD}	Power Supply Input Voltage ($V_{DDA} = V_{DDD} = V_{DD}$)	1.8	_	5.5	V	With regulator enabled
SID255	V _{DDD}	Power Supply Input Voltage unregulated	1.71	1.8	1.89	V	Internally unregulated Supply
SID54	V _{CCD}	Output voltage (for core logic)	_	1.8	-	V	
SID55	C _{EFC}	External Regulator voltage bypass	1	1.3	1.6	μF	X5R ceramic or better
SID56	C _{EXC}	Power supply decoupling capacitor	-	1	-	μF	X5R ceramic or better
Active Mod	e, V _{DD} = 1.71 V	to 5.5 V, –40 °C to +105 °C					•
SID6	I _{DD1}	Execute from Flash; CPU at 6 MHz	-	2.2	2.8	mA	
SID7	I _{DD2}	Execute from Flash; CPU at 12 MHz	-	3.7	4.2	mA	
SID8	I _{DD3}	Execute from Flash; CPU at 24 MHz	_	6.7	7.2	mA	
Sleep Mode	e, −40 °C to +10	95 °C					
SID21	I _{DD16}	I ² C wakeup, WDT, and Comparators on. Regulator Off.	_	1.75	2.1	mA	V _{DD} = 1.71 to 1.89, 6 MHz
SID22	I _{DD17}	I ² C wakeup, WDT, and Comparators on.	_	1.7	2.1	mA	V _{DD} = 1.8 to 5.5, 6 MHz
SID23	I _{DD18}	I ² C wakeup, WDT, and Comparators on. Regulator Off.	_	2.35	2.8	mA	V _{DD} = 1.71 to 1.89, 12 MHz
SID24	I _{DD19}	I ² C wakeup, WDT, and Comparators on.	_	2.25	2.8	mA	V _{DD} = 1.8 to 5.5, 12 MHz

Note

Usage above the absolute maximum conditions listed in Table 1 may cause permanent damage to the device. Exposure to absolute maximum conditions for extended periods of time may affect device reliability. The maximum storage temperature is 150 °C in compliance with JEDEC Standard JESD22-A103, High Temperature Storage Life. When used below absolute maximum conditions but above normal operating conditions, the device may not operate to specification.

Table 8. Opamp Specifications

(Guaranteed by Characterization) (continued)

Spec ID#	Parameter	Description	Min	Тур	Мах	Units	Details/ Conditions
SID_DS_18	VOS_LOW_M2	Mode 2, Low current	-	5	-	mV	With trim 25 °C, 0.2 V to V _{DDA} -1.5 V
SID_DS_19	IOUT_HI_M1	Mode 1, High current	-	10	-	mA	Output is 0.5 V to VDDA-0.5 V
SID_DS_20	IOUT_MED_M1	Mode 1, Medium current	-	10	-	mA	Output is 0.5 V to VDDA-0.5 V
SID_DS_21	IOUT_LOW_M1	Mode 1, Low current	-	4	-	mA	Output is 0.5 V to VDDA-0.5 V
SID_DS_22	IOUT_HI_M2	Mode 2, High current	-	1	-	mA	Output is 0.5 V to V _{DDA} -0.5 V
SID_DS_23	IOUT_MED_M2	Mode 2, Medium current	-	1	-	mA	Output is 0.5 V to V _{DDA} -0.5 V
SID_DS_24	IOUT_LOW_M2	Mode 2, Low current	-	0.5	-	mA	Output is 0.5 V to V _{DDA} -0.5 V

Comparator

Table 9. Comparator DC Specifications

Spec ID#	Parameter	Description	Min	Тур	Мах	Units	Details/ Conditions
SID85	V _{OFFSET2}	Input offset voltage, Common Mode voltage range from 0 to V _{DD} -1	1	-	±4	mV	
SID85A	V _{OFFSET3}	Input offset voltage. Ultra low-power mode ($V_{DDD} \ge 2.2 \text{ V}$ for Temp < 0 °C, $V_{DDD} \ge 1.8 \text{ V}$ for Temp > 0 °C).	-	±12	-	mV	
SID86	V _{HYST}	Hysteresis when enabled, Common Mode voltage range from 0 to V_{DD} -1.	_	10	35	mV	Guaranteed by charac- terization
SID87	V _{ICM1}	Input common mode voltage in normal mode	0	-	V _{DDD} -0.1	V	Modes 1 and 2.
SID247	V _{ICM2}	Input common mode voltage in low power mode	0	-	V _{DDD}	V	
SID247A	V _{ICM3}	Input common mode voltage in ultra low power mode ($V_{DDD} \ge 2.2$ V for Temp < 0 °C, $V_{DDD} \ge 1.8$ V for Temp > 0 °C)	0	-	V _{DDD} – 1.15	V	
SID88	CMRR	Common mode rejection ratio	50	-	-	dB	$V_{DDD} \ge 2.7 V.$ Guaranteed by charac- terization
SID88A	CMRR	Common mode rejection ratio	42	-	-	dB	V _{DDD} < 2.7 V. Guaranteed by charac- terization
SID89	I _{CMP1}	Block current, normal mode	-	-	400	μA	Guaranteed by charac- terization
SID248	I _{CMP2}	Block current, low power mode	-	-	100	μA	Guaranteed by charac- terization
SID259	I _{CMP3}	Block current, ultra low power mode (V _{DDD} ≥ 2.2 V for Temp < 0 °C, V _{DDD} ≥ 1.8 V for Temp > 0 °C)	-	6	28	μA	Guaranteed by charac- terization
SID90	Z _{CMP}	DC input impedance of comparator	35	-	-	MΩ	Guaranteed by charac- terization

Table 10. Comparator AC Specifications

(Guaranteed by Characterization)

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID91	T _{RESP1}	Response time, normal mode	_	-	110	ns	50-mV overdrive
SID258	T _{RESP2}	Response time, low power mode	-	_	200	ns	50-mV overdrive
SID92	T _{RESP3}	Response time, ultra low power mode ($V_{DDD} \ge 2.2 \text{ V}$ for Temp < 0 °C, $V_{DDD} \ge$ 1.8 V for Temp > 0 °C)	-	-	15	μs	200-mV overdrive

Temperature Sensor

Table 11. Temperature Sensor Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID93	T _{SENSACC}	Temperature sensor accuracy	-5	±1	+5	°C	–40 to +85 °C

SAR ADC

Table 12. SAR ADC DC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID94	A_RES	Resolution	_	-	12	bits	
SID95	A_CHNIS_S	Number of channels - single ended	_	-	16		8 full speed
SID96	A-CHNKS_D	Number of channels - differential	_	-	8		Diff inputs use neighboring I/O
SID97	A-MONO	Monotonicity	_	-	_		Yes. Based on characterization
SID98	A_GAINERR	Gain error	_	-	±0.1	%	With external reference.
SID99	A_OFFSET	Input offset voltage	_	-	2	mV	Measured with 1-V V _{REF.}
SID100	A_ISAR	Current consumption	_	-	1	mA	
SID101	A_VINS	Input voltage range - single ended	V _{SS}	-	V _{DDA}	V	Based on device characterization
SID102	A_VIND	Input voltage range - differential	V_{SS}	-	V _{DDA}	V	Based on device characterization
SID103	A_INRES	Input resistance	_	-	2.2	KΩ	Based on device characterization
SID104	A_INCAP	Input capacitance	-	-	10	pF	Based on device characterization

Table 13. SAR ADC AC Specifications

(Guaranteed by Characterization)

Spec ID#	Parameter	Description	Min	Тур	Мах	Units	Details/Conditions
SID106	A_PSRR	Power supply rejection ratio	70	Ι	-	dB	
SID107	A_CMRR	Common mode rejection ratio	66	-	-	dB	Measured at 1 V
SID108	A_SAMP_1	Sample rate with external reference bypass cap	_	-	806	ksps	

Table 13. SAR ADC AC Specifications

(Guaranteed by Characterization) (continued)

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID108A	A_SAMP_2	Sample rate with no bypass cap. Reference = V _{DD}	-	-	500	ksps	
SID108B	A_SAMP_3	Sample rate with no bypass cap. Internal reference	-	-	100	ksps	
SID109	A_SNDR	Signal-to-noise and distortion ratio (SINAD)	66	-	_	dB	F _{IN} = 10 kHz
SID111	A_INL	Integral non linearity	-1.4	_	+1.4	LSB	V _{DD} = 1.71 to 5.5, 806 Ksps, Vref = 1 to 5.5.
SID111A	A_INL	Integral non linearity	-1.4	-	+1.4	LSB	V_{DDD} = 1.71 to 3.6, 806 Ksps, Vref = 1.71 to V_{DDD} .
SID111B	A_INL	Integral non linearity	-1.4	_	+1.4	LSB	V _{DDD} = 1.71 to 5.5, 500 Ksps, Vref = 1 to 5.5.
SID112	A_DNL	Differential non linearity	-0.9	-	+1.35	LSB	V _{DDD} = 1.71 to 5.5, 806 Ksps, Vref = 1 to 5.5.
SID112A	A_DNL	Differential non linearity	-0.9	-	+1.35	LSB	V_{DDD} = 1.71 to 3.6, 806 Ksps, Vref = 1.71 to V_{DDD} .
SID112B	A_DNL	Differential non linearity	-0.9	-	+1.35	LSB	V _{DDD} = 1.71 to 5.5, 500 Ksps, Vref = 1 to 5.5.
SID113	A_THD	Total harmonic distortion	_	_	-65	dB	F _{IN} = 10 kHz.

CSD

Table 14. CSD Block Specification

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
CSD Spec	ification						•
SID308	VCSD	Voltage range of operation	1.71	-	5.5	V	
SID309	IDAC1	DNL for 8-bit resolution	-1	_	1	LSB	
SID310	IDAC1	INL for 8-bit resolution	-3	-	3	LSB	
SID311	IDAC2	DNL for 7-bit resolution	-1	-	1	LSB	
SID312	IDAC2	INL for 7-bit resolution	-3	_	3	LSB	
SID313	SNR	Ratio of counts of finger to noise. Guaranteed by characterization	5	-	-	Ratio	Capacitance range of 9 to 35 pF, 0.1 pF sensitivity
SID314	IDAC1_CRT1	Output current of Idac1 (8-bits) in High range	-	612	-	μA	
SID314A	IDAC1_CRT2	Output current of Idac1(8-bits) in Low range	-	306	-	μA	
SID315	IDAC2_CRT1	Output current of Idac2 (7-bits) in High range	—	304.8	-	μA	
SID315A	IDAC2_CRT2	Output current of Idac2 (7-bits) in Low range	_	152.4	-	μA	

Digital Peripherals

The following specifications apply to the Timer/Counter/PWM peripheral in timer mode.

Timer/Counter/PWM

Table 15. TCPWM Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID.TCPWM.1	ITCPWM1	Block current consumption at 3 MHz	-	-	45	μA	All modes (Timer/Counter/PWM)
SID.TCPWM.2	ITCPWM2	Block current consumption at 12 MHz	_	-	155	μA	All modes (Timer/Counter/PWM)
SID.TCPWM.2A	ITCPWM3	Block current consumption at 48 MHz	_	-	650	μA	All modes (Timer/Counter/PWM)
SID.TCPWM.3	TCPWMFREQ	Operating frequency	_	-	Fc	MHz	Fc max = Fcpu. Maximum = 24 MHz
SID.TCPWM.4	TPWMENEXT	Input Trigger Pulse Width for all Trigger Events	2/Fc	_	-	ns	Trigger Events can be Stop, Start, Reload, Count, Capture, or Kill depending on which mode of operation is selected.
SID.TCPWM.5	TPWMEXT	Output Trigger Pulse widths	2/Fc	_	_	ns	Minimum possible width of Overflow, Underflow, and CC (Counter equals Compare value) trigger outputs
SID.TCPWM.5A	TCRES	Resolution of Counter	1/Fc	-	-	ns	Minimum time between successive counts
SID.TCPWM.5B	PWMRES	PWM Resolution	1/Fc	-	-	ns	Minimum pulse width of PWM Output
SID.TCPWM.5C	QRES	Quadrature inputs resolution	1/Fc	_	_	ns	Minimum pulse width between Quadrature phase inputs.

βC

Table 16. Fixed I²C DC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Мах	Units	Details/Conditions
SID149	I _{I2C1}	Block current consumption at 100 kHz	-	-	50	μA	
SID150	I _{I2C2}	Block current consumption at 400 kHz	-	-	135	μA	
SID151	I _{I2C3}	Block current consumption at 1 Mbps	-	-	310	μA	
SID152	I _{I2C4}	I ² C enabled in Deep Sleep mode	-	-	1.4	μA	

Table 17. Fixed I²C AC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID153	F _{I2C1}	Bit rate	_	1	1	Mbps	

LCD Direct Drive

Table 18. LCD Direct Drive DC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID154	ILCDLOW	Operating current in low power mode	_	5	_	μA	16 × 4 small segment disp. at 50 Hz
SID155	C _{LCDCAP}	LCD capacitance per segment/common driver	-	500	5000	pF	Guaranteed by Design
SID156	LCD _{OFFSET}	Long-term segment offset	-	20	-	mV	
SID157	I _{LCDOP1}	PWM Mode current. 5-V bias. 24-MHz IMO	-	0.6	-	mA	32 × 4 segments. 50 Hz, 25 °C
SID158	I _{LCDOP2}	PWM Mode current. 3.3-V bias. 24-MHz IMO.	-	0.5	-	mA	32 × 4 segments. 50 Hz, 25 °C

Table 19. LCD Direct Drive AC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID159	F _{LCD}	LCD frame rate	10	50	150	Hz	

Table 20. Fixed UART DC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID160	I _{UART1}	Block current consumption at 100 Kbits/sec	-	-	55	μA	
SID161	I _{UART2}	Block current consumption at 1000 Kbits/sec	-	-	312	μA	

Table 21. Fixed UART AC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID162	F _{UART}	Bit rate	1	-	1	Mbps	

SPI Specifications

Table 22. Fixed SPI DC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID163	I _{SPI1}	Block current consumption at 1 Mbits/sec	-	-	360	μA	
SID164	I _{SPI2}	Block current consumption at 4 Mbits/sec	-	-	560	μA	
SID165	I _{SPI3}	Block current consumption at 8 Mbits/sec	-	-	600	μA	

Table 23. Fixed SPI AC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID166	F _{SPI}	SPI operating frequency (master; 6X oversampling)	Ι	-	8	MHz	

SWD Interface

Table 32. SWD Interface Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID213	F_SWDCLK1	$3.3 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	-	-	14	MHz	SWDCLK ≤ 1/3 CPU clock frequency
SID214	F_SWDCLK2	$1.71~V \leq V_{DD} \leq 3.3~V$	-	-	7	MHz	SWDCLK ≤ 1/3 CPU clock frequency
SID215	T_SWDI_SETUP	T = 1/f SWDCLK	0.25*T	-	-	ns	Guaranteed by characterization
SID216	T_SWDI_HOLD	T = 1/f SWDCLK	0.25*T	-	-	ns	Guaranteed by characterization
SID217	T_SWDO_VALID	T = 1/f SWDCLK	-	_	0.5*T	ns	Guaranteed by characterization
SID217A	T_SWDO_HOLD	T = 1/f SWDCLK	1	-	_	ns	Guaranteed by characterization

Internal Main Oscillator

Table 33. IMO DC Specifications

(Guaranteed by Design)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID218	I _{IMO1}	IMO operating current at 48 MHz	_	-	1000	μA	
SID219	I _{IMO2}	IMO operating current at 24 MHz	_	-	325	μA	
SID220	I _{IMO3}	IMO operating current at 12 MHz	_	-	225	μA	
SID221	I _{IMO4}	IMO operating current at 6 MHz	_	-	180	μA	
SID222	I _{IMO5}	IMO operating current at 3 MHz	-	_	150	μA	

Table 34. IMO AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID223	F _{IMOTOL1}	Frequency variation from 3 to 48 MHz	-	-	±2	%	±3% if T _A > 85 °C and IMO frequency < 24 MHz
SID226	T _{STARTIMO}	IMO startup time	_	-	12	μs	
SID227	T _{JITRMSIMO1}	RMS Jitter at 3 MHz	_	156	-	ps	
SID228	T _{JITRMSIMO2}	RMS Jitter at 24 MHz	_	145	-	ps	
SID229	T _{JITRMSIMO3}	RMS Jitter at 48 MHz	_	139	-	ps	

Internal Low-Speed Oscillator

Table 35. ILO DC Specifications

(Guaranteed by Design)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID231	I _{ILO1}	ILO operating current at 32 kHz	-	0.3	1.05	μA	Guaranteed by Characterization
SID233	IILOLEAK	ILO leakage current	-	2	15	nA	Guaranteed by Design

Ordering Information

The PSoC 4100M family part numbers and features are listed in the following table.

			Features									Package								
Category	NdW	Max CPU Speed (MHz)	Flash (KB)	SRAM (KB)	UDB	Opamp (CTBm)	CSD	IDAC (1X7-Bit, 1-8-Bit)	Direct LCD Drive	12-bit SAR ADC	LP Comparators	TCPWM Blocks	SCB Blocks	CAN	GPIO	44-TQFP	48-TQFP	64-TQFP (0.5-mm pitch)	64-TQFP (0.8-mm pitch)	68-QFN
4125	CY8C4125AZI-M433	24	32	4	0	2	-	-	-	806 ksps	2	8	4	-	38	-	~	-	-	-
	CY8C4125AZI-M443	24	32	4	0	2	~	-	~	806 ksps	2	8	4	-	38	-	~	-	_	-
	CY8C4125AZI-M445	24	32	4	0	2	~	-	~	806 ksps	2	8	4	-	51	-	-	~	_	-
	CY8C4125LTI-M445	24	32	4	0	2	~	-	~	806 ksps	2	8	4	-	55	-	-	-	_	~
	CY8C4125AXI-M445	24	32	4	0	2	~	-	~	806 ksps	2	8	4	-	51	-	-	-	~	-
4126	CY8C4126AZI-M443	24	64	8	0	2	~	-	~	806 ksps	2	8	4	-	38	-	~	-	_	-
	CY8C4126AXI-M443	24	64	8	0	2	~	-	~	806 ksps	2	8	4	-	36	~	-	_	_	-
	CY8C4126AZI-M445	24	64	8	0	2	~	-	~	806 ksps	2	8	4	-	51	-	-	~	_	-
	CY8C4126AZI-M475	24	64	8	0	4	-	~	-	806 ksps	2	8	4	-	51	-	-	~	_	-
	CY8C4126LTI-M445	24	64	8	0	2	~	-	~	806 ksps	2	8	4	-	55	-	-	-	_	~
	CY8C4126LTI-M475	24	64	8	0	4	-	~	-	806 ksps	2	8	4	-	55	-	-	-	_	~
	CY8C4126AXI-M445	24	64	8	0	2	~	-	~	806 ksps	2	8	4	-	51	-	1	-	~	-
4127	CY8C4127LTI-M475	24	128	16	0	4	~	~	_	806 ksps	2	8	4	-	55	-	-	_	_	~
	CY8C4127AZI-M475	24	128	16	0	4	-	~	-	806 ksps	2	8	4	-	51	-	-	~	-	-
	CY8C4127AZI-M485	24	128	16	0	4	~	~	~	806 ksps	2	8	4	-	51	-	-	~	-	-
	CY8C4127AXI-M485	24	128	16	0	4	~	~	~	806 ksps	2	8	4	-	51	-	-	-	~	-

51-85051 *D

Acronyms

Table 43. Acronyms Used in this Document

Acronym	Description
abus	analog local bus
ADC	analog-to-digital converter
AG	analog global
AHB	AMBA (advanced microcontroller bus archi- tecture) high-performance bus, an ARM data transfer bus
ALU	arithmetic logic unit
AMUXBUS	analog multiplexer bus
API	application programming interface
APSR	application program status register
ARM®	advanced RISC machine, a CPU architecture
ATM	automatic thump mode
BW	bandwidth
CAN	Controller Area Network, a communications protocol
CMRR	common-mode rejection ratio
CPU	central processing unit
CRC	cyclic redundancy check, an error-checking protocol
DAC	digital-to-analog converter, see also IDAC, VDAC
DFB	digital filter block
DIO	digital input/output, GPIO with only digital capabilities, no analog. See GPIO.
DMIPS	Dhrystone million instructions per second
DMA	direct memory access, see also TD
DNL	differential nonlinearity, see also INL
DNU	do not use
DR	port write data registers
DSI	digital system interconnect
DWT	data watchpoint and trace
ECC	error correcting code
ECO	external crystal oscillator
EEPROM	electrically erasable programmable read-only memory
EMI	electromagnetic interference
EMIF	external memory interface
EOC	end of conversion
EOF	end of frame
EPSR	execution program status register
ESD	electrostatic discharge

Table 43. Ac	cronyms Used in this Document (continued)
Acronym	Description
ETM	embedded trace macrocell
FIR	finite impulse response, see also IIR
FPB	flash patch and breakpoint
FS	full-speed
GPIO	general-purpose input/output, applies to a PSoC pin
HVI	high-voltage interrupt, see also LVI, LVD
IC	integrated circuit
IDAC	current DAC, see also DAC, VDAC
IDE	integrated development environment
I ² C, or IIC	Inter-Integrated Circuit, a communications protocol
IIR	infinite impulse response, see also FIR
ILO	internal low-speed oscillator, see also IMO
IMO	internal main oscillator, see also ILO
INL	integral nonlinearity, see also DNL
I/O	input/output, see also GPIO, DIO, SIO, USBIO
IPOR	initial power-on reset
IPSR	interrupt program status register
IRQ	interrupt request
ITM	instrumentation trace macrocell
LCD	liquid crystal display
LIN	Local Interconnect Network, a communications protocol.
LR	link register
LUT	lookup table
LVD	low-voltage detect, see also LVI
LVI	low-voltage interrupt, see also HVI
LVTTL	low-voltage transistor-transistor logic
MAC	multiply-accumulate
MCU	microcontroller unit
MISO	master-in slave-out
NC	no connect
NMI	nonmaskable interrupt
NRZ	non-return-to-zero
NVIC	nested vectored interrupt controller
NVL	nonvolatile latch, see also WOL
opamp	operational amplifier
PAL	programmable array logic, see also PLD
PC	program counter
РСВ	printed circuit board

Table 43. Acronyms Used in this Document (continued)

Acronym	Description
PGA	programmable gain amplifier
PHUB	peripheral hub
PHY	physical layer
PICU	port interrupt control unit
PLA	programmable logic array
PLD	programmable logic device, see also PAL
PLL	phase-locked loop
PMDD	package material declaration data sheet
POR	power-on reset
PRES	precise power-on reset
PRS	pseudo random sequence
PS	port read data register
PSoC [®]	Programmable System-on-Chip™
PSRR	power supply rejection ratio
PWM	pulse-width modulator
RAM	random-access memory
RISC	reduced-instruction-set computing
RMS	root-mean-square
RTC	real-time clock
RTL	register transfer language
RTR	remote transmission request
RX	receive
SAR	successive approximation register
SC/CT	switched capacitor/continuous time
SCL	I ² C serial clock
SDA	I ² C serial data
S/H	sample and hold
SINAD	signal to noise and distortion ratio
SIO	special input/output, GPIO with advanced features. See GPIO.
SOC	start of conversion
SOF	start of frame
SPI	Serial Peripheral Interface, a communications protocol
SR	slew rate
SRAM	static random access memory
SRES	software reset
SWD	serial wire debug, a test protocol
SWV	single-wire viewer
TD	transaction descriptor, see also DMA
-	

Table 43.	Acronyms	Used in	this Document	(continued))
-----------	----------	---------	---------------	-------------	---

Acronym	Description
THD	total harmonic distortion
TIA	transimpedance amplifier
TRM	technical reference manual
TTL	transistor-transistor logic
ТΧ	transmit
UART	Universal Asynchronous Transmitter Receiver, a communications protocol
UDB	universal digital block
USB	Universal Serial Bus
USBIO	USB input/output, PSoC pins used to connect to a USB port
VDAC	voltage DAC, see also DAC, IDAC
WDT	watchdog timer
WOL	write once latch, see also NVL
WRES	watchdog timer reset
XRES	external reset I/O pin
XTAL	crystal

Document Conventions

Units of Measure

Table 44. Units of Measure

Symbol	Unit of Measure
°C	degrees Celsius
dB	decibel
fF	femto farad
Hz	hertz
KB	1024 bytes
kbps	kilobits per second
Khr	kilohour
kHz	kilohertz
kΩ	kilo ohm
ksps	kilosamples per second
LSB	least significant bit
Mbps	megabits per second
MHz	megahertz
MΩ	mega-ohm
Msps	megasamples per second
μΑ	microampere
μF	microfarad
μH	microhenry
μs	microsecond
μV	microvolt
μW	microwatt
mA	milliampere
ms	millisecond
mV	millivolt
nA	nanoampere
ns	nanosecond
nV	nanovolt
Ω	ohm
pF	picofarad
ppm	parts per million
ps	picosecond
s	second
sps	samples per second
sqrtHz	square root of hertz
V	volt

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

ARM [®] Cortex [®] Microcontrollers	cypress.com/arm
Automotive	cypress.com/automotive
Clocks & Buffers	cypess.com/clocks
Interface	cypress.com/interface
Lighting & Power Control	cypress.com/powerpsoc
Memory	cypress.com/memory
PSoC	cypress.com/psoc
Touch Sensing	cypress.com/touch
USB Controllers	cypress.com/usb
Wireless/RF	cypress.com/wireless

PSoC[®] Solutions

cypress.com/psoc PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community Community | Forums | Blogs | Video | Training

Technical Support cypress.com/support

© Cypress Semiconductor Corporation, 2015-2016. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and other sont, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

Document Number: 001-96519 Rev. *E