

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details	5
---------	---

E·XF

Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	24MHz
Connectivity	I ² C, IrDA, LINbus, Microwire, SmartCard, SPI, SSP, UART/USART
Peripherals	Brown-out Detect/Reset, CapSense, LCD, LVD, POR, PWM, WDT
Number of I/O	55
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 5.5V
Data Converters	A/D 16x12b SAR; 2xIDAC
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	68-VFQFN Exposed Pad
Supplier Device Package	68-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c4127lti-m475

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

More Information

Cypress provides a wealth of data at www.cypress.com to help you to select the right PSoC device for your design, and to help you to quickly and effectively integrate the device into your design. For a comprehensive list of resources, see the knowledge base article KBA86521, How to Design with PSoC 3, PSoC 4, and PSoC 5LP. Following is an abbreviated list for PSoC 4:

- Overview: PSoC Portfolio, PSoC Roadmap
- Product Selectors: PSoC 1, PSoC 3, PSoC 4, PSoC 5LP In addition, PSoC Creator includes a device selection tool.
- Application notes: Cypress offers a large number of PSoC application notes covering a broad range of topics, from basic to advanced level. Recommended application notes for getting started with PSoC 4 are:
 - □ AN79953: Getting Started With PSoC 4
 - □ AN88619: PSoC 4 Hardware Design Considerations
 - □ AN86439: Using PSoC 4 GPIO Pins

PSoC Creator

- □ AN57821: Mixed Signal Circuit Board Layout
- □ AN81623: Digital Design Best Practices
- □ AN73854: Introduction To Bootloaders
- □ AN89610: ARM Cortex Code Optimization

- Technical Reference Manual (TRM) is in two documents:
- □ Architecture TRM details each PSoC 4 functional block.
- □ Registers TRM describes each of the PSoC 4 registers.
- Development Kits:
 - CY8CKIT-042, PSoC 4 Pioneer Kit, is an easy-to-use and inexpensive development platform. This kit includes connectors for Arduino[™] compatible shields and Digilent® Pmod[™] daughter cards.
 - CY8CKIT-049 is a very low-cost prototyping platform. It is a low-cost alternative to sampling PSoC 4 devices.
 - CY8CKIT-001 is a common development platform for any one of the PSoC 1, PSoC 3, PSoC 4, or PSoC 5LP families of devices.

The MiniProg3 device provides an interface for flash programming and debug.

PSoC Creator is a free Windows-based Integrated Design Environment (IDE). It enables concurrent hardware and firmware design of PSoC 3, PSoC 4, and PSoC 5LP based systems. Create designs using classic, familiar schematic capture supported by over 100 pre-verified, production-ready PSoC Components; see the list of component datasheets. With PSoC Creator, you can:

- 1. Drag and drop component icons to build your hardware system design in the main design workspace
- 2. Codesign your application firmware with the PSoC hardware, using the PSoC Creator IDE C compiler
- 3. Configure components using the configuration tools
- 4. Explore the library of 100+ components
- 5. Review component datasheets

Figure 1. Multiple-Sensor Example Project in PSoC Creator

Functional Definition

CPU and Memory Subsystem

CPU

The Cortex-M0 CPU in the PSoC 4100-M is part of the 32-bit MCU subsystem, which is optimized for low-power operation with extensive clock gating. Most instructions are 16 bits in length and execute a subset of the Thumb-2 instruction set. The Cypress implementation includes a hardware multiplier that provides a 32-bit result in one cycle. It includes a nested vectored interrupt controller (NVIC) block with 32 interrupt inputs and also includes a Wakeup Interrupt Controller (WIC), which can wake the processor up from the Deep Sleep mode allowing power to be switched off to the main processor when the chip is in the Deep Sleep mode. The Cortex-M0 CPU provides a Non-Maskable Interrupt (NMI) input, which is made available to the user when it is not in use for system functions requested by the user.

The CPU also includes a debug interface, the serial wire debug (SWD) interface, which is a 2-wire form of JTAG; the debug configuration used for PSoC 4100-M has four break-point (address) comparators and two watchpoint (data) comparators.

Flash

The PSoC 4100-M has a flash module with a flash accelerator, tightly coupled to the CPU to improve average access times from the flash block. The flash accelerator delivers 85% of single-cycle SRAM access performance on average. Part of the flash module can be used to emulate EEPROM operation if required.

SRAM

SRAM memory is retained during Hibernate.

SROM

A supervisory ROM that contains boot and configuration routines is provided.

DMA

A DMA engine, with eight channels, is provided that can do 32-bit transfers and has chainable ping-pong descriptors.

System Resources

Power System

The power system is described in detail in the section Power on page 13. It provides assurance that voltage levels are as required for each respective mode and either delay mode entry (on power-on reset (POR), for example) until voltage levels are as required for proper function or generate resets (brown-out detect (BOD)) or interrupts (low voltage detect (LVD)). The PSoC 4100M operates with a single external supply over the range of 1.71 to 5.5 V and has five different power modes, transitions between which are managed by the power system. The PSoC 4100M provides Sleep, Deep Sleep, Hibernate, and Stop low-power modes.

Clock System

The PSoC 4100-M clock system is responsible for providing clocks to all subsystems that require clocks and for switching between different clock sources without glitching. In addition, the clock system ensures that no meta-stable conditions occur.

The clock system for the PSoC 4100-M consists of a Watch Crystal Oscillator (WCO) running at 32 kHz, the IMO (3 to 48 MHz) and the ILO (32-kHz nominal) internal oscillators, and provision for an external clock.

Figure 2. PSoC 4100M MCU Clocking Architecture

The clk_hf signal can be divided down to generate synchronous clocks for the analog and digital peripherals. There are a total of 16 clock dividers for the PSoC 4100-M, each with 16-bit divide capability. The analog clock leads the digital clocks to allow analog events to occur before digital clock-related noise is generated. The 16-bit capability allows a lot of flexibility in generating fine-grained frequency values and is fully supported in PSoC Creator.

IMO Clock Source

The IMO is the primary source of internal clocking in the PSoC 4100M. It is trimmed during testing to achieve the specified accuracy. Trim values are stored in nonvolatile memory. Trimming can also be done on the fly to allow in-field calibration. The IMO default frequency is 24 MHz and it can be adjusted between 3 to 48 MHz in steps of 1 MHz. IMO tolerance with Cypress-provided calibration settings is ±2%.

ILO Clock Source

The ILO is a very low power oscillator, nominally 32 kHz, which is primarily used to generate clocks for peripheral operation in Deep Sleep mode. ILO-driven counters can be calibrated to the IMO to improve accuracy. Cypress provides a software component, which does the calibration.

Crystal Oscillator

The PSoC 4100M clock subsystem also includes a low-frequency crystal oscillator (32-kHz WCO) that is available during the Deep Sleep mode and can be used for Real-Time Clock (RTC) and Watchdog Timer applications.

Analog Multiplex Bus

The PSoC 4100M has two concentric analog buses (Analog Mux Bus A and Analog Mux Bus B) that circumnavigate the periphery of the chip. These buses can transport analog signals from any pin to various analog blocks (including the opamps) and to the CapSense blocks allowing, for instance, the ADC to monitor any pin on the chip. These buses are independent and can also be split into three independent sections. This allows one section to be used for CapSense purposes, one for general analog signal processing, and the third for general-purpose digital peripherals and GPIO.

Four Opamps

The PSoC 4100M has four opamps with comparator modes, which allow most common analog functions to be performed on-chip eliminating external components; PGAs, voltage buffers, filters, trans-impedance amplifiers, and other functions can be realized with external passives saving power, cost, and space. The on-chip opamps are designed with enough bandwidth to drive the Sample-and-Hold circuit of the ADC without requiring external buffering. The opamps can operate in the Deep Sleep mode at very low power levels. The following diagram shows one of two identical opamp pairs of the opamp subsystem.

Figure 4. Identical Opamp Pairs in Opamp Subsystem

The ovals in Figure 4 represent analog switches, which may be controlled via user firmware, the SAR sequencer, or user-defined programmable logic. The opamps (OA0 and OA1) are configurable via these switches to perform all standard opamp functions with appropriate feedback components.

The opamps (OA0 and OA1) are programmable and reconfigurable to provide standard opamp functionality via switchable feedback components, unity gain functionality for driving pins directly, or for internal use (such as buffering SAR ADC inputs as indicated in the diagram), or as true comparators.

The opamp inputs provide highly flexible connectivity and can connect directly to dedicated pins or, via the analog mux buses, to any pin on the chip. Analog switch connectivity is controllable by user firmware. The opamps operate in Deep Sleep mode at very low currents allowing analog circuits to remain operational during Deep Sleep.

Temperature Sensor

The PSoC 4100M has one on-chip temperature sensor. This consists of a diode, which is biased by a current source that can be disabled to save power. The temperature sensor is connected to the ADC, which digitizes the reading and produces a temperature value using Cypress-supplied software that includes calibration and linearization.

Low-power Comparators

The PSoC 4100M has a pair of low-power comparators, which can also operate in the Deep Sleep and Hibernate modes. This allows the analog system blocks to be disabled while retaining the ability to monitor external voltage levels during low-power modes. The comparator outputs are normally synchronized to avoid meta-stability unless operating in an asynchronous power mode (Hibernate) where the system wake-up circuit is activated by a comparator switch event.

Fixed Function Digital

Timer/Counter/PWM (TCPWM) Block

The TCPWM block uses a16-bit counter with user-programmable period length. There is a Capture register to record the count value at the time of an event (which may be an I/O event), a period register which is used to either stop or auto-reload the counter when its count is equal to the period register, and compare registers to generate compare value signals, which are used as PWM duty cycle outputs. The block also provides true and complementary outputs with programmable offset between them to allow use as deadband programmable complementary PWM outputs. It also has a Kill input to force outputs to a predetermined state; for example, this is used in motor drive systems when an overcurrent state is indicated and the PWMs driving the FETs need to be shut off immediately with no time for software intervention. The PSoC 4100M has eight TCPWM blocks.

Serial Communication Blocks (SCB)

The PSoC 4100M has four SCBs, which can each implement an $I^2C,\,UART,\,or\,SPI$ interface.

I²C Mode: The hardware I²C block implements a full multi-master and slave interface (it is capable of multimaster arbitration). This block is capable of operating at speeds of up to 1 Mbps (Fast Mode Plus) and has flexible buffering options to reduce interrupt overhead and latency for the CPU. It also supports EzI²C that creates a mailbox address range in the memory of the PSoC 4100M and effectively reduces I²C communication to reading from and writing to an array in memory. In addition, the block supports an 8-deep FIFO for receive and transmit which, by increasing the time given for the CPU to read data, greatly reduces the need for clock stretching caused by the CPU not having read data on time. The FIFO mode is available in all channels and is very useful in the absence of DMA.

The I²C peripheral is compatible with the I²C Standard-mode, Fast-mode, and Fast-mode Plus devices as defined in the NXP I²C-bus specification and user manual (UM10204). The I²C bus I/O is implemented with GPIO in open-drain modes.

UART Mode: This is a full-feature UART operating at up to 1 Mbps. It supports automotive single-wire interface (LIN), infrared interface (IrDA), and SmartCard (ISO7816) protocols, all of which are minor variants of the basic UART protocol. In addition, it supports the 9-bit multiprocessor mode that allows addressing of peripherals connected over common RX and TX lines. Common UART functions such as parity error, break detect, and frame error are supported. An 8-deep FIFO allows much greater CPU service latencies to be tolerated.

SPI Mode: The SPI mode supports full Motorola SPI, TI SSP (essentially adds a start pulse used to synchronize SPI Codecs), and National Microwire (half-duplex form of SPI). The SPI block can use the FIFO and also supports an EzSPI mode in which data interchange is reduced to reading and writing an array in memory.

GPIO

The PSoC 4100M has 55 GPIOs in the 68-pin QFN package. The GPIO block implements the following:

- Eight drive strength modes including strong push-pull, resistive pull-up and pull-down, weak (resistive) pull-up and pull-down, open drain and open source, input only, and disabled
- Input threshold select (CMOS or LVTTL)
- Individual control of input and output disables
- Hold mode for latching previous state (used for retaining I/O state in Deep Sleep mode and Hibernate modes)
- Selectable slew rates for dV/dt related noise control to improve EMI

The pins are organized in logical entities called ports, which are 8-bit in width. During power-on and reset, the blocks are forced to the disable state so as not to crowbar any inputs and/or cause excess turn-on current. A multiplexing network known as a high-speed I/O matrix is used to multiplex between various signals that may connect to an I/O pin. Pin locations for fixed-function peripherals are also fixed to reduce internal multiplexing complexity.

Data output and pin state registers store, respectively, the values to be driven on the pins and the states of the pins themselves.

Every I/O pin can generate an interrupt if so enabled and each I/O port has an interrupt request (IRQ) and interrupt service routine (ISR) vector associated with it (8 for PSoC 4100M).

The Pins of Port 6 (up to 6 depending on the package) are overvoltage tolerant (V_{IN} can exceed V_{DD}). The overvoltage cells will not sink more than 10 μ A when their inputs exceed V_{DDIO} in compliance with I²C specifications.

Special Function Peripherals

LCD Segment Drive

The PSoC 4100M has an LCD controller, which can drive up to four commons and up to 51 segments. Any pin can be either a common or a segment pin. It uses full digital methods to drive the LCD segments requiring no generation of internal LCD voltages. The two methods used are referred to as digital correlation and PWM.

Digital correlation pertains to modulating the frequency and levels of the common and segment signals to generate the highest RMS voltage across a segment to light it up or to keep the RMS signal zero. This method is good for STN displays but may result in reduced contrast with TN (cheaper) displays.

PWM pertains to driving the panel with PWM signals to effectively use the capacitance of the panel to provide the integration of the modulated pulse-width to generate the desired LCD voltage. This method results in higher power consumption but can result in better results when driving TN displays. LCD operation is supported during Deep Sleep refreshing a small display buffer (4 bits; 1 32-bit register per port).

CapSense

CapSense is supported on all pins in the PSoC 4100M through a CapSense Sigma-Delta (CSD) block that can be connected to any pin through an analog mux bus that any GPIO pin can be connected to via an Analog switch. CapSense functionality can thus be provided on any pin or group of pins in a system under software control. A component is provided for the CapSense block, which provides automatic hardware tuning (Cypress SmartSense[™]), to make it easy for the user.

Shield voltage can be driven on another Mux Bus to provide water tolerance capability. Water tolerance is provided by driving the shield electrode in phase with the sense electrode to keep the shield capacitance from attenuating the sensed input.

Each CSD block has two IDACs which can be used for general purposes if CapSense is not being used.(both IDACs are available in that case) or if CapSense is used without water tolerance (one IDAC is available). The PSoC 4100M has two CSD blocks which can be used independently; one for CapSense and the other for IDACs.

The two CapSense blocks are referred to as CSD0 and CSD1. Capacitance sensing inputs on Ports 0, 1, 2, 3, 4, 6, and 7 are sensed by CSD0. Capacitance sensing inputs on Port 5 are sensed by CSD1.

	68-QFN		64-TQFP	48-TQFP			44-TQFP
Pin	Name	Pin	Name	Pin	Name	Pin	Name
8	P2.6	8	P2.6	8	P2.6	8	P2.6
9	P2.7	9	P2.7	9	P2.7	9	P2.7
10	VSSA	10	VSSA	10	VSSD	10	VSSD
11	VDDA	11	VDDA				
12	P6.0	12	P6.0				
13	P6.1	13	P6.1				
14	P6.2	14	P6.2				
15	P6.3						
16	P6.4	15	P6.4				
17	P6.5	16	P6.5				
18	VSSIO	17	VSSIO	10	VSSD	10	VSSD
19	P3.0	18	P3.0	12	P3.0	11	P3.0
20	P3.1	19	P3.1	13	P3.1	12	P3.1
21	P3.2	20	P3.2	14	P3.2	13	P3.2
22	P3.3	21	P3.3	16	P3.3	14	P3.3
23	P3.4	22	P3.4	17	P3.4	15	P3.4
24	P3.5	23	P3.5	18	P3.5	16	P3.5
25	P3.6	24	P3.6	19	P3.6	17	P3.6
26	P3.7	25	P3.7	20	P3.7	18	P3.7
27	VDDIO	26	VDDIO	21	VDDIO	19	VDDD
28	P4.0	27	P4.0	22	P4.0	20	P4.0
29	P4.1	28	P4.1	23	P4.1	21	P4.1
30	P4.2	29	P4.2	24	P4.2	22	P4.2
31	P4.3	30	P4.3	25	P4.3	23	P4.3
32	P4.4	31	P4.4				
33	P4.5	32	P4.5				
34	P4.6	33	P4.6				
35	P4.7						
39	P7.0	37	P7.0	26	P7.0		
40	P7.1	38	P7.1	27	P7.1		
41	P7.2						

The pins of Port 6 are overvoltage-tolerant. Pins 36, 37, and 38 are No-Connects on the 68-pin QFN. Pins 34, 35, and 36 are No-Connects on the 64-pin TQFP. Pins 11 and 15 are No-connects in the 48-pin TQFP. All VSS pins must be tied together.

The output drivers of I/O Ports P0 and P7 are connected to VDDD. Output drivers of I/O Ports 1, 2, and 5 are connected to VDDA. Output drivers of I/O Ports 3, 4, and 6 are connected to VDDIO.

PSoC[®] 4: PSoC 4100M Family Datasheet

Port/Pin	Analog	Alt. Function 1	Alt. Function 2	Alt. Function 3	Alt. Function 4	Alt. Function 5
P6.0		tcpwm.line[4]:0	scb[3].uart_rx:0		scb[3].i2c_scl:0	scb[3].spi_mosi:0
P6.1		tcpwm.line_compl[4]:0	scb[3].uart_tx:0		scb[3].i2c_sda:0	scb[3].spi_miso:0
P6.2		tcpwm.line[5]:0	scb[3].uart_cts:0			scb[3].spi_clk:0
P6.3		tcpwm.line_compl[5]:0	scb[3].uart_rts:0			scb[3].spi_select0:0
P6.4		tcpwm.line[6]:0				scb[3].spi_select1:0
P6.5		tcpwm.line_compl[6]:0				scb[3].spi_select2:0
P3.0		tcpwm.line[0]:0	scb[1].uart_rx:1		scb[1].i2c_scl:2	scb[1].spi_mosi:0
P3.1		tcpwm.line_compl[0]:0	scb[1].uart_tx:1		scb[1].i2c_sda:2	scb[1].spi_miso:0
P3.2		tcpwm.line[1]:0	scb[1].uart_cts:1		swd_data	scb[1].spi_clk:0
P3.3		tcpwm.line_compl[1]:0	scb[1].uart_rts:1		swd_clk	scb[1].spi_select0:0
P3.4		tcpwm.line[2]:0				scb[1].spi_select1:0
P3.5		tcpwm.line_compl[2]:0				scb[1].spi_select2:0
P3.6		tcpwm.line[3]:0				scb[1].spi_select3:0
P3.7		tcpwm.line_compl[3]:0				
P4.0			scb[0].uart_rx:0		scb[0].i2c_scl:1	scb[0].spi_mosi:0
P4.1			scb[0].uart_tx:0		scb[0].i2c_sda:1	scb[0].spi_miso:0
P4.2	csd[0].c_mod		scb[0].uart_cts:0		lpcomp.comp[0]:0	scb[0].spi_clk:0
P4.3	csd[0].c_sh_tank		scb[0].uart_rts:0		lpcomp.comp[1]:0	scb[0].spi_select0:0
P4.4						scb[0].spi_select1:2
P4.5						scb[0].spi_select2:2
P4.6						scb[0].spi_select3:2
P4.7						
P7.0		tcpwm.line[0]:2	scb[3].uart_rx:1		scb[3].i2c_scl:1	scb[3].spi_mosi:1
P7.1		tcpwm.line_compl[0]:2	scb[3].uart_tx:1		scb[3].i2c_sda:1	scb[3].spi_miso:1
P7.2		tcpwm.line[1]:2	scb[3].uart_cts:1			scb[3].spi_clk:1

Descriptions of the power pin functions are as follows:

VDDD: Power supply for both analog and digital sections (where there is no V_{DDA} pin).

VDDA: Analog V_{DD} pin where package pins allow; shorted to V_{DDD} otherwise. **VDDIO**: I/O pin power domain.

VSSA: Analog ground pin where package pins allow; shorted to VSS otherwise **VSS**: Ground pin.

VCCD: Regulated Digital supply (1.8 V ±5%).

Port Pins can all be used as LCD Commons, LCD Segment drivers, or CSD sense and shield pins can be connected to AMUXBUS A or B or can all be used as GPIO pins that can be driven by firmware or DSI signals.

Development Support

The PSoC 4100M family has a rich set of documentation, development tools, and online resources to assist you during your development process. Visit www.cypress.com/go/psoc4 to find out more.

Documentation

A suite of documentation supports the PSoC 4100M family to ensure that you can find answers to your questions quickly. This section contains a list of some of the key documents.

Software User Guide: A step-by-step guide for using PSoC Creator. The software user guide shows you how the PSoC Creator build process works in detail, how to use source control with PSoC Creator, and much more.

Component Datasheets: The flexibility of PSoC allows the creation of new peripherals (components) long after the device has gone into production. Component data sheets provide all of the information needed to select and use a particular component, including a functional description, API documentation, example code, and AC/DC specifications.

Application Notes: PSoC application notes discuss a particular application of PSoC in depth; examples include brushless DC motor control and on-chip filtering. Application notes often include example projects in addition to the application note document.

Technical Reference Manual: The Technical Reference Manual (TRM) contains all the technical detail you need to use a PSoC device, including a complete description of all PSoC registers.

Online

In addition to print documentation, the Cypress PSoC forums connect you with fellow PSoC users and experts in PSoC from around the world, 24 hours a day, 7 days a week.

Tools

With industry standard cores, programming, and debugging interfaces, the PSoC 4100M family is part of a development tool ecosystem. Visit us at www.cypress.com/go/psoccreator for the latest information on the revolutionary, easy to use PSoC Creator IDE, supported third party compilers, programmers, debuggers, and development kits.

Electrical Specifications

Absolute Maximum Ratings

Table 1. Absolute Maximum Ratings^[1]

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID1	V _{DD_ABS}	Analog or digital supply relative to V_{SS} ($V_{SSD} = V_{SSA}$)	-0.5	-	6	V	Absolute maximum
SID2	V _{CCD_ABS}	Direct digital core voltage input relative to V_{SSD}	-0.5	_	1.95	V	Absolute maximum
SID3	V _{GPIO_ABS}	GPIO voltage; V _{DDD} or V _{DDA}	-0.5	-	V _{DD} +0.5	V	Absolute maximum
SID4	I _{GPIO_ABS}	Current per GPIO	-25	-	25	mA	Absolute maximum
SID5	I _{G-PIO_injection}	GPIO injection current per pin	-0.5	-	0.5	mA	Absolute maximum
BID44	ESD_HBM	Electrostatic discharge human body model	2200	-	-	V	
BID45	ESD_CDM	Electrostatic discharge charged device model	500	-	_	V	
BID46	LU	Pin current for latch-up	-140	_	140	mA	

Device Level Specifications

All specifications are valid for –40 °C \leq TA \leq 105 °C and TJ \leq 125 °C, except where noted. Specifications are valid for 1.71 V to 5.5 V, except where noted.

Table 2. DC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details / Conditions
SID53	V _{DD}	Power Supply Input Voltage ($V_{DDA} = V_{DDD} = V_{DD}$)	1.8	_	5.5	V	With regulator enabled
SID255	V _{DDD}	Power Supply Input Voltage unregulated	1.71	1.8	1.89	V	Internally unregulated Supply
SID54	V _{CCD}	Output voltage (for core logic)	_	1.8	-	V	
SID55	C _{EFC}	External Regulator voltage bypass	1	1.3	1.6	μF	X5R ceramic or better
SID56	C _{EXC}	Power supply decoupling capacitor	-	1	-	μF	X5R ceramic or better
Active Mod	e, V _{DD} = 1.71 V	to 5.5 V, –40 °C to +105 °C					•
SID6	I _{DD1}	Execute from Flash; CPU at 6 MHz	-	2.2	2.8	mA	
SID7	I _{DD2}	Execute from Flash; CPU at 12 MHz	-	3.7	4.2	mA	
SID8	I _{DD3}	Execute from Flash; CPU at 24 MHz	_	6.7	7.2	mA	
Sleep Mode	e, −40 °C to +10	95 °C					
SID21	I _{DD16}	I ² C wakeup, WDT, and Comparators on. Regulator Off.	_	1.75	2.1	mA	V _{DD} = 1.71 to 1.89, 6 MHz
SID22	I _{DD17}	I ² C wakeup, WDT, and Comparators on.	_	1.7	2.1	mA	V _{DD} = 1.8 to 5.5, 6 MHz
SID23	I _{DD18}	I ² C wakeup, WDT, and Comparators on. Regulator Off.	_	2.35	2.8	mA	V _{DD} = 1.71 to 1.89, 12 MHz
SID24	I _{DD19}	I ² C wakeup, WDT, and Comparators on.	_	2.25	2.8	mA	V _{DD} = 1.8 to 5.5, 12 MHz

Note

Usage above the absolute maximum conditions listed in Table 1 may cause permanent damage to the device. Exposure to absolute maximum conditions for extended periods of time may affect device reliability. The maximum storage temperature is 150 °C in compliance with JEDEC Standard JESD22-A103, High Temperature Storage Life. When used below absolute maximum conditions but above normal operating conditions, the device may not operate to specification.

Table 2. DC Specifications (continued)

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details / Conditions			
Deep Sleep	Mode, –40 °C	to + 60 °C								
SID30	I _{DD25}	I ² C wakeup and WDT on. Regulator Off.	—	1.55	20	μA	V _{DD} = 1.71 to 1.89			
SID31	I _{DD26}	I ² C wakeup and WDT on.	_	1.35	15	μA	V _{DD} = 1.8 to 3.6			
SID32	I _{DD27}	I ² C wakeup and WDT on.	_	1.5	15	μA	V _{DD} = 3.6 to 5.5			
Deep Sleep	Mode, +85 °C									
SID33	I _{DD28}	I ² C wakeup and WDT on. Regulator Off.	_	_	60	μA	V _{DD} = 1.71 to 1.89			
SID34	I _{DD29}	I ² C wakeup and WDT on.	_	-	45	μA	V _{DD} = 1.8 to 3.6			
SID35	I _{DD30}	I ² C wakeup and WDT on.	_	-	30	μA	V _{DD} = 3.6 to 5.5			
Deep Sleep	Mode, +105 °C									
SID33Q	I _{DD28Q}	I ² C wakeup and WDT on. Regulator Off.	_	-	135	μA	V _{DD} = 1.71 to 1.89			
SID34Q	I _{DD29Q}	I ² C wakeup and WDT on.	_	-	180	μA	V _{DD} = 1.8 to 3.6			
SID35Q	I _{DD30Q}	I ² C wakeup and WDT on.	_	-	140	μA	V _{DD} = 3.6 to 5.5			
Hibernate M	Hibernate Mode, -40 °C to + 60 °C									
SID39	I _{DD34}	Regulator Off.	_	150	3000	nA	V _{DD} = 1.71 to 1.89			
SID40	I _{DD35}		_	150	1000	nA	V _{DD} = 1.8 to 3.6			
SID41	I _{DD36}		_	150	1100	nA	V _{DD} = 3.6 to 5.5			
Hibernate M	lode, +85 °C									
SID42	I _{DD37}	Regulator Off.	-	-	4500	nA	V _{DD} = 1.71 to 1.89			
SID43	I _{DD38}		-	-	3500	nA	V _{DD} = 1.8 to 3.6			
SID44	I _{DD39}		-	-	3500	nA	V _{DD} = 3.6 to 5.5			
Hibernate M	lode, +105 °C									
SID42Q	I _{DD37Q}	Regulator Off.	_	1	19.4	μA	V _{DD} = 1.71 to 1.89			
SID43Q	I _{DD38Q}		_	-	17	μA	V _{DD} = 1.8 to 3.6			
SID44Q	I _{DD39Q}		-	-	16	μA	V _{DD} = 3.6 to 5.5			
Stop Mode,	+85 °C									
SID304	I _{DD43A}	Stop Mode current; V_{DD} = 3.6 V	_	35	85	nA	T = -40 °C to +60 °C			
SID304A	I _{DD43B}	Stop Mode current; V_{DD} = 3.6 V	_	-	1450	nA	T = +85 °C			
Stop Mode,	+105 °C									
SID304Q	I _{DD43AQ}	Stop Mode current; V_{DD} = 3.6 V	_	-	5645	nA				
XRES curre	ent									
SID307	I _{DD_XR}	Supply current while XRES asserted	_	2	5	mA				

XRES

Table 6. XRES DC Specifications

Spec ID#	Parameter	Description	Min	Тур	Мах	Units	Details/ Conditions
SID77	V _{IH}	Input voltage high threshold	0.7 × V _{DDD}	-	-	V	CMOS Input
SID78	V _{IL}	Input voltage low threshold	-	-	0.3 × V _{DDD}	V	CMOS Input
SID79	R _{PULLUP}	Pull-up resistor	3.5	5.6	8.5	kΩ	
SID80	C _{IN}	Input capacitance	-	3	-	pF	
SID81	V _{HYSXRES}	Input voltage hysteresis	_	100	_	mV	Guaranteed by characterization
SID82	IDIODE	Current through protection diode to $V_{DDD}\!/\!V_{SS}$	_	-	100	μA	Guaranteed by characterization

Table 7. XRES AC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID83	T _{RESETWIDTH}	Reset pulse width	1	_	_	μs	Guaranteed by characterization

Analog Peripherals

Opamp

Table 8. Opamp Specifications

(Guaranteed by Characterization)

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
	I _{DD}	Opamp block current. No load.	-	-	-	-	
SID269	I _{DD HI}	Power = high	-	1100	1850	μA	
SID270	I _{DD MED}	Power = medium	-	550	950	μA	
SID271	I _{DD LOW}	Power = low	-	150	350	μA	
	GBW	Load = 20 pF, 0.1 mA. V _{DDA} = 2.7 V	-	-	-	_	
SID272	GBW_HI	Power = high	6	-	-	MHz	
SID273	GBW_MED	Power = medium	4	-	-	MHz	
SID274	GBW_LO	Power = low	_	1	_	MHz	
	I _{OUT_MAX}	$V_{DDA} \ge 2.7$ V, 500 mV from rail	_	-	_	-	
SID275	I _{OUT MAX HI}	Power = high	10	-	-	mA	
SID276	I _{OUT_MAX_MID}	Power = medium	10	-	_	mA	
SID277	IOUT_MAX_LO	Power = low	_	5	_	mA	
	I _{OUT}	V _{DDA} = 1.71 V, 500 mV from rail	-	-	-	-	
SID278	I _{OUT MAX HI}	Power = high	4	-	-	mA	
SID279	I _{OUT MAX MID}	Power = medium	4	-	-	mA	
SID280	I _{OUT_MAX_LO}	Power = low	_	2	_	mA	
SID281	V _{IN}	Input voltage range	-0.05	-	VDDA - 0.2	V	Charge-pump on, $V_{DDA} \ge 2.7 \text{ V}$
SID282	V _{CM}	Input common mode voltage	-0.05	-	VDDA - 0.2	V	Charge-pump on, $V_{DDA} \ge 2.7 \text{ V}$
	V _{OUT}	$V_{DDA} \ge 2.7 V$	-	-	-		
SID283	V _{OUT_1}	Power = high, lload=10 mA	0.5	_	VDDA - 0.5	V	
SID284	V _{OUT_2}	Power = high, lload=1 mA	0.2	-	VDDA - 0.2	V	
SID285	V _{OUT_3}	Power = medium, Iload=1 mA	0.2	_	VDDA - 0.2	V	
SID286	V _{OUT_4}	Power = low, lload=0.1 mA	0.2	_	VDDA - 0.2	V	
SID288	V _{OS TR}	Offset voltage, trimmed	1	±0.5	1	mV	High mode
SID288A	V _{OS TR}	Offset voltage, trimmed	_	±1	_	mV	Medium mode
SID288B	V _{OS TR}	Offset voltage, trimmed	_	±2	-	mV	Low mode
SID290	V _{OS DR TR}	Offset voltage drift, trimmed	-10	±3	10	μV/°C	High mode. T _A ≤ 85 °C.
SID290Q	V _{OS_DR_TR}	Offset voltage drift, trimmed	15	±3	15	μV/°C	High mode. T _A ≤ 105 °C
SID290A	V _{OS_DR_TR}	Offset voltage drift, trimmed	-	±10	_	μV/°C	Medium mode
SID290B	V _{OS DR TR}	Offset voltage drift, trimmed	-	±10	-	μV/°C	Low mode
SID291	CMRR	DC Common mode rejection ratio. High-power mode. Common Model voltage range from 0.5 V to VDDA - 0.5 V.	60	70	-	dB	V _{DDD} = 3.6 V
SID292	PSRR	At 1 kHz, 100-mV ripple	70	85	-	dB	V _{DDD} = 3.6 V
	Noise	1	_	-	-	_	

Digital Peripherals

The following specifications apply to the Timer/Counter/PWM peripheral in timer mode.

Timer/Counter/PWM

Table 15. TCPWM Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID.TCPWM.1	ITCPWM1	Block current consumption at 3 MHz	_	-	45	μA	All modes (Timer/Counter/PWM)
SID.TCPWM.2	ITCPWM2	Block current consumption at 12 MHz	_	-	155	μA	All modes (Timer/Counter/PWM)
SID.TCPWM.2A	ITCPWM3	Block current consumption at 48 MHz	-	Ι	650	μA	All modes (Timer/Counter/PWM)
SID.TCPWM.3	TCPWMFREQ	Operating frequency	_	-	Fc	MHz	Fc max = Fcpu. Maximum = 24 MHz
SID.TCPWM.4	TPWMENEXT	Input Trigger Pulse Width for all Trigger Events	2/Fc	_	-	ns	Trigger Events can be Stop, Start, Reload, Count, Capture, or Kill depending on which mode of operation is selected.
SID.TCPWM.5	TPWMEXT	Output Trigger Pulse widths	2/Fc	_	_	ns	Minimum possible width of Overflow, Underflow, and CC (Counter equals Compare value) trigger outputs
SID.TCPWM.5A	TCRES	Resolution of Counter	1/Fc	-	-	ns	Minimum time between successive counts
SID.TCPWM.5B	PWMRES	PWM Resolution	1/Fc	-	-	ns	Minimum pulse width of PWM Output
SID.TCPWM.5C	QRES	Quadrature inputs resolution	1/Fc	_	_	ns	Minimum pulse width between Quadrature phase inputs.

βC

Table 16. Fixed I²C DC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Мах	Units	Details/Conditions
SID149	I _{I2C1}	Block current consumption at 100 kHz	-	-	50	μA	
SID150	I _{I2C2}	Block current consumption at 400 kHz	-	-	135	μA	
SID151	I _{I2C3}	Block current consumption at 1 Mbps	-	-	310	μA	
SID152	I _{I2C4}	I ² C enabled in Deep Sleep mode	-	-	1.4	μA	

Table 17. Fixed I²C AC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID153	F _{I2C1}	Bit rate	_	1	1	Mbps	

LCD Direct Drive

Table 18. LCD Direct Drive DC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID154	ILCDLOW	Operating current in low power mode	_	5	_	μA	16 × 4 small segment disp. at 50 Hz
SID155	C _{LCDCAP}	LCD capacitance per segment/common driver	-	500	5000	pF	Guaranteed by Design
SID156	LCD _{OFFSET}	Long-term segment offset	-	20	-	mV	
SID157	I _{LCDOP1}	PWM Mode current. 5-V bias. 24-MHz IMO	-	0.6	-	mA	32 × 4 segments. 50 Hz, 25 °C
SID158	I _{LCDOP2}	PWM Mode current. 3.3-V bias. 24-MHz IMO.	-	0.5	-	mA	32 × 4 segments. 50 Hz, 25 °C

Table 19. LCD Direct Drive AC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID159	F _{LCD}	LCD frame rate	10	50	150	Hz	

Table 20. Fixed UART DC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID160	I _{UART1}	Block current consumption at 100 Kbits/sec	-	-	55	μA	
SID161	I _{UART2}	Block current consumption at 1000 Kbits/sec	-	-	312	μA	

Table 21. Fixed UART AC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID162	F _{UART}	Bit rate		-	1	Mbps	

SPI Specifications

Table 22. Fixed SPI DC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID163	I _{SPI1}	Block current consumption at 1 Mbits/sec	-	-	360	μA	
SID164	I _{SPI2}	Block current consumption at 4 Mbits/sec	-	-	560	μA	
SID165	I _{SPI3}	Block current consumption at 8 Mbits/sec	-	-	600	μA	

Table 23. Fixed SPI AC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID166	F _{SPI}	SPI operating frequency (master; 6X oversampling)	Ι	Ι	8	MHz	

Table 24. Fixed SPI Master mode AC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID167	T _{DMO}	MOSI valid after Sclock driving edge	-	_	15	ns	
SID168	T _{DSI}	MISO valid before Sclock capturing edge. Full clock, late MISO Sampling used	20	-	-	ns	
SID169	Т _{НМО}	Previous MOSI data hold time with respect to capturing edge at Slave	0	-	-	ns	

Table 25. Fixed SPI Slave mode AC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID170	T _{DMI}	MOSI valid before Sclock capturing edge	40	-	-	ns	
SID171	T _{DSO}	MISO valid after Sclock driving edge	-	-	42 + 3 × (1/FCPU)	ns	
SID171A	T _{DSO_ext}	MISO valid after Sclock driving edge in Ext. Clock mode	-	-	48	ns	
SID172	T _{HSO}	Previous MISO data hold time	0	-	-	ns	
SID172A	T _{SSELSCK}	SSEL Valid to first SCK Valid edge	100	-	_	ns	

Memory

Table 26. Flash DC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID173	V _{PE}	Erase and program voltage	1.71	-	5.5	V	

Table 27. Flash AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID174	T _{ROWWRITE}	Row (block) write time (erase and program)	-	-	20	ms	Row (block) = 128 bytes
SID175	T _{ROWERASE}	Row erase time	-	-	13	ms	
SID176	T _{ROWPROGRAM}	Row program time after erase	-	-	7	ms	
SID178	T _{BULKERASE}	Bulk erase time (128 KB)	_	1	35	ms	
SID179	T _{SECTORERASE}	Sector erase time (8 KB)	-	-	15	ms	
SID180	T _{DEVPROG}	Total device program time	-	-	15	seconds	Guaranteed by characterization
SID181	F _{END}	Flash endurance	100 K	-	-	cycles	Guaranteed by characterization
SID182	F _{RET}	Flash retention. $T_A \leq 55~^\circ\text{C},100$ K P/E cycles	20	-	-	years	Guaranteed by characterization
SID182A		Flash retention. $T_A \leq 85~^\circ\text{C},~10~\text{K}~\text{P/E}$ cycles	10	-	-	years	Guaranteed by characterization
SID182B	F _{RETQ}	Flash retention. $T_A \le 105~^\circ\text{C},~10K~\text{P/E}$ cycles, \le three years at $T_A \ge 85~^\circ\text{C}$	10	20	_	years	Guaranteed by characterization.

SWD Interface

Table 32. SWD Interface Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID213	F_SWDCLK1	$3.3 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	-	-	14	MHz	SWDCLK ≤ 1/3 CPU clock frequency
SID214	F_SWDCLK2	$1.71~V \leq V_{DD} \leq 3.3~V$	-	-	7	MHz	SWDCLK ≤ 1/3 CPU clock frequency
SID215	T_SWDI_SETUP	T = 1/f SWDCLK	0.25*T	-	-	ns	Guaranteed by characterization
SID216	T_SWDI_HOLD	T = 1/f SWDCLK	0.25*T	-	-	ns	Guaranteed by characterization
SID217	T_SWDO_VALID	T = 1/f SWDCLK	-	_	0.5*T	ns	Guaranteed by characterization
SID217A	T_SWDO_HOLD	T = 1/f SWDCLK	1	-	_	ns	Guaranteed by characterization

Internal Main Oscillator

Table 33. IMO DC Specifications

(Guaranteed by Design)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID218	I _{IMO1}	IMO operating current at 48 MHz	_	-	1000	μA	
SID219	I _{IMO2}	IMO operating current at 24 MHz	_	-	325	μA	
SID220	I _{IMO3}	IMO operating current at 12 MHz	_	-	225	μA	
SID221	I _{IMO4}	IMO operating current at 6 MHz	_	-	180	μA	
SID222	I _{IMO5}	IMO operating current at 3 MHz	-	_	150	μA	

Table 34. IMO AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID223	F _{IMOTOL1}	Frequency variation from 3 to 48 MHz	-	-	±2	%	±3% if T _A > 85 °C and IMO frequency < 24 MHz
SID226	T _{STARTIMO}	IMO startup time	_	-	12	μs	
SID227	T _{JITRMSIMO1}	RMS Jitter at 3 MHz	-	156	-	ps	
SID228	T _{JITRMSIMO2}	RMS Jitter at 24 MHz	_	145	-	ps	
SID229	T _{JITRMSIMO3}	RMS Jitter at 48 MHz	_	139	-	ps	

Internal Low-Speed Oscillator

Table 35. ILO DC Specifications

(Guaranteed by Design)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID231	I _{ILO1}	ILO operating current at 32 kHz	-	0.3	1.05	μA	Guaranteed by Characterization
SID233	IILOLEAK	ILO leakage current	-	2	15	nA	Guaranteed by Design

Table 36. ILO AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID234	T _{STARTILO1}	ILO startup time	-	-	2	ms	Guaranteed by character- ization
SID236	T _{ILODUTY}	ILO duty cycle	40	50	60	%	Guaranteed by character- ization
SID237	F _{ILOTRIM1}	32 kHz trimmed frequency	15	32	50	kHz	Max ILO frequency is 70 kHz if $T_A > 85$ °C

Table 37. External Clock Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID305	ExtClkFreq	External Clock input Frequency	0	Ι	48	MHz	Guaranteed by character- ization
SID306	ExtClkDuty	Duty cycle; Measured at V _{DD/2}	45	Ι	55	%	Guaranteed by character- ization

Table 38. Watch Crystal Oscillator (WCO) Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details / Conditions		
IMO WCO-	MO WCO-PLL calibrated mode								
SID330	IMO _{WCO1}	Frequency variation with IMO set to 3 MHz	-0.6	-	0.6	%	Does not include WCO tolerance		
SID331	IMO _{WCO2}	Frequency variation with IMO set to 5 MHz	-0.4	-	0.4	%	Does not include WCO tolerance		
SID332	IMO _{WCO3}	Frequency variation with IMO set to 7 MHz or 9 MHz	-0.3	-	0.3	%	Does not include WCO tolerance		
SID333	IMO _{WCO4}	All other IMO frequency settings	-0.2	-	0.2	%	Does not include WCO tolerance		
WCO Spec	ifications								
SID398	F _{WCO}	Crystal frequency	_	32.768		kHz			
SID399	F _{TOL}	Frequency tolerance	-	50	250	ppm	With 20-ppm crystal.		
SID400	ESR	Equivalent series resistance	-	50	-	kΩ			
SID401	PD	Drive level	-	-	1	μW			
SID402	T _{START}	Startup time	-	-	500	ms			
SID403	CL	Crystal load capacitance	6	-	12.5	pF			
SID404	C ₀	Crystal shunt capacitance	-	1.35	-	pF			
SID405	I _{WCO1}	Operating current (high power mode)	_	-	8	uA			

Table 39. Block Specs

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID257	T _{WS24} *	Number of wait states at 24 MHz	1	-	_		CPU execution from Flash
SID260	V _{REFSAR}	Trimmed internal reference to SAR	-1	-	+1	%	Percentage of Vbg (1.024 V). Guaranteed by character- ization
SID261	F _{SARINTREF}	SAR operating speed without external reference bypass	-	-	100	ksps	12-bit resolution. Guaranteed by characterization
SID262	T _{CLKSWITCH}	Clock switching from clk1 to clk2 in clk1 periods	3	-	4	Periods	Guaranteed by design
* T _{WS24} is guaranteed by design							

Field	Description	Values	Meaning			
CY8C	Cypress Prefix					
4	Architecture	4	PSoC 4			
А	Family	1	4100 Family			
В	CPU Speed 4 48 MHz					
		4	16 KB			
C	Elach Capacity	5	32 KB			
C	Flash Capacity	6	64 KB			
		7	128 KB			
		AX, AZ	TQFP			
DE	Package Code	LQ	QFN			
		BU	BGA			
		FD	CSP			
E	Tomporaturo Pango	I	Industrial			
ŗ	Temperature Range	Q	Extended Industrial			
		N/A	PSoC 4 Base Series			
S	Silicon Family	L	PSoC 4 L-Series			
3	Silicon Fairling	BL	PSoC 4 BLE			
		М	PSoC 4 M-Series			
XYZ	Attributes Code	ttributes Code 000-999 Code of feature set in the specific fam				

The nomenclature used in the preceding table is based on the following part numbering convention:

Part Numbering Conventions

The part number fields are defined as follows.

51-85051 *D

Document Conventions

Units of Measure

Table 44. Units of Measure

Symbol	Unit of Measure
°C	degrees Celsius
dB	decibel
fF	femto farad
Hz	hertz
KB	1024 bytes
kbps	kilobits per second
Khr	kilohour
kHz	kilohertz
kΩ	kilo ohm
ksps	kilosamples per second
LSB	least significant bit
Mbps	megabits per second
MHz	megahertz
MΩ	mega-ohm
Msps	megasamples per second
μA	microampere
μF	microfarad
μH	microhenry
μs	microsecond
μV	microvolt
μW	microwatt
mA	milliampere
ms	millisecond
mV	millivolt
nA	nanoampere
ns	nanosecond
nV	nanovolt
Ω	ohm
pF	picofarad
ppm	parts per million
ps	picosecond
S	second
sps	samples per second
sqrtHz	square root of hertz
V	volt