

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Not For New Designs
Core Processor	RX
Core Size	32-Bit Single-Core
Speed	100MHz
Connectivity	CANbus, I ² C, LINbus, SCI, SPI
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	44
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 4x10b, 8x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-LQFP
Supplier Device Package	80-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f562t7adff-v1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.4 Pin Assignments

Figure 1.3 to Figure 1.7 show the pins assignments. Table 1.4 to Table 1.8 show the list of pins and pin functions.

Pin Assignment of the 112-Pin LQFP

Pin No. (80-Pin LQFP)	Power Supply Clock System Control	I/O Port	Analog	Timer	Communi- cation	Interrupt	POE	Debugging
	-,		· · · · · · J					399
1		PE5				IRQ0-B		
2	EMLE							
3	VSS							
4	MDE							
5	VCL							
6	MD1							
7	MD0							
8		PE4		MTCLKC-C		IRQ1-B	POE10#-B	
9		PE3		MTCLKD-C		IRQ2-A	POE11#	
10	RES#							
11	XTAL							
12	VSS							
13	EXTAL							
14	VCC							
15		PE2				NMI	POE10#-A	
16		PE1			SSL3-C			
17		PE0			CRX-C/ SSL2- C			
18		PD7		GTIOC0A-B	CTX-C/SSL1-C			TRST#
19		PD6		GTIOC0B-B	SSL0-C			TMS
20		PD5		GTIOC1A-B	RXD1			TDI
21		PD4		GTIOC1B-B	SCK1			ТСК
22		PD3		GTIOC2A-B	TXD1			TDO
23		PD2		GTIOC2B-B	MOSI-C			TRCLK
24		PD1		GTIOC3A	MISO-C			TRDATA3
25		PD0		GTIOC3B	RSPCK-C			TRDATA2
26		PB7			SCK2-A			TRDATA1
27		PB6			CRX-A/ RXD2- A			TRDATA0
28		PB5			CTX-A/TXD2-A			TRSYNC
29	PLLVCC							
30		PB4		GTETRG		IRQ3	POE8#	
31	PLLVSS							
32		PB3		MTIOC0A-A	SCK0			
33		PB2		MTIOC0B-A	TXD0/SDA			
34		PB1		MTIOC0C	RXD0/SCL			
35		PB0		MTIOC0D	MOSI-B			
36		PA5	ADTRG1#-A	MTIOC1A	MISO-B			
37		PA4	ADTRG0#-A	MTIOC1B	RSPCK-B			
38		PA3		MTIOC2A	SSL0-B			
39		PA2		MTIOC2B	SSL1-B			
40		PA1		MTIOC6A	SSL2-B			

Table 1.5 List of Pins and Pin Functions (100-Pin LQFP) (1 / 3)

Table 1.9 Pin Fund	ctions (3 / 4)		
Classifications	Pin Name	I/O	Description
Serial communications interface (SCIb)	TXD0, TXD1, TXD2-A/TXD2- B	Output	Output pins for data transmission. The TXD2-B pin is not included in the 80-/64-pin versions.
	RXD0, RXD1, RXD2-A/ RXD2-B	Input	Input pins for data reception. The RXD2-B pin is not included in the 80-/64-pin versions.
	SCK0, SCK1, SCK2-A/ SCK2-B	I/O	Input/output pins for clock signals. The SCK2-B pin is not included in the 80-/64-pin versions.
I ² C bus interface (RIIC)	SCL	I/O	Input/output pin for I ² C bus interface clocks. Bus can be directly driven by the NMOS open drain output.
	SDA	I/O	Input/output pin for I ² C bus interface data. Bus can be directly driven by the NMOS open drain output.
CAN module (CAN) (as an optional function)	CRX-A/CRX-B/CRX-C	Input	Input pin for the CAN. The CRX-C pin is not included in the 64- pin version.
	CTX-A/CTX-B/CTX-C	Output	Output pin for the CAN. The CTX-C pin is not included in the 64-pin version.
LIN module (LIN)	LRX	Input	Input pin for the LIN.
	LTX	Output	Output pin for the LIN.
Serial peripheral interface (RSPI)	RSPCK-A/RSPCK-B/ RSPCK-C	I/O	Clock input/output pin for the RSPI. The RSPCK-C pin is not included in the 80-/64-pin versions.
	MOSI-A/MOSI-B/MOSI-C	I/O	Inputs or outputs data output from the master for the RSPI. The MOSI-C pin is not included in the 80-/64-pin versions.
	MISO-A/MISO-B/MISO-C	I/O	Inputs or outputs data output from the slave for the RSPI. The MISO-C pin is not included in the 80-/64-pin versions.
	SSL0-A/SSL0-B/SSL0-C	I/O	Select the slave for the RSPI. The SSL0-C/SSL1-C/SSL2-C/
	SSL1-A/SSL1-B/SSL1-C SSL2-A/SSL2-B/SSL2-C SSL3-A/SSL3-B/SSL3-C	Output	SSL3-C pin is not included in the 80-/64-pin versions.
VD converter	AN000 to AN003 AN100 to AN103	Input	Input pins for the analog signals to be processed by the 12-bit A/D converter.
	AN0 to AN11	Input	Input pins for the analog signals to be processed by the 10-bit A/D converter. The AN4 to AN11 pins are not included in the 80-pin version. Not included in the 64-pin version.
	ADTRG0#-A/ADTRG0#-B ADTRG1#-A/ADTRG1#-B ADTRG#	Input	Input pins for the external trigger signals that start the A/D conversion. The ADTRG0#-B/ADTRG1#-B/ADTRG# pin is not included in the 64-pin version.
	CVREFH	Input	Input pin for the high-level reference voltage to the comparator
	CVREFL	Input	Input pin for the low-level reference voltage to the comparator
Analog power supply	AVCC0	Input	Analog power supply pin for the 12-bit A/D converter. When the A/D converter is not in use, connect this pin to the system power supply.
	AVSS0	Input	Ground pin for the 12-bit A/D converter. Connect this pin to the system power supply (0 V).
	VREFH0	Input	Reference power supply pin for the 12-bit A/D converter. When the 12-bit A/D converter is not in use, connect this pin to the system power supply.
	VREFL0	Input	Ground pin of the reference power supply pin for the 12-bit A/D converter. When the 12-bit A/D converter is not in use, connect this pin to the system power supply (0 V).
	AVCC	Input	Analog power supply pin for the 10-bit A/D converter. When the A/D converter is not in use, connect this pin to the system power supply. Not included in the 64-pin version.
	AVSS	Input	Ground pin for the 10-bit A/D converter. Connect this pin to the system power supply (0 V). Not included in the 64-pin version.
	VREF	Input	Reference power supply pin for the 10-bit A/D converter. When the 10-bit A/D converter is not in use, connect this pin to the system power supply. Not included in the 80-/64-pin versions.

т

This CPU has sixteen general-purpose registers (R0 to R15). R1 to R15 can be used as data registers or address registers. R0, a general-purpose register, also functions as the stack pointer (SP). The stack pointer is switched to operate as the interrupt stack pointer (ISP) or user stack pointer (USP) by the value of the stack pointer select bit (U) in the processor status word (PSW).

2.2 Control Registers

(1) Interrupt Stack Pointer (ISP)/User Stack Pointer (USP)

The stack pointer (SP) can be either of two types, the interrupt stack pointer (ISP) or the user stack pointer (USP). Whether the stack pointer operates as the ISP or USP depends on the value of the stack pointer select bit (U) in the processor status word (PSW).

Set the ISP or USP to a multiple of four, as this reduces the numbers of cycles required to execute interrupt sequences and instructions entailing stack manipulation.

(2) Interrupt Table Register (INTB)

The interrupt table register (INTB) specifies the address where the relocatable vector table starts. Set INTB to a multiple of four.

(3) Program Counter (PC)

The program counter (PC) indicates the address of the instruction being executed.

(4) Processor Status Word (PSW)

The processor status word (PSW) indicates results of instruction execution or the state of the CPU.

(5) Backup PC (BPC)

The backup PC (BPC) is provided to speed up response to interrupts. After a fast interrupt has been generated, the contents of the program counter (PC) are saved in the BPC.

(6) Backup PSW (BPSW)

The backup PSW (BPSW) is provided to speed up response to interrupts.

After a fast interrupt has been generated, the contents of the processor status word (PSW) are saved in the BPSW. The allocation of bits in the BPSW corresponds to that in the PSW.

(7) Fast Interrupt Vector Register (FINTV)

The fast interrupt vector register (FINTV) is provided to speed up response to interrupts. The FINTV register specifies a branch destination address when a fast interrupt has been generated.

(8) Floating-Point Status Word (FPSW)

The floating-point status word (FPSW) indicates the results of floating-point operations.

When an exception handling enable bit (Ej) enables the exception handling (Ej = 1), the exception cause can be identified by checking the corresponding Cj flag in the exception handling routine. If the exception handling is masked (Ej = 0), the occurrence of exception can be checked by reading the Fj flag at the end of a series of processing. Once the Fj flag has been set to 1, this value is retained until it is cleared to 0 by software (j = X, U, Z, O, or V).

3. Address Space

3.1 Address Space

This LSI has a 4-Gbyte address space, consisting of the range of addresses from 0000 0000h to FFFF FFFFh. That is, linear access to an address space of up to 4 Gbytes is possible, and this contains both program and data areas. Figure 3.1 shows the memory maps.

Figure 3.1 Memory Map (RX62T Group)

RENESAS

Table 4.1 List of I/O Registers (Address Order) (6 / 25)

Address	Module Abbreviation	Register Name	Register Abbreviation	Number of Bits	Access Size	Number of Access Cycles
0008 71BEh	ICU	DTC activation enable register 190	DTCER190	8	8	2 ICLK
0008 71C0h	ICU	DTC activation enable register 192	DTCER192	8	8	2 ICLK
0008 71C1h	ICU	DTC activation enable register 193	DTCER193	8	8	2 ICLK
0008 71C2h	ICU	DTC activation enable register 194	DTCER194	8	8	2 ICLK
0008 71C3h	ICU	DTC activation enable register 195	DTCER195	8	8	2 ICLK
0008 71C4h	ICU	DTC activation enable register 196	DTCER196	8	8	2 ICLK
0008 71D7h	ICU	DTC activation enable register 215	DTCER215	8	8	2 ICLK
0008 71D8h	ICU	DTC activation enable register 216	DTCER216	8	8	2 ICLK
0008 71DBh	ICU	DTC activation enable register 219	DTCER219	8	8	2 ICLK
0008 71DCh	ICU	DTC activation enable register 220	DTCER220	8	8	2 ICLK
0008 71DFh	ICU	DTC activation enable register 223	DTCER223	8	8	2 ICLK
0008 71E0h	ICU	DTC activation enable register 224	DTCER224	8	8	2 ICLK
0008 71F7h	ICU	DTC activation enable register 247	DTCER247	8	8	2 ICLK
0008 71F8h	ICU	DTC activation enable register 248	DTCER248	8	8	2 ICLK
0008 71FEh	ICU	DTC activation enable register 254	DTCER254	8	8	2 ICLK
0008 7202h	ICU	Interrupt request enable register 02	IER02	8	8	2 ICLK
0008 7203h	ICU	Interrupt request enable register 03	IER03	8	8	2 ICLK
0008 7205h	ICU	Interrupt request enable register 05	IER05	8	8	2 ICLK
0008 7207h	ICU	Interrupt request enable register 07	IER07	8	8	2 ICLK
0008 7208h	ICU	Interrupt request enable register 08	IER08	8	8	2 ICLK
0008 720Ch	ICU	Interrupt request enable register 0C	IER0C	8	8	2 ICLK
0008 720Dh	ICU	Interrupt request enable register 0D	IER0D	8	8	2 ICLK
0008 720Eh	ICU	Interrupt request enable register 0E	IER0E	8	8	2 ICLK
0008 720Fh	ICU	Interrupt request enable register 0F	IER0F	8	8	2 ICLK
0008 7210h	ICU	Interrupt request enable register 10	IER10	8	8	2 ICLK
0008 7211h	ICU	Interrupt request enable register 11	IER11	8	8	2 ICLK
0008 7212h	ICU	Interrupt request enable register 12	IER12	8	8	2 ICLK
0008 7213h	ICU	Interrupt request enable register 13	IER13	8	8	2 ICLK
0008 7215h	ICU	Interrupt request enable register 15	IER15	8	8	2 ICLK
0008 7216h	ICU	Interrupt request enable register 16	IER16	8	8	2 ICLK
0008 7217h	ICU	Interrupt request enable register 17	IER17	8	8	2 ICLK
0008 7218h	ICU	Interrupt request enable register 18	IER18	8	8	2 ICLK
0008 721Ah	ICU	Interrupt request enable register 1A	IER1A	8	8	2 ICLK
0008 721Bh	ICU	Interrupt request enable register 1B	IER1B	8	8	2 ICLK
0008 721Ch	ICU	Interrupt request enable register 1C	IER1C	8	8	2 ICLK
0008 721Eh	ICU	Interrupt request enable register 1E	IER1E	8	8	2 ICLK
0008 721Fh	ICU	Interrupt request enable register 1F	IER1F	8	8	2 ICLK
0008 72E0h	ICU	Software interrupt activation register	SWINTR	8	8	2 ICLK
0008 72F0h	ICU	Fast interrupt set register	FIR	16	16	2 ICLK
0008 7300h	ICU	Interrupt source priority register 00	IPR00	8	8	2 ICLK
0008 7301h	ICU	Interrupt source priority register 01	IPR01	8	8	2 ICLK
0008 7302h	ICU	Interrupt source priority register 02	IPR02	8	8	2 ICLK
0008 7303h	ICU	Interrupt source priority register 03	IPR03	8	8	2 ICLK
0008 7304h	ICU	Interrupt source priority register 04	IPR04	8	8	2 ICLK

4.2 I/O Register Bits

Register addresses and bit names of the peripheral modules are described below. Each line cover eight bits, and 16-bit and 32-bit registers are shown as 2 or 4 lines, respectively.

Module Abbreviation	Register Abbreviation	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
SYSTEM	MDMONR	—	_	—	—	—	_	—	—
		MDE	_	_	_	_	_	MD1	MD0
SYSTEM	MDSR		_	_	_	_	_	_	_
		—	—	—	BOTS	—	—	—	IROM
SYSTEM	SYSCR0				KE	Y[7:0]			
		_	_	_	_	_	_	_	ROME
SYSTEM	SYSCR1		_	—	_	_	_	—	_
		_	_	_	_	_	_	_	RAME
SYSTEM	SBYCR	SSBY	_	_			STS[4:0]		
		-	-	—	-	—	_	-	_
SYSTEM	MSTPCRA	ACSE	-	—	MSTPA28	—	_	-	MSTPA24
		MSTPA23	_	_	_	_	_	MSTPA17	MSTPA16
		MSTPA15	MSTPA14	-	-	—	_	MSTPA9	_
		MSTPA7	_	-	-	_	_	-	_
SYSTEM	MSTPCRB	MSTPB31	MSTPB30	MSTPB29	-	—	-	-	_
		MSTPB23	-	MSTPB21	-	—	_	MSTPB17	_
			_	_	_	_	_	_	_
		MSTPB7	-	—	-	—	_	-	MSTPB0
SYSTEM	MSTPCRC		-	—	-	—	_	-	_
			_	_	_	_	_	_	_
			-	—	-	—	_	-	_
		_	_	_	_	_	_	_	MSTPC0
SYSTEM	SCKCR		-	_	_		ICł	<[3:0]	
			-	_	_	-	_	_	_
			—	—	—		PC	K[3:0]	
		-	-	-	-	_	—	_	—
SYSTEM	OSTDCR				KE	Y[7:0]			
		OSTDE	OSTDF	_	_	_	—	_	_
BSC	BERCLR	-	-	-	-	_	—	_	STSCLR
BSC	BEREN	—	—	—	—	—	—	—	IGAEN
BSC	BERSR1	_		MST[2:0]		_	—	_	IA
BSC	BERSR2				ADD	R[12:0]			
				ADDR[12:0]			_	_	_
DTC	DTCCR	-	-	-	RRS	—	_	-	_
DTC	DTCVBR								
DTC	DTCADMOD	_	_	_	_	_	_	_	SHORT
DTC	DTCST	_	_	_	_	_	_	_	DTCST
DTC	DTCSTS	ACT	_	_	_	_	_	_	_
					VEC	CN[7:0]			
MPU	RSPAGE0				RSP	'N[27:0]			
					RSP	'N[27:0]			
					RSP	'N[27:0]			
			RSP	N[27:0]				—	

 Table 4.2
 List of I/O Registers (Bit Order) (1 / 30)

Module Abbreviation	Register Abbreviation	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
SCI1	SEMR	_	_	NFEN	ABCS	_	_	_	_
SMCI1	SMR	GM	BLK	PE	PM	(BC	P[1:0])	Cł	(S[1:0]
SMCI1	BRR								
SMCI1	SCR	TIE	RIE	TE	RE	MPIE	TEIE	CI	<e[1:0]< td=""></e[1:0]<>
SMCI1	TDR								
SMCI1	SSR	TDRE	RDRF	ORER	ERS	PER	TEND	MPB	MPBT
SMCI1	RDR								
SMCI1	SCMR	BCP2	—	—	_	SDIR	SINV	—	SMIF
SCI2	SMR	CM	CHR	PE	PM	STOP	MP	Cł	(S[1:0]
SCI2	BRR								
SCI2	SCR	TIE	RIE	TE	RE	MPIE	TEIE	Cł	<e[1:0]< td=""></e[1:0]<>
SCI2	TDR								
SCI2	SSR	TDRE	RDRF	ORER	FER	PER	TEND	MPB	MPBT
SCI2	RDR								
SCI2	SCMR	BCP2	_	_	—	SDIR	SINV	—	SMIF
SMCI2	SMR	GM	BLK	PE	PM	(BC	:P[1:0])	Cł	(S[1:0]
SMCI2	BRR								
SMCI2	SCR	TIE	RIE	TE	RE	MPIE	TEIE	CI	<e[1:0]< td=""></e[1:0]<>
SMCI2	TDR								
SMCI2	SSR	TDRE	RDRF	ORER	ERS	PER	TEND	MPB	MPBT
SMCI2	RDR								
SMCI2	SCMR	BCP2	_	_	_	SDIR	SINV	_	SMIF
CRC	CRCCR	DORCLR	_	_	_	_	LMS	GI	PS[1:0]
CRC	CRCDIR								
CRC	CRCDOR								
RIIC0	ICCR1	ICE	IICRST	CLO	SOWP	SCLO	SDAO	SCLI	SDAI
RIIC0	ICCR2	BBSY	MST	TRS	_	SP	RS	ST	_
RIIC0	ICMR1	MTWP		CKS[2:0]		BCWP		BC[2:0]	
RIIC0	ICMR2	DLCS		SDDL[2:0]		TMWE	ТМОН	TMOL	TMOS
RIIC0	ICMR3	SMBS	WAIT	RDRFS	ACKWP	ACKBT	ACKBR	N	F[1:0]
RIIC0	ICFER	_	SCLE	NFE	NACKE	SALE	NALE	MALE	TMOE
RIIC0	ICSER	HOAE	_	DIDE	_	GCAE	SAR2E	SAR1E	SAR0E
RIIC0	ICIER	TIE	TEIE	RIE	NAKIE	SPIE	STIE	ALIE	TMOIE
RIIC0	ICSR1	HOA	_	DID	_	GCA	AAS2	AAS1	AAS0
RIIC0	ICSR2	TDRE	TEND	RDRF	NACKF	STOP	START	AL	TMOF
RIIC0	SARL0				SVA[6:0]				SVA0
RIIC0	TMOCNTL								
RIIC0	SARU0	_	_	_	_	_	SV	A[1:0]	FS
RIIC0	TMOCNTU								
RIIC0	SARL1				SVA[6:0]				SVA0
RIIC0	SARU1	_	_	_	_	_	SV	'A[1:0]	FS
RIIC0	SARL2				SVA[6:0]				SVA0
RIIC0	SARU2				_		SV	'A[1:0]	FS
RIIC0	ICBRL	_	_	_			BRL[4:0]		
RIIC0	ICBRH	_	_	_			BRH[4:0]		
RIIC0	ICDRT								
RIIC0	ICDRR								
DODIO	SPCR	SPRIE	SPE	SPTIE	SPEIE	MSTR	MODEEN	ТХМО	SPMS

Table 4.2 List of I/O Registers (Bit Order) (11 / 30)

Module Abbreviation	Register Abbreviation	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
MTU7	TADCOBRB								
MTU	TSYCR	CE0A	CE0D	CE0C	CE0D	CE1A	CE1B	CE2A	CE2B
MTU	TWCRB	CCE	_	_	_	_	_	SCC	WRE
MTU	TMDR2B	_	_	_	_	_	_	_	DRS
MTU6	TGRE								
MTU7	TGRE								
MTU7	TGRF								
MTU	TSTRB	CST7	CST6	_	_	_	_	_	_
MTU	TSYRB	SYNC7	SYNC6	_	_	_	_	_	_
MTU	TRWERB	_	_	_	_	_	_	_	RWE
MTU5	TCNTU								
MTU5	TGRU								
MTU5	TCRU	_	_	_	_	_	_	TPS	C[1:0]
MTU5	TIORU	_	_	_			IOC[4:0]		
MTU5	TCNTV								
MTU5	TGRV								
MTU5	TCRV	_	_	_	_	_	_	TPS	C[1:0]
MTU5	TIORV	_	_	_			IOC[4:0]		
MTU5	TCNTW								
MTU5	TGRW								
MTU5	TCRW	_	_	_	_	_	_	TPS	C[1:0]
MTU5	TIORW	_	_	_			IOC[4:0]		
MTU5	TSR	_	_	_	_	_	CMFU5	CMFV5	CMFW5
MTU5	TIER	_	_	_	_	_	TGIE5U	TGIE5V	TGIE5W
MTU5	TSTR	_	_	_	_	_	CSTU5	CSTV5	CSTW5
MTU5	TCNTCMPCLR	_	_	_	_	_	CMPCLR5U	CMPCLR5V	CMPCLR5W
GPT	GTSTR	_	_	_	_	_	_	_	_
			_	_	_	CST3	CST2	CST1	CST0
GPT	GTHSCR	CPH	W3[1:0]	CPH	W2[1:0]	CPH	W1[1:0]	CPH\	W0[1:0]
		CSH	W3[1:0]	CSH	W2[1:0]	CSH	W1[1:0]	CSH	W0[1:0]
GPT	GTHCCR	_	_	_	_	CCSW3	CCSW2	CCSW1	CCSW0
		CCH	W3[1:0]	CCH	W2[1:0]	CCH	W1[1:0]	CCH	W0[1:0]
GPT	GTHSSR		CSH	SL3[3:0]			CSHS	6L2[3:0]	
			CSH	SL1[3:0]			CSHS	SL0[3:0]	
GPT	GTHPSR		CSH	PL3[3:0]			CSHP	PL2[3:0]	
			CSH	PL1[3:0]			CSHP	PL0[3:0]	
GPT	GTWP	_	_	_	_	_	_	_	_
			_	_	_	WP3	WP2	WP1	WP0
GPT	GTSYNC	_	_	SYN	C3[1:0]	_	_	SYN	C2[1:0]
			_	SYN	C1[1:0]	_	_	SYN	C0[1:0]
GPT	GTETINT	_	_	_	_	_	_	ETINF	ETIPF
			_	_	_	_	_	ETINEN	ETIPEN

Table 4.2 List of I/O Registers (Bit Order) (22 / 30)

Module Abbreviation	Register Abbreviation	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
FLASH	FSTATR0	FRDY	ILGLERR	ERSERR	PRGERR	SUSRDY	_	ERSSPD	PRGSPD
FLASH	FSTATR1	FCUERR	_	_	FLOCKST	_	_	_	_
FLASH	FENTRYR				FEKEY[7:0]				
		FENTRYD	_	_	_	_	_	_	FENTRY0
FLASH	FPROTR				FPK	EY[7:0]			
			_	_	_	_	_	_	FPROTCN
FLASH	FRESETR				FRKEY[7:0]				
			_	_	_	_	_	_	FRESET
FLASH	FCMDR				CM	DR[7:0]			
					PCM	IDR[7:0]			
FLASH	FCPSR	_	_	_	_	_	_	_	_
			_	_	_	_	_	_	ESUSPMD
FLASH	DFLBCCNT	_	_	_	_	_		BCADR[7:0]	
				BCA	.DR[7:0]			_	BCSIZE
FLASH	FPESTAT	_	_	_	_	_	_	_	_
					PEER	RST[7:0]			
FLASH	DFLBCSTAT	_	_	_	_	_	_	_	_
			_	_	_	_	_	_	BCST
FLASH	PCKAR	_	_	_	_	_	_	_	_
					PCI	AI7·01			

Table 4.2 List of I/O Registers (Bit Order) (30 / 30)

Note: • In this, the I/O port related registers (0008 C001h to 0008 C116h) indicate the bit configuration of the 112-pin LQFP version. As the configuration of registers and bits differs depending on a package, see section 14, I/O Ports, for details in the User's manual: Hardware.

Note 1. This shows the bit configuration when ADDPR.DPSEL = 0 and ADDPR.DPPRC = 0 (The value has 10-bit accuracy and is padded at the LSB end).

Note 2. This shows the bit configuration when ADCER.ADRFMT = 0 (aligned to the LSB end) and ADCER.ADPRC[1:0] = 00b. For details, refer to section 28, 12-Bit A/D Converter (S12ADA) in the User's manual: Hardware.

Note 3. This function is not supported by the product without the CAN function.

5. Electrical Characteristics

5.1 Absolute Maximum Ratings

Table 5.1 Absolute Maximum Ratings

Item		Symbol	Value	Unit
Power supply voltage		VCC PLLVCC	-0.3 to +6.5	V
Input voltage (except for ports	4 to 6)	V _{IN}	-0.3 to VCC+0.3	V
Input voltage (port 4)		V _{IN}	-0.3 to AVCC0+0.3	V
Input voltage (ports 5 and 6)		V _{IN}	-0.3 to AVCC+0.3	V
Analog power supply voltage		AVCC0, AVCC ^{*1}	-0.3 to +6.5	V
Reference power supply voltage	je	VREFH0 ^{*1}	-0.3 to AVCC0+0.3	V
		VREF ^{*1}	-0.3 to AVCC+0.3	
Analog input voltage (port 4)		V _{AN}	-0.3 to AVCC0+0.3	V
Analog input voltage (ports 5 a	nd 6)	V _{AN}	-0.3 to AVCC+0.3	V
Operating temperature	D version	T _{opr}	-40 to +85	°C
	G version	T _{opr}	-40 to +105	°C
Storage temperature		T _{stg}	-55 to +125	°C

Caution: Permanent damage to the LSI may result if absolute maximum ratings are exceeded.

Note 1. Do not leave the AVCC0, VREFH0, VREFL0, AVSS0, AVCC, VREF, and AVSS pins open circuit even if the A/D converter is not to be used.

- When the 12-bit converter is not in use: Connect the AVCC0 pin to AVCC (or VCC for a 64-pin product), the VREFH0 pin to VREF (or AVCC or VCC for an 80- or 64-pin product, respectively), and the AVSS0 and VREFL0 pins to VSS.
- When the 10-bit converter is not in use:

Connect the AVCC pin to AVCC0, the VREF pin to VREFH0, and the AVSS pin to AVSS0.

 When neither the 10- nor the 12-bit converter is in use: Connect the AVCC0, VREFH0, AVCC, and VREF pins to VCC, and the AVSS0, VREFL0, and AVSS pins to VSS.

Table 5.2DC Characteristics (1) (2 / 3)

Note: Items for which test conditions are not specifically stated in the table below have the same values under conditions 1 to 3.

Condition 1: VCC = PLLVCC = 2.7 to 3.6 V, VSS = PLLVSS = AVSS0 = AVSS = VREFL0 = 0 V

AVCC0 = AVCC = 3.0 to 3.6 V, VREFH0 = 3.0 V to AVCC0, VREF = 3.0 V to AVCC

Condition 2: VCC = PLLVCC = 2.7 to 3.6 V, VSS = PLLVSS = AVSS0 = AVSS = VREFL0 = 0V AVCC0 = AVCC = 4.0 to 5.5 V, VREFH0 = 4.0 V to AVCC0, VREF = 4.0 V to AVCC

ltem		Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Output high voltage	All output pins (except for P71 to P76 and P90 to P95)	V _{OH}	VCC-0.5	-	-	V	I _{OH} = -1 mA
	P71 to P76		VCC-0.5	-	-		I _{OH} = -1mA 64-pin LQFP Condition 3
			VCC-1.0	-	-		I _{OH} = -5mA 64-pin LQFP Other than condition 3
	P90 to P95		VCC-0.5	-	-		I _{OH} = -1mA 80-pin LQFP or 64-pin LQFP
			VCC-1.0	-	-		I _{OH} = -5 mA 112-pin LQFP or 100-pin LQFP
Output low voltage	All output pins (except for P71 to P76, P90 to P95, and RIIC)	V _{OL}	-	-	0.5	V	I _{OL} = 1.0 mA
	P71 to P76		-	-	0.5		I _{OL} = 1.0 mA 64-pin LQFP Other than condition 3
			-	-	1.1		I _{OL} = 15 mA Conditions 1 and 2
			-	-	1.4		I _{OL} = 15 mA Other than 64-pin LQFP Condition 3
	P90 to P95		-	-	0.5		I _{OL} = 1.0 mA 80-pin LQFP or 64-pin LQFP
			-	-	1.1		I _{OL} = 15 mA 112-pin LQFP or 100-pin LQFP Conditions 1 and 2
			-	-	1.4		I _{OL} = 1 mA 112-pin LQFP or 100-pin LQFP Condition 3
	RIIC pin	1	-	-	0.4		I _{OL} = 3 mA
			-	-	0.6	<u> </u>	I _{OL} = 6 mA
Input leakage current	RES#, MD pin, EMLE	I _{in}	-	-	1.0	μΑ	$V_{in} = 0 V,$ $V_{in} = VCC$
Three-state leakage current	Ports 1 to A, PB0, PB3 to PB7, D, E, G	I _{TSI}	-	-	1.0	μA	$V_{in} = 0 V,$ $V_{in} = VCC$
(off state)	Ports PB1 and PB2	1	-	-	5.0		

5.3 AC Characteristics

Table 5.6 Operation Frequency Value

Note: Items for which test conditions are not specifically stated in the table below have the same values under conditions 1 to 3.

Condition 1: VCC = PLLVCC = 2.7 to 3.6 V, VSS = PLLVSS = AVSS0 = AVSS = VREFL0 = 0 V

AVCC0 = AVCC = 3.0 to 3.6 V, VREFH0 = 3.0 V to AVCC0, VREF = 3.0 V to AVCC

Condition 2: VCC = PLLVCC = 2.7 to 3.6 V, VSS = PLLVSS = AVSS0 = AVSS = VREFL0 = 0 V AVCC0 = AVCC = 4.0 to 5.5 V, VREFH0 = 4.0 V to AVCC0, VREF = 4.0 V to AVCC

Condition 3: VCC = PLLVCC = 4.0 to 5.5 V, VSS = PLLVSS = AVSS0 = AVSS = VREFL0 = 0 V AVCC0 = AVCC = 4.0 to 5.5 V, VREFH0 = 4.0 V to AVCC0, VREF = 4.0 V to AVCC Ta = Topr. Ta is the same under conditions 1 to 3.

ltem		Symbol	Min.	Тур.	Max.	Unit
Operating	System clock (ICLK)	f	8	-	100	MHz
frequency	Peripheral module clock (PCLK)		8	-	50	

5.3.1 Clock Timing

Table 5.7Clock Timing

Note: Items for which test conditions are not specifically stated in the table below have the same values under conditions 1 to 3.

Condition 1: VCC = PLLVCC = 2.7 to 3.6 V, VSS = PLLVSS = AVSS0 = AVSS = VREFL0 = 0 V AVCC0 = AVCC = 3.0 to 3.6 V, VREFH0 = 3.0 V to AVCC0, VREF = 3.0 V to AVCC Condition 2: VCC = PLLVCC = 2.7 to 3.6 V, VSS = PLLVSS = AVSS0 = AVSS = VREFL0 = 0 V AVCC0 = AVCC = 4.0 to 5.5 V, VREFH0 = 4.0 V to AVCC0, VREF = 4.0 V to AVCC Condition 3: VCC = PLLVCC = 4.0 to 5.5 V, VSS = PLLVSS = AVSS0 = AVSS = VREFL0 = 0 V AVCC0 = AVCC = 4.0 to 5.5 V, VREFH0 = 4.0 V to AVCC0, VREF = 4.0 V to AVCC Condition 3: VCC = 4.0 to 5.5 V, VREFH0 = 4.0 V to AVCC0, VREF = 4.0 V to AVCC Ta = Topr. Ta is the same under conditions 1 to 3.

ltem	Symbol	Min.	Max.	Unit	Test Conditions
Oscillation settling time after reset (crystal)	t _{OSC1}	10	-	ms	Figure 5.1
Oscillation settling time after leaving software standby mode (crystal)	t _{OSC2}	10	-	ms	Figure 5.2
Oscillation settling time after leaving deep software standby mode (crystal)	t _{OSC3}	10	-	ms	Figure 5.3
EXTAL external clock output delay settling time	t _{DEXT}	1	-	ms	Figure 5.1
EXTAL external clock input low pulse width	t _{EXL}	35	-	ns	Figure 5.4
EXTAL external clock input high pulse width	t _{EXH}	35	-	ns	
EXTAL external clock rising time	t _{EXr}	-	5	ns	
EXTAL external clock falling time	t _{EXf}	-	5	ns	
On-chip oscillator (IWDTCLK) oscillation frequency	f _{IWDTCLK}	62.5	187.5	kHz	

5.3.3 Timing of On-Chip Peripheral Modules

Table 5.9 Timing of On-Chip Peripheral Modules (1)

Note: Items for which test conditions are not specifically stated in the table below have the same values under conditions 1 to 3.

Condition 1: VCC = PLLVCC = 2.7 to 3.6 V, VSS = PLLVSS = AVSS0 = AVSS = VREFL0 = 0 V

AVCC0 = AVCC = 3.0 to 3.6 V, VREFH0 = 3.0 V to AVCC0, VREF = 3.0 V to AVCC

Condition 2: VCC = PLLVCC = 2.7 to 3.6 V, VSS = PLLVSS = AVSS0 = AVSS = VREFL0 = 0 V AVCC0 = AVCC = 4.0 to 5.5 V, VREFH0 = 4.0 V to AVCC0, VREF = 4.0 V to AVCC

Condition 3: VCC = PLLVCC = 4.0 to 5.5 V, VSS = PLLVSS = AVSS0 = AVSS = VREFL0 = 0 V AVCC0 = AVCC = 4.0 to 5.5 V, VREFH0 = 4.0 V to AVCC0, VREF = 4.0 V to AVCC Ta = Topr. Ta is the same under conditions 1 to 3.

Item			Symbol	Min.	Тур.	Max.	Unit
SCI	Input clock cycle	Asynchronous	t _{Scyc}	4×t _{Pcyc}	-	ns	Figure 5.8
		Clock synchronous		6×t _{Pcyc}	-		
	Input clock pulse wid	Input clock pulse width		0.4×t _{Pcyc}	0.6×t _{Scyc}	ns	
	Input clock rise time		t _{SCKr}	-	20	ns	
	Input clock fall time		t _{SCKf}	-	20	ns	
	Output clock cycle	Asynchronous	t _{Scyc}	16×t _{Pcyc}	-	ns	
		Clock synchronous		6×t _{Pcyc}	-	ns	
	Output clock pulse width		t _{SCKW}	0.4×t _{Scyc}	0.6×t _{Scyc}	ns	-
	Output clock rise time		t _{SCKr}	-	20	ns	
	Output clock fall time		t _{SCKf}	-	20	ns	
	Transmit data delay time (clock synchronous)		t _{TXD}	-	40	ns	Figure 5.9
	Receive data setup time (clock synchronous)		t _{RXS}	40	-	ns	-
	Receive data hold ti	Receive data hold time (clock synchronous)		40	-	ns	

Note: • t_{Pcyc}: PCLK cycle

Figure 5.8 SCK Clock Input Timing

Figure 5.9 SCI Input/Output Timing: Clock Synchronous Mode

RENESAS

Figure 5.10 I2C Bus Interface Input/Output Timing

5.4 A/D Conversion Characteristics

Table 5.15 10-Bit A/D Conversion Characteristics

Note: Items for which test conditions are not specifically stated in the table below have the same values under conditions 1 to 3.

Condition 1: VCC = PLLVCC = 2.7 to 3.6 V, VSS = PLLVSS = AVSS0 = AVSS = VREFL0 = 0 V

AVCC0 = AVCC = 3.0 to 3.6 V, VREFH0 = 3.0 V to AVCC0, VREF = 3.0 V to AVCC

Ta = Topr

Item	Min.	Тур.	Max.	Unit	Test Conditions
Resolution	10	10	10	Bit	
Conversion time*1 (AD clock = 25-MHz operation)	2.0	-	-	μs	Sampling 25 states
Analog input capacitance	-	-	4	pF	
Integral nonlinearity error	-	-	±3.0	LSB	
Offset error	-	-	±3.0	LSB	
Full-scale error	-	-	±3.0	LSB	
Quantization error	-	±0.5	-	LSB	
Absolute accuracy	-	-	±4.0	LSB	
Permissible signal source impedance	-	-	1.0	kΩ	

Condition 2: VCC = PLLVCC = 2.7 to 3.6 V, VSS = PLLVSS = AVSS0 = AVSS = VREFL0 = 0 V AVCC0 = AVCC = 4.0 to 5.5 V, VREFH0 = 4.0 V to AVCC0, VREF = 4.0 V to AVCC

Condition 3: VCC = PLLVCC = 4.0 to 5.5 V, VSS = PLLVSS = AVSS0 = AVSS = VREFL0 = 0 V AVCC0 = AVCC = 4.0 to 5.5 V, VREFH0 = 4.0 V to AVCC0, VREF = 4.0 V to AVCC Ta = Topr. Ta is the same under conditions 2 and 3.

Item	Min.	Тур.	Max.	Unit	Test Conditions
Resolution	10	10	10	Bit	
Conversion time*1 (AD clock = 50-MHz operation)	1.0	-	-	μs	Sampling 25 states
Analog input capacitance	-	-	4	pF	
Integral nonlinearity error	-	-	±3.0	LSB	
Offset error	-	-	±3.0	LSB	
Full-scale error	-	-	±3.0	LSB	
Quantization error	-	±0.5	-	LSB	
Absolute accuracy	-	-	±4.0	LSB	
Permissible signal source impedance	-	-	1.0	kΩ	

Note 1. The conversion time includes the sampling time and the comparison time. As the test conditions, the number of sampling states is indicated.

Figure 5.21 Voltage Detection Circuit Timing (Vdet1)

Figure 5.22 Voltage Detection Circuit Timing (Vdet2)

Figure C 80-Pin LQFP (PLQP0080JA-A) Package Dimensions

Notice

- Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or
- technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.
- 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.

Standard: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics and amages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

- 6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations.
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics products.
- 11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

SALES OFFICES

Refer to "http://www.renesas.com/" for the latest and detailed information

Renesas Electronics Corporation

http://www.renesas.com

Renesas Electronics America Inc. 2880 Scott Boulders: 1+408-588-6130 Renesas Electronics Canada Limited 1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada Tel: +1-905-898-5441, Fax: +1-905-898-3220 Renesas Electronics Europe Limited Dukes Meadow, Milboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1628-651-700, Fax: +44-1628-651-804 Renesas Electronics Europe GmbH Arcadiastrasse 10, 40472 Disseldorf, Germany Tel: +49-211-65030, Fax: +44-1628-651-804 Renesas Electronics (Shanghal) Co., Ltd. 7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China Tel: +86-10-8235-1155, Fax: +86-10-823-7679 Renesas Electronics (Shanghal) Co., Ltd. 7th Floor, Quantum Towers, 555 LanGao Rd., Putuo District, Shanghai, China Tel: +86-10-8236-1155, Fax: +86-21-2226-0989 Renesas Electronics Hong Kong Limited Unit 1801-1613, 16/F., Tower 2, Grand Century Place, 139 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +88-08-818, Fax: +86-28-12226-0989 Renesas Electronics Hong Kong Limited Unit 1801-1613, 16/F., Tower 2, Grand Century Place, 139 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +88-08-818, Fax: +86-82-175-9670 Renesas Electronics Mang Co., Ltd. 13F, No. 363, Fu Shing North Road, Taipei, Taiwan Tel: +86-28-175-9600, Fax: +86-62-13000 Renesas Electronics Mangyai Sch.Bhd. 011 906, Blook, B., Menara Amoorp, Amoorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: +60-3-7955-9390, Fax: +80-3-7955-9510 Renesas Electronics Kong Co., Ltd. 12F, .234 Teheran-ro, Gangam-Gu, Seoul, 135-080, Korea Tel: +60-3-7955-9390, Fax: +80-3-7955-9510