

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Not For New Designs
Core Processor	RX
Core Size	32-Bit Single-Core
Speed	100MHz
Connectivity	I ² C, LINbus, SCI, SPI
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	61
Program Memory Size	256КВ (256К х 8)
Program Memory Type	FLASH
EEPROM Size	·
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 12x10b, 8x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	112-LQFP
Supplier Device Package	112-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f562gaddfh-v1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 1.1	Outline of Specifications (3 / 5)
-----------	-----------------------------------

Classification	Module/Function	Description						
Timers	General PWM timer (GPT/GPTa)	 16 bits x 4 channels Counting up or down (saw-wave), counting up and down (triangle-wave) selectable for all channels Clock sources independently selectable for all channels 2 input/output pins per channel 2 output compare/input capture registers per channel For the 2 output compare/input capture registers of each channel, 4 registers are provided as buffer registers and are capable of operating as comparison registers wher buffering is not in use. In output compare operation, buffer switching can be at peaks or troughs, enabling the generation of laterally asymmetrically PWM waveforms. Registers for setting up frame intervals on each channel (with capability for generating interrupts on overflow or underflow) Synchronizable operation of the several counters Modes of synchronized operation (synchronized, or displaced by desired times for phase shifting) Generation of dead times in PWM operation Through combination of three counters, generation of automatic three-phase PWM waveforms incorporating dead times Starting, clearing, and stopping counters in response to external or internal triggers Internal trigger sources: output of the internal comparator detection, software, and compare-match The frequency-divided system clock (ICLK) can be used as a counter clock for measuring timing of the edges of signals produced by frequency-dividing the low-speed on-chip oscillator clock signal dedicated to IWDT (to detect abnormal oscillation). PWM delay generation can control the timing with which signals on the two PWM outpur pins for each channel rise and fall with an accuracy of up to 1/32 times the period of the system clock (ICLK) (only for GPTa). 						
	Compare match timer (CMT)	 (16 bits x 2 channels) x 2 units Select from among four internal clock signals (PCLK/8, PCLK/32, PCLK/128, PCLK/512 						
	Watchdog timer (WDT)	 8 bits x 1 channel Select from among eight counter-input clock signals (PCLK/4, PCLK/64, PCLK/128, PCLK/512, PCLK/2048, PCLK/8192, PCLK/32768, PCLK/131072) Switchable between watchdog timer mode and interval timer mode 						
	Independent watchdog timer (IWDT)	 14 bits x 1 channel Counter-input clock: low-speed on-chip oscillator dedicated to IWDT 						
Communications	Serial communications interface (SCIb)	 3 channels Serial communications modes: Asynchronous, clock synchronous, and smart-card interface Multiprocessor communications On-chip baud rate generator allows selection of the desired bit rate Choice of LSB-first or MSB-first transfer Noise cancellation (only available in asynchronous mode) 						
	I ² C bus interface (RIIC)	 1 channel Communications formats I²C bus format/SMBus format Master/slave selectable 						

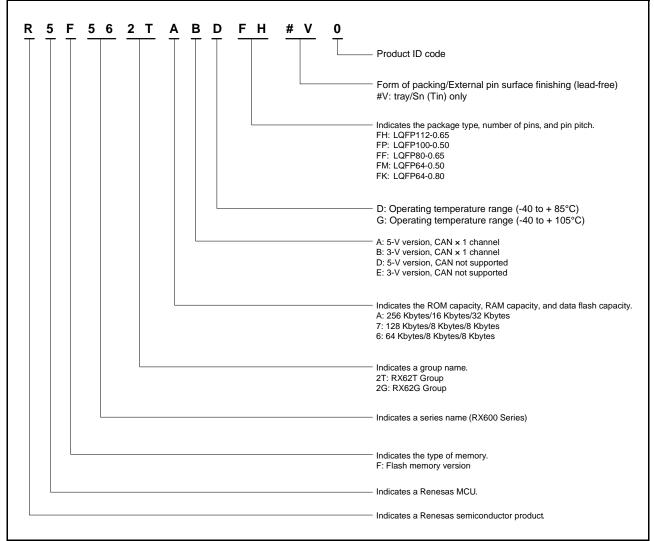


Figure 1.1 How to Read the Product Part No.

Page 11 of 134

Table 1.4 List of Pins and Pin Functions (112-Pin LQFP) (3 / 3)

Pin No. (112-Pin	Power Supply Clock		Angle -	Time	Communi-	I	005	Debury
LQFP)	System Control	I/O Port	Analog	Timer	cation	Interrupt	POE	Debugging
80	AVCC							
81	VREF							
82	AVSS							
83		P63	AN3					
84		P62	AN2					
85		P61	AN1					
86		P60	AN0					
87		P55	AN11					
88		P54	AN10					
89		P53	AN9					
90		P52	AN8					
91		P51	AN7					
92		P50	AN6					
93		P47	AN103/ CVREFH					
94		P46	AN102					
95		P45	AN101					
96		P44	AN100					
97		P43	AN003/ CVREFL					
98		P42	AN002					
99		P41	AN001					
100		P40	AN000					
101	AVCC0							
102	VREFH0							
103	VREFL0							
104	AVSS0							
105		P82		MTIC5U	SCK2-B			
106		P81		MTIC5V	TXD2-B			
107		P80		MTIC5W	RXD2-B			
108				WDTOVF#				
109		P11		MTCLKC-B		IRQ1-A		
110		P10		MTCLKD-B		IRQ0-A		
111								TRST#
112								TMS

	LIST OF FILLS a	ina Fin Fu		-III LQFF) (3	/ 3)			
Pin No. (80-Pin LQFP)	Power Supply Clock System Control	I/O Port	Analog	Timer	Communi- cation	Interrupt	POE	Debugging
76	AVSS0							
77		P11		MTCLKC-B		IRQ1-A		
78		P10		MTCLKD-B		IRQ0-A		
79		PA5	ADTRG1#-A	MTIOC1A	MISO-B			
80		PA4	ADTRG0#-A	MTIOC1B	RSPCK-B			

Table 1.6 List of Pins and Pin Functions (80-Pin LQFP) (3 / 3)

Table 1.7 List of Pins and Pin Functions (80-Pin LQFP: R5F562TxGDFF) (3 / 3)

Pin No. (80-Pin LQFP)	Power Supply Clock System Control	I/O Port	Analog	Timer	Communication	Interrupt	POE	Debugging
76	AVSS0							
77		P82		MTIC5U	SCK2-B			
78		P81		MTIC5V	TXD2-B			
79		P80		MTIC5W	RXD2-B			
80		P10		MTCLKD-B		IRQ0-A		

4. I/O Registers

This section gives information on the on-chip I/O register addresses and bit configurations. The information is given as shown below. Notes on writing to registers are also given at the end.

(1) I/O register addresses (address order)

- Registers are listed from the lower allocation addresses.
- Registers are classified according to functional modules (abbreviations).
- The number of access cycles indicates the number of states based on the specified reference clock.
- Among the I/O register area, addresses not listed in the list of registers are reserved. Reserved addresses must not be accessed. Do not access these addresses; otherwise, the operation when accessing these bits and subsequent operations cannot be guaranteed.
- A unit of access is specified for each register. Access other than in the specified unit is prohibited.

(2) I/O register bits

- Bit configurations of the registers are listed in the same order as the register addresses.
- Reserved bits are indicated by "—" in the bit name column.
- Space in the bit name field indicates that the entire register is allocated to either the counter or data.
- For the registers of 16 or 32 bits, the MSB is listed first.

(3) Notes on writing to I/O registers

When writing to an I/O register, the CPU starts executing the subsequent instruction before completing I/O register write. This may cause the subsequent instruction to be executed before the post-update I/O register value is reflected on the operation.

As described in the following examples, special care is required for the cases in which the subsequent instruction must be executed after the post-update I/O register value is actually reflected.

[Examples of cases requiring special care]

- The subsequent instruction must be executed while an interrupt request is disabled with the IENj bit in IERm of the ICU (interrupt request enable bit)*1 cleared to 0.
- A WAIT instruction is executed immediately after the preprocessing for causing a transition to the low power consumption state.
- Note 1. See section 11.2.2, Interrupt Request Enable Register m (IERm) (m = 02h to 1Fh) in the User's manual: Hardware.

In the above cases, after writing to an I/O register, wait until the write operation is completed using the following procedure and then execute the subsequent instruction.

Table 4.1 List of I/O Registers (Address Order) (5 / 25)

Address	Module Abbreviation	Register Name	Register Abbreviation	Number of Bits	Access Size	Number o Access Cycles
0008 7172h	ICU	DTC activation enable register 114	DTCER114	8	8	2 ICLK
0008 7173h	ICU	DTC activation enable register 115	DTCER115	8	8	2 ICLK
0008 7174h	ICU	DTC activation enable register 116	DTCER116	8	8	2 ICLK
0008 7175h	ICU	DTC activation enable register 117	DTCER117	8	8	2 ICLK
0008 7179h	ICU	DTC activation enable register 121	DTCER121	8	8	2 ICLK
0008 717Ah	ICU	DTC activation enable register 122	DTCER122	8	8	2 ICLK
0008 717Dh	ICU	DTC activation enable register 125	DTCER125	8	8	2 ICLK
0008 717Eh	ICU	DTC activation enable register 126	DTCER126	8	8	2 ICLK
0008 7181h	ICU	DTC activation enable register 129	DTCER129	8	8	2 ICLK
0008 7182h	ICU	DTC activation enable register 130	DTCER130	8	8	2 ICLK
0008 7183h	ICU	DTC activation enable register 131	DTCER131	8	8	2 ICLK
0008 7184h	ICU	DTC activation enable register 132	DTCER132	8	8	2 ICLK
0008 7186h	ICU	DTC activation enable register 134	DTCER134	8	8	2 ICLK
0008 7187h	ICU	DTC activation enable register 135	DTCER135	8	8	2 ICLK
0008 7188h	ICU	DTC activation enable register 136	DTCER136	8	8	2 ICLK
0008 7189h	ICU	DTC activation enable register 137	DTCER137	8	8	2 ICLK
0008 718Ah	ICU	DTC activation enable register 138	DTCER138	8	8	2 ICLK
0008 718Bh	ICU	DTC activation enable register 139	DTCER139	8	8	2 ICLK
0008 718Ch	ICU	DTC activation enable register 140	DTCER140	8	8	2 ICLK
0008 718Dh	ICU	DTC activation enable register 141	DTCER141	8	8	2 ICLK
0008 718Eh	ICU	DTC activation enable register 142	DTCER142	8	8	2 ICLK
0008 718Fh	ICU	DTC activation enable register 143	DTCER143	8	8	2 ICLK
0008 7190h	ICU	DTC activation enable register 144	DTCER144	8	8	2 ICLK
0008 7191h	ICU	DTC activation enable register 145	DTCER145	8	8	2 ICLK
0008 7195h	ICU	DTC activation enable register 149	DTCER149	8	8	2 ICLK
0008 7196h	ICU	DTC activation enable register 150	DTCER150	8	8	2 ICLK
0008 7197h	ICU	DTC activation enable register 151	DTCER151	8	8	2 ICLK
0008 7198h	ICU	DTC activation enable register 152	DTCER152	8	8	2 ICLK
0008 7199h	ICU	DTC activation enable register 153	DTCER153	8	8	2 ICLK
0008 71AEh	ICU	DTC activation enable register 174	DTCER174	8	8	2 ICLK
0008 71AFh	ICU	DTC activation enable register 175	DTCER175	8	8	2 ICLK
0008 71B0h	ICU	DTC activation enable register 176	DTCER176	8	8	2 ICLK
0008 71B1h	ICU	DTC activation enable register 177	DTCER177	8	8	2 ICLK
0008 71B2h	ICU	DTC activation enable register 178	DTCER178	8	8	2 ICLK
0008 71B3h	ICU	DTC activation enable register 179	DTCER179	8	8	2 ICLK
0008 71B4h	ICU	DTC activation enable register 180	DTCER180	8	8	2 ICLK
0008 71B5h	ICU	DTC activation enable register 181	DTCER181	8	8	2 ICLK
0008 71B6h	ICU	DTC activation enable register 182	DTCER182	8	8	2 ICLK
0008 71B7h	ICU	DTC activation enable register 183	DTCER183	8	8	2 ICLK
0008 71B8h	ICU	DTC activation enable register 184	DTCER184	8	8	2 ICLK
0008 71BAh	ICU	DTC activation enable register 186	DTCER186	8	8	2 ICLK
0008 71BBh	ICU	DTC activation enable register 187	DTCER187	8	8	2 ICLK
0008 71BCh	ICU	DTC activation enable register 188	DTCER188	8	8	2 ICLK
0008 71BDh	ICU	DTC activation enable register 189	DTCER189	8	8	2 ICLK

Table 4.1 List of I/O Registers (Address Order) (15 / 25)

Address	Module Abbreviation	Register Name	Register Abbreviation	Number of Bits	Access Size	Number of Access Cycles
0009 041Ch	CAN0*2	Mask register 7	MKR7	32	8, 16, 32	2, 3 PCLK*
0009 0420h	CAN0*2	FIFO received ID compare register 0	FIDCR0	32	8, 16, 32	2, 3 PCLK*
0009 0424h	CAN0 ^{*2}	FIFO received ID compare register 1	FIDCR1	32	8, 16, 32	2, 3 PCLK*
0009 0428h	CAN0*2	Mask invalid register	MKIVLR	32	8, 16, 32	2, 3 PCLK*
0009 042Ch	CAN0 ^{*2}	Mailbox interrupt enable register	MIER	32	8, 16, 32	2, 3 PCLK*
0009 0820h to 0009 083Fh	CAN0*2	Message control registers 0 to 31	MCTL0 to MCTL31	8	8	2, 3 PCLK*
0009 0840h	CAN0*2	Control register	CTLR	16	8, 16	2, 3 PCLK*
0009 0842h	CAN0 ^{*2}	Status register	STR	16	8, 16	2, 3 PCLK*
0009 0844h	CAN0 ^{*2}	Bit configuration register	BCR	32	8, 16, 32	2, 3 PCLK*
0009 0848h	CAN0 ^{*2}	Receive FIFO control register	RFCR	8	8	2, 3 PCLK*
0009 0849h	CAN0 ^{*2}	Receive FIFO pointer control register	RFPCR	8	8	2, 3 PCLK*
0009 084Ah	CAN0 ^{*2}	Transmit FIFO control register	TFCR	8	8	2, 3 PCLK*
0009 084Bh	CAN0*2	Transmit FIFO pointer control register	TFPCR	8	8	2, 3 PCLK*
0009 084Ch	CAN0 ^{*2}	Error interrupt enable register	EIER	8	8	2, 3 PCLK*
0009 084Dh	CAN0*2	Error interrupt factor judge register	EIFR	8	8	2, 3 PCLK*
0009 084Eh	CAN0*2	Receive error count register	RECR	8	8	2, 3 PCLK*
0009 084Fh	CAN0*2	Transmit error count register	TECR	8	8	2, 3 PCLK*
0009 0850h	CAN0*2	Error code store register	ECSR	8	8	2, 3 PCLK*
0009 0851h	CAN0*2	Channel search support register	CSSR	8	8	2, 3 PCLK*
0009 0852h	CAN0*2	Mailbox search status register	MSSR	8	8	2, 3 PCLK*
0009 0853h	CAN0*2	Mailbox search mode register	MSMR	8	8	2, 3 PCLK*
0009 0854h	CAN0*2	Time stamp register	TSR	16	8, 16	2, 3 PCLK*
0009 0856h	CAN0*2	Acceptance filter support register	AFSR	16	8, 16	2, 3 PCLK*
0009 0858h	CAN0*2	Test control register	TCR	8	8	2, 3 PCLK*
0009 4001h	LIN0	LIN wake-up baud rate select register	LWBR	8	8	2, 3 PCLK*
0009 4002h	LIN0	LIN baud rate prescaler 0 register	LBRP0	8	8, 16	2, 3 PCLK*
0009 4003h	LIN0	LIN baud rate prescaler 1 register	LBRP1	8	8, 16	2, 3 PCLK*
0009 4004h	LIN0	LIN self-test control register	LSTC	8	8	2, 3 PCLK*
0009 4008h	LIN0	Mode register	LOMD	8	8, 16, 32	2, 3 PCLK*
0009 4009h	LIN0	Break field setting register	L0BRK	8	8, 16, 32	2, 3 PCLK*
0009 400Ah	LIN0	Space setting register	LOSPC	8	8, 16, 32	2, 3 PCLK*
0009 400Bh	LIN0	Wake-up setting register	LOWUP	8	8, 16, 32	2, 3 PCLK*
0009 400Ch	LIN0	Interrupt enable register	LOIE	8	8, 16	2, 3 PCLK*
0009 400Dh	LIN0	Error detection enable register	LOEDE	8	8, 16	2, 3 PCLK*
0009 400Eh	LIN0	Control register	LOC	8	8	2, 3 PCLK*
0009 4010h	LIN0	Transmission control register	LOTC	8	8, 16, 32	2, 3 PCLK*
0009 4011h	LIN0	Mode status register	LOMST	8	8, 16, 32	2, 3 PCLK*
0009 4012h	LIN0	Status register	LOST	8	8, 16, 32	2, 3 PCLK*
0009 4013h	LIN0	Error status register	LOEST	8	8, 16, 32	2, 3 PCLK*
0009 4014h	LIN0	Response field set register	LORFC	8	8, 16	2, 3 PCLK*
0009 4015h	LIN0	Buffer register	LOIDB	8	8, 16	2, 3 PCLK*
0009 4016h	LIN0	Check sum buffer register	LOCBR	8	8	2, 3 PCLK*
0009 4018h	LIN0	Data 1 buffer register	L0DB1	8	8, 16, 32	2, 3 PCLK*

Module Abbreviation	Register Abbreviation	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/
AD0	ADDRB*1		_	_	_	_	_		
AD0	ADDRC*1	_	_	_	_	_	_		
AD0	ADDRD ^{*1}		_	_	_	_	_		
AD0	ADDRE ^{*1}		_	_	_	_	_		
AD0	ADDRF*1		_	_	_	_	_		
AD0	ADDRG*1		_	_	_	_	_		
AD0	ADDRH*1		_	_	_	_	_		
AD0	ADCSR		ADIE	ADST			Cł	H[3:0]	
AD0	ADCR	_	_	_	_	СК	S[1:0]		DE[1:0]
AD0	ADSSTR								-
AD0	ADDIAGR	_	_	_	_	_	_	DIA	AG[1:0]
AD0	ADDRI ^{*1}		_	_	_	_	_		
AD0	ADDRJ*1		_	_	_	_	_		
AD0	ADDRK *1	_	_	_	_	_	_		
AD0	ADDRL*1		_	_	_	_	_		
AD0	ADSTRGR						ADSTRS[4:0]		
AD0	ADDPR	DPSEL	_	_	_	_	_	_	DPPR
SCI0	SMR	СМ	CHR	PE	PM	STOP	MP	Cł	(S[1:0]
SCI0	BRR								
SCI0	SCR	TIE	RIE	TE	RE	MPIE	TEIE	Cł	(E[1:0]
SCI0	TDR								
SCI0	SSR	TDRE	RDRF	ORER	FER	PER	TEND	MPB	MPB
SCI0	RDR								
SCI0	SCMR	BCP2	_	_	_	SDIR	SINV	_	SMIF
SCI0	SEMR	_	_	NFEN	ABCS	_	_	_	_
SMCI0	SMR	GM	BLK	PE	PM	(BC	P[1:0])	Cł	(S[1:0]
SMCI0	BRR								
SMCI0	SCR	TIE	RIE	TE	RE	MPIE	TEIE	Cł	(E[1:0]
SMCI0	TDR								
SMCI0	SSR	TDRE	RDRF	ORER	ERS	PER	TEND	MPB	MPB.
SMCI0	RDR								
SMCI0	SCMR	BCP2	_	_	_	SDIR	SINV	_	SMIF
SCI1	SMR	CM	CHR	PE	PM	STOP	MP	Cł	(S[1:0]
SCI1	BRR								
SCI1	SCR	TIE	RIE	TE	RE	MPIE	TEIE	Cł	(E[1:0]
SCI1	TDR								
SCI1	SSR	TDRE	RDRF	ORER	FER	PER	TEND	MPB	MPB
SCI1	RDR								
SCI1	SCMR	BCP2	_	_	_	SDIR	SINV	_	SMIF

Table 4.2 List of I/O Registers (Bit Order) (10 / 30)

Module Abbreviation	Register Abbreviation	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
MTU7	TADCOBRB								
MTU	TSYCR	CE0A	CE0D	CE0C	CE0D	CE1A	CE1B	CE2A	CE2B
MTU	TWCRB	CCE	_	_	_	_	_	SCC	WRE
MTU	TMDR2B	_						_	DRS
MTU6	TGRE								5.10
MTU7	TGRE								
MTU7	TGRF								
MTU	TSTRB	CST7	CST6					_	
мти	TSYRB	SYNC7	SYNC6		_		_	_	
мто	TRWERB	_	_						RWE
MTU5	TCNTU								
MTU5	TGRU								
MTU5	TCRU	_	_	_	_	_	_	TPS	C[1:0]
MTU5	TIORU	_	_	_			IOC[4:0]		
MTU5	TCNTV								
MTU5	TGRV								
MTU5	TCRV						_	TPS	C[1:0]
MTU5	TIORV	_	_	_			IOC[4:0]		
MTU5	TCNTW								
MTU5	TGRW								
MTU5	TCRW							TPS	C[1:0]
MTU5	TIORW						IOC[4:0]		0[0]
MTU5	TSR						CMFU5	CMFV5	CMFW5
MTU5	TIER	_	_	_	_	_	TGIE5U	TGIE5V	TGIE5W
MTU5	TSTR	_	_	_	_	_	CSTU5	CSTV5	CSTW5
MTU5	TCNTCMPCLR	_	_	_	_	_	CMPCLR5U	CMPCLR5V	CMPCLR5V
GPT	GTSTR	_	_	_	_	_	_		_
			_		_	CST3	CST2	CST1	CST0
GPT	GTHSCR	CPH	W3[1:0]	CPH	IW2[1:0]		W1[1:0]		W0[1:0]
			W3[1:0]	CSH	W2[1:0]		W1[1:0]		W0[1:0]
GPT	GTHCCR	_	_	_	_	CCSW3	CCSW2	CCSW1	CCSW0
		ССН	W3[1:0]	CCH	IW2[1:0]	ССН	W1[1:0]	CCH	W0[1:0]
GPT	GTHSSR		CSH	SL3[3:0]			CSHS	SL2[3:0]	
			CSH	SL1[3:0]			CSHS	SL0[3:0]	
GPT	GTHPSR	CSHPL3[3:0]			CSHPL2[3:0]				
			CSHPL1[3:0]			CSHF	PL0[3:0]		
GPT	GTWP	_	_	_	_	_	_	_	_
			_	_	_	WP3	WP2	WP1	WP0
GPT	GTSYNC	_	_	SYN	IC3[1:0]	_	_	SYN	C2[1:0]
		_	_	SYN	IC1[1:0]	_	_	SYN	C0[1:0]
GPT	GTETINT	_	_	_	_	_	_	ETINF	ETIPF
			_	_	_	_	_	ETINEN	ETIPEN

Table 4.2 List of I/O Registers (Bit Order) (22 / 30)

Module Abbreviation	Register Abbreviation	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/	
GPT1	GTADTBRB	-								
GPT1	GTADTDBRB									
GPT1	GTONCR	OBE	OAE	_	SWN	_	_	_	NFV	
			NF	S[3:0]		NVB	NVA	NEB	NEA	
GPT1	GTDTCR	_	_	_	_	_	_	_	TDFE	
		_	_	TDBDE	TDBUE	_	_	—	TDE	
GPT1	GTDVU									
GPT1	GTDVD									
GPT1	GTDBU									
GPT1	GTDBD									
GPT1	GTSOS	_	_	_	_	_	_	_	_	
			_	_	_	_	_	SC	S[1:0]	
GPT1	GTSOTR		—	—	—	—	—	—	_	
		_	_	—	_	—	—	—	SOTE	
GPT2	GTIOR	OBHLD	OBDFLT			GTI	OB[5:0]			
		OAHLD	HLD OADFLT GTIOA[5:0]		OA[5:0]					
GPT2	GTINTAD	ADTRBDEN	ADTRBUEN	ADTRADEN	ADTRAUEN	EINT	_	_		
		GTIN	TPR[1:0]	GTINTF	GTINTE	GTINTD	GTINTC	GTINTB	GTINT	
GPT2	GTCR		_	CCL	R[1:0]			TPCS[1:0]		
		_	_	_	_	_		MD[2:0]		
GPT2	GTBER		ADTDB	ADT	FB[1:0]	—	— ADTDA		ADTTA[1:0]	
		_	CCRSWT	PR	[1:0]	CCI	RB[1:0]	CCI	RA[1:0]	
GPT2	GTUDC	_	_	—	_	_	_	_	_	
		_	_	_	_	_	_	UDF	UD	
GPT2	GTITC	_	ADTBL	_	ADTAL	_		IVTT[2:0]		
			C[1:0]	ITLF	ITLE	ITLD	ITLC	ITLB	ITLA	
GPT2	GTST	TUCF		_	_	DTEF		ITCNT[2:0]		
		TCFPU	TCFPO	TCFF	TCFE	TCFD	TCFC	TCFB	TCFA	
GPT2	GTCNT									
GPT2	GTCCRA									
0.0770	070000									
GPT2	GTCCRB									
GPT2	GTCCRC									
GPT2	GTCCRD									
GPT2	GTCCRE									
GPT2	GTCCRF									

Table 4.2 List of I/O Registers (Bit Order) (26 / 30)

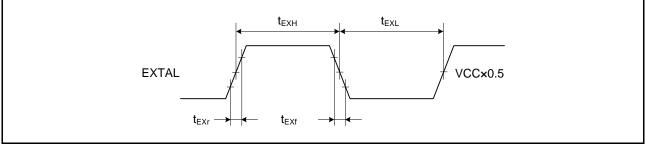


Figure 5.4 EXTAL External Input Clock Timing

5.4 A/D Conversion Characteristics

Table 5.15 10-Bit A/D Conversion Characteristics

Note: Items for which test conditions are not specifically stated in the table below have the same values under conditions 1 to 3.

Condition 1: VCC = PLLVCC = 2.7 to 3.6 V, VSS = PLLVSS = AVSS0 = AVSS = VREFL0 = 0 V

AVCC0 = AVCC = 3.0 to 3.6 V, VREFH0 = 3.0 V to AVCC0, VREF = 3.0 V to AVCC

Ta = Topr

Item	Min.	Тур.	Max.	Unit	Test Conditions
Resolution	10	10	10	Bit	
Conversion time*1 (AD clock = 25-MHz operation)	2.0	-	-	μS	Sampling 25 states
Analog input capacitance	-	-	4	pF	
Integral nonlinearity error	-	-	±3.0	LSB	
Offset error	-	-	±3.0	LSB	
Full-scale error	-	-	±3.0	LSB	
Quantization error	-	±0.5	-	LSB	
Absolute accuracy	-	-	±4.0	LSB	
Permissible signal source impedance	-	-	1.0	kΩ	

Condition 2: VCC = PLLVCC = 2.7 to 3.6 V, VSS = PLLVSS = AVSS0 = AVSS = VREFL0 = 0 V AVCC0 = AVCC = 4.0 to 5.5 V, VREFH0 = 4.0 V to AVCC0, VREF = 4.0 V to AVCC

Condition 3: VCC = PLLVCC = 4.0 to 5.5 V, VSS = PLLVSS = AVSS0 = AVSS = VREFL0 = 0 V AVCC0 = AVCC = 4.0 to 5.5 V, VREFH0 = 4.0 V to AVCC0, VREF = 4.0 V to AVCC Ta = Topr. Ta is the same under conditions 2 and 3.

Item	Min.	Тур.	Max.	Unit	Test Conditions
Resolution	10	10	10	Bit	
Conversion time*1 (AD clock = 50-MHz operation)	1.0	-	-	μS	Sampling 25 states
Analog input capacitance	-	-	4	pF	
Integral nonlinearity error	-	-	±3.0	LSB	
Offset error	-	-	±3.0	LSB	
Full-scale error	-	-	±3.0	LSB	
Quantization error	-	±0.5	-	LSB	
Absolute accuracy	-	-	±4.0	LSB	
Permissible signal source impedance	-	-	1.0	kΩ	

Note 1. The conversion time includes the sampling time and the comparison time. As the test conditions, the number of sampling states is indicated.

Table 5.17 Characteristics of the Programmable Gain Amplifier

Note: Items for which test conditions are not specifically stated in the table below have the same values under conditions 1 to 3.

 $\begin{array}{l} \mbox{Condition 1: VCC = PLLVCC = 2.7 to 3.6 V, VSS = PLLVSS = AVSS0 = AVSS = VREFL0 = 0 V \\ \mbox{AVCC0 = AVCC = 3.0 to 3.6 V, VREFH0 = 3.0 V to AVCC0, VREF = 3.0 V to AVCC} \end{array}$

Condition 2: VCC = PLLVCC = 2.7 to 3.6 V, VSS = PLLVSS = AVSS0 = AVSS = VREFL0 = 0 V

AVCC0 = AVCC = 4.0 to 5.5 V, VREFH0 = 4.0 V to AVCC0, VREF = 4.0 V to AVCC

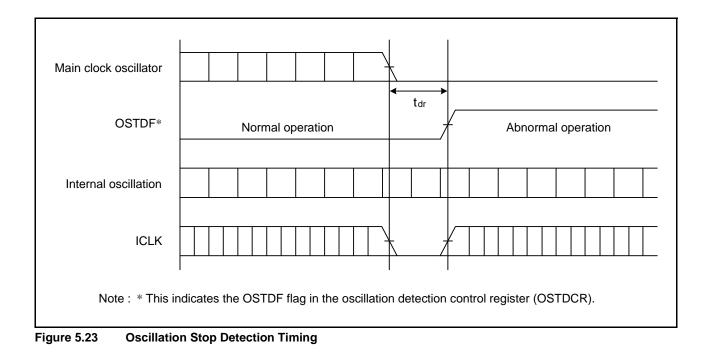
Condition 3: VCC = PLLVCC = 4.0 to 5.5 V, VSS = PLLVSS = AVSS0 = AVSS = VREFL0 = 0 V AVCC0 = AVCC = 4.0 to 5.5V, VREFH0 = 4.0 V to AVCC0, VREF = 4.0 V to AVCC Ta = Topr. Ta is the same under conditions 1 to 3.

ltem		Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Analog input capacitance		Cin	-	-	6	pF	
Input offset volta	age	Voff	-	-	8	mV	
Input voltage	Gain × 2.000	Vin	0.050 x AVcc	-	0.450 x AVcc	V	
range (Vin)	Gain × 2.500		0.047 x AVcc	-	0.360 x AVcc		
	Gain × 3.077		0.045 x AVcc	-	0.292 x AVcc		
	Gain × 3.636		0.042 x AVcc	-	0.247 x AVcc		
	Gain × 4.000		0.040 x AVcc	-	0.212 x AVcc		
	Gain × 4.444		0.036 x AVcc	-	0.191 x AVcc		
	Gain × 5.000		0.033 x AVcc	-	0.170 x AVcc		
	Gain × 5.714		0.031 x AVcc	-	0.148 x AVcc	-	
	Gain × 6.667		0.029 x AVcc	-	0.127 x AVcc	-	
	Gain × 10.000		0.025 x AVcc	-	0.08 x AVcc	-	
	Gain × 13.333		0.023 x AVcc	-	0.06 x AVcc	-	
Slew rate	- I	SR	10	-	-	V/µs	
Gain error	Gain × 2.000	-	-	-	1	%	
	Gain × 2.500		-	-	1		
	Gain × 3.077		-	-	1		
	Gain × 3.636		-	-	1.5		
	Gain × 4.000		-	-	1.5	-	
	Gain × 4.444		-	-	2		
	Gain × 5.000	-	-	-	2		
	Gain × 5.714	1	-	-	2		
	Gain × 6.667	1	-	-	3		
	Gain × 10.000	1	-	-	4		
	Gain × 13.333	1	-	-	4		

5.6 Oscillation Stop Detection Timing

Table 5.20 Oscillation Stop Detection Circuit Characteristics

Note: Items for which test conditions are not specifically stated in the table below have the same values under conditions 1 to 3.


Condition 1: VCC = PLLVCC = 2.7 to 3.6 V, VSS = PLLVSS = AVSS0 = AVSS = VREFL0 = 0 V

AVCC0 = AVCC = 3.0 to 3.6 V, VREFH0 = 3.0 V to AVCC0, VREF = 3.0 V to AVCC

Condition 2: VCC = PLLVCC = 2.7 to 3.6 V, VSS = PLLVSS = AVSS0 = AVSS = VREFL0 = 0 V AVCC0 = AVCC = 4.0 to 5.5 V, VREFH0 = 4.0 V to AVCC0, VREF = 4.0 V to AVCC

Condition 3: VCC = PLLVCC = 4.0 to 5.5 V, VSS = PLLVSS = AVSS0 = AVSS = VREFL0 = 0 V AVCC0 = AVCC = 4.0 to 5.5 V, VREFH0 = 4.0 V to AVCC0, VREF = 4.0 V to AVCC Ta = Topr. Ta is the same under conditions 1 to 3.

Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Detection time	tdr	-	-	1.0	ms	Figure 5.23
Internal oscillation frequency when oscillation stop is detected	f _{MAIN}	0.5	-	7.0	MHz	

5.7 ROM (Flash Memory for Code Storage) Characteristics

Table 5.21 ROM (Flash Memory for Code Storage) Characteristics (1)

Note: Items for which test conditions are not specifically stated in the table below have the same values under conditions 1 to 3.

Condition 1: VCC = PLLVCC = 2.7 to 3.6 V, VSS = PLLVSS = AVSS0 = AVSS = VREFL0 = 0 V

AVCC0 = AVCC = 3.0 to 3.6 V, VREFH0 = 3.0 V to AVCC0, VREF = 3.0 V to AVCC

Condition 2: VCC = PLLVCC = 2.7 to 3.6 V, VSS = PLLVSS = AVSS0 = AVSS = VREFL0 = 0 V AVCC0 = AVCC = 4.0 to 5.5 V, VREFH0 = 4.0 V to AVCC0, VREF = 4.0 V to AVCC

Condition 3: VCC = PLLVCC = 4.0 to 5.5 V, VSS = PLLVSS = AVSS0 = AVSS = VREFL0 = 0 V

AVCC0 = AVCC = 4.0 to 5.5 V, VREFH0 = 4.0 V to AVCC0, VREF = 4.0 V to AVCC

Temperature range for the programming/erasure operation:

Ta = Topr. Ta is the same under conditions 1 to 3.

Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Rewrite/erase cycle ^{*1}	N _{PEC}	1000	_	—	Times	
Data hold time	t _{DRP}	30 ^{*2}	_	_	Year	Ta = +85C°

Note 1. Definition of rewrite/erase cycle:

The rewrite/erase cycle is the number of erasing for each block. When the rewrite/erase cycle is n times (n = 1000), erasing can be performed n times for each block. For instance, when 256-byte writing is performed 16 times for different addresses in 4-Kbyte block and then the entire block is erased, the rewrite/erase cycle is counted as one. However, writing to the same address for several times as one erasing is not enabled (overwriting is prohibited).

Note 2. The value is obtained from the reliability test.

Table 5.22 ROM (Flash Memory for Code Storage) Characteristics (2)

Note: Items for which test conditions are not specifically stated in the table below have the same values under conditions 1 to 3.

Condition 1: VCC = PLLVCC = 2.7 to 3.6 V, VSS = PLLVSS = AVSS0 = AVSS = VREFL0 = 0 V

AVCC0 = AVCC = 3.0 to 3.6 V, VREFH0 = 3.0 V to AVCC0, VREF = 3.0 V to AVCC

Condition 2: VCC = PLLVCC = 2.7 to 3.6 V, VSS = PLLVSS = AVSS = AVSS = VREFL0 = 0 V AVCC0 = AVCC = 4.0 to 5.5 V, VREFH0 = 4.0 V to AVCC0, VREF = 4.0 V to AVCC

Condition 3: VCC = PLLVCC = 4.0 to 5.5 V, VSS = PLLVSS = AVSS0 = AVSS = VREFL0 = 0 V

AVCC0 = AVCC = 4.0 to 5.5 V, VREFH0 = 4.0 V to AVCC0, VREF = 4.0 V to AVCC

Temperature range for the programming/erasure operation:

Ta = Topr. Ta is the same under conditions 1 to 3.

ltem		Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Programming time	256 bytes	t _{P256}	—	2	12	ms	PCLK = 50 MHz
	4 Kbytes	t _{P4K}	—	23	50	ms	N _{PEC} ≤ 100
	16 Kbytes	t _{P16K}	—	90	200	ms	
	256 byte	t _{P256}	—	2.4	14.4	ms	PCLK = 50 MHz
	4 Kbytes	t _{P4K}	—	27.6	60	ms	N _{PEC} > 100
	16 Kbytes	t _{P16K}	—	108	240	ms	
Erasure time	4 Kbytes	t _{E4K}	—	25	60	ms	PCLK = 50 MHz
	16 Kbytes	t _{E16K}	—	100	240	ms	N _{PEC} ≤ 100
	4 Kbytes	t _{E4K}	—	30	72	ms	PCLK = 50 MHz
	16 Kbytes	t _{E16K}	—	120	288	ms	N _{PEC} > 100
Suspend delay time during writing		t _{SPD}	—	—	120	μS	Figure 5.24
First suspend delay time during erasing (in suspend priority mode)		t _{SESD1}	—	-	120	μS	PCLK = 50 MHz
Second suspend delay time during erasing (in suspend priority mode)		t _{SESD2}	—	—	1.7	ms	
Suspend delay time during erasing (in erasure priority mode)		t _{SEED}	—	—	1.7	ms	

Appendix 1. Package Dimensions

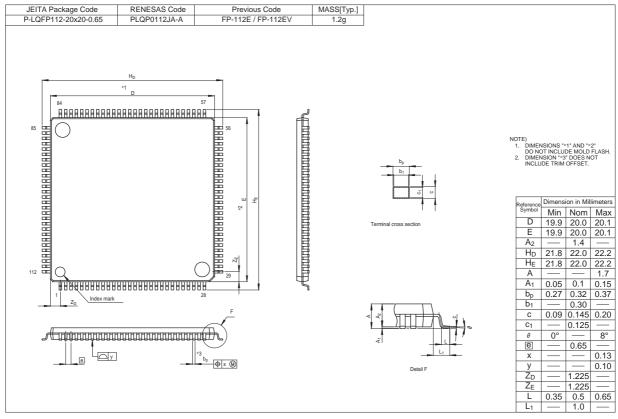


Figure A 112-Pin LQFP (PLQP0112JA-A) Package Dimensions

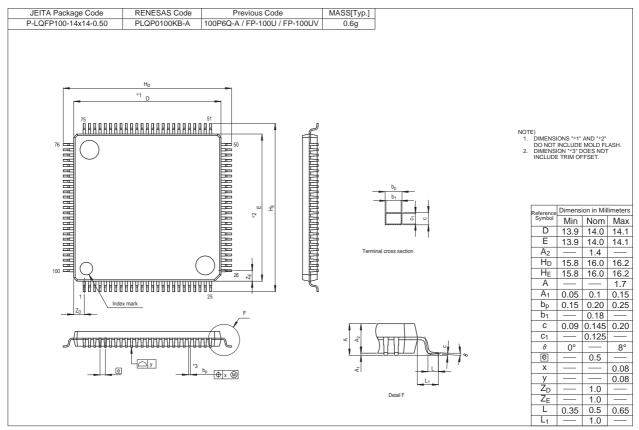


Figure B 100-Pin LQFP (PLQP0100KB-A) Package Dimensions

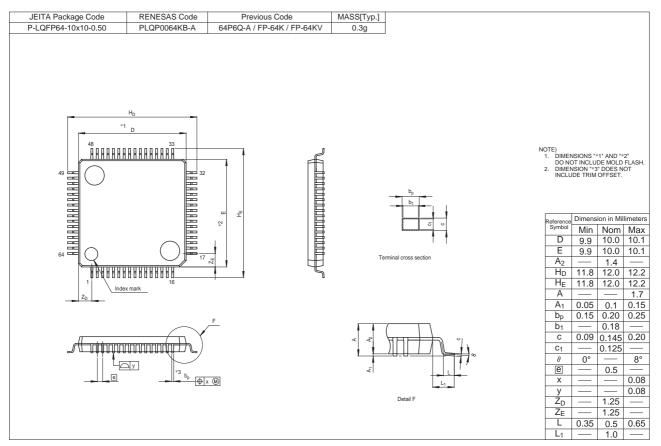


Figure D 64-Pin LQFP (PLQP0064KB-A) Package Dimensions

Notice

- Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or
- technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.
- Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.

Standard: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics and amages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

- 6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations.
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics products.
- 11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

SALES OFFICES

Refer to "http://www.renesas.com/" for the latest and detailed information

Renesas Electronics Corporation

http://www.renesas.com

Renesas Electronics America Inc. 2880 Scott Boulders: 1+408-588-6130 Renesas Electronics Canada Limited 1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada Tel: +1-905-898-5441, Fax: +1-905-898-3220 Renesas Electronics Europe Limited Dukes Meadow, Milboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1628-651-700, Fax: +44-1628-651-804 Renesas Electronics Europe GmbH Arcadiastrasse 10, 40472 Disseldorf, Germany Tel: +49-211-65030, Fax: +44-1628-651-804 Renesas Electronics (Shanghal) Co., Ltd. 7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China Tel: +86-10-8235-1155, Fax: +86-10-823-7679 Renesas Electronics (Shanghal) Co., Ltd. 7th Floor, Quantum Towers, 555 LanGao Rd., Putuo District, Shanghai, China Tel: +86-10-8236-1157, Fax: +86-21-2226-0989 Renesas Electronics Hong Kong Limited Unit 1801-1613, 16/F., Tower 2, Grand Century Place, 139 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +88-08-818, Fax: +86-28-175-9670 Renesas Electronics Index Contury Renesas Electronics Singapore Pte. Ltd. 137, No. 363, Fu Shing North Road, Taipei, Taiwan Tel: +86-08-10-200, Fax: +86-62-130300 Renesas Electronics Mangayai Sch.Bhd. 011 906, Blook, B., Menara Amoorp, Amoorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: +60-3-7955-9390, Fax: +60-3-7955-9510 Renesas Electronics Kong Con, Ltd. 127, 234 Teheran-ro, Gangam-Gu, Seoul, 135-080, Korea Tel: +60-3-7955-9390, Fax: +60-3-7955-9510