

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I²C, SPI
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	64 × 8
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 5x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f872-e-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Write operations have two control bits, WR and WREN. and two status bits, WRERR and EEIF. The WREN bit is used to enable or disable the write operation. When WREN is clear, the write operation will be disabled. Therefore, the WREN bit must be set before executing a write operation. The WR bit is used to initiate the write operation. It also is automatically cleared at the end of the write operation. The interrupt flag EEIF (located in register PIR2) is used to determine when the memory write completes. This flag must be cleared in software before setting the WR bit. For EEPROM Data memory, once the WREN bit and the WR bit have been set, the desired memory address in EEADR will be erased followed by a write of the data in EEDATA. This operation takes place in parallel with the microcontroller continuing to execute normally. When the write is complete, the EEIF flag bit will be set. For program memory, once the WREN bit and the WR bit have been set, the microcontroller will cease to execute instructions. The

desired memory location pointed to by EEADRH:EEADR will be erased. Then the data value in EEDATH:EEDATA will be programmed. When complete, the EEIF flag bit will be set and the microcontroller will continue to execute code.

The WRERR bit is used to indicate when the device has been RESET during a write operation. WRERR should be cleared after Power-on Reset. Thereafter, it should be checked on any other RESET. The WRERR bit is set when a write operation is interrupted by a MCLR Reset or a WDT Time-out Reset during normal operation. In these situations, following a RESET, the user should check the WRERR bit and rewrite the memory location if set. The contents of the data registers, address registers and EEPGD bit are not affected by either MCLR Reset or WDT Time-out Reset during normal operation.

REGISTER 3-1: EECON1 REGISTER (ADDRESS 18Ch)

-													
	R/W-x	U-0	U-0	U-0	R/W-x	R/W-0	R/S-0	R/S-0					
	EEPGD	_	—	_	WRERR	WREN	WR	RD					
	bit 7							bit 0					
bit 7	EEPGD: Pr	ogram/Data	a EEPROM S	Select bit									
		es Program											
		es data mei		a read or wri	to operation	ie in progra							
bit 6-4	•		•			ris in piogre							
bit 3	•	Inimplemented: Read as '0' VRERR: EEPROM Error Flag bit											
DIT 5		= A write operation is prematurely terminated											
		(any MCLR Reset or any WDT Reset during normal operation)											
	• •	0 = The write operation completed											
bit 2	WREN: EE	PROM Writ	e Enable bit										
		write cycles											
		write to the	EEPROM										
bit 1	WR: Write												
		-	•	s cleared by	hardware o	nce write is	complete. T	he WR bit					
		•	t cleared) in										
bit 0	RD: Read (•											
	1 = Initiates	an EEPRC	DM read RD	is cleared in	hardware.	The RD bit o	can only be a	set (not					
) in software						,					
	0 = Does n	ot initiate ar	EEPROM I	read									
	Legend:												
	S = Settable		-	adable bit		W = Writab	le bit						
	U = Unimple	emented bit	, read as '0'			- n = Value	at POR						
	'1' = Bit is s	et	'0' = Bi	t is cleared		x = Bit is ur	Iknown						

Name	Bit#	Buffer	Function
RB0/INT	bit0	TTL/ST ⁽¹⁾	Input/output pin or external interrupt input. Internal software programmable weak pull-up.
RB1	bit1	TTL	Input/output pin. Internal software programmable weak pull-up.
RB2	bit2	TTL	Input/output pin. Internal software programmable weak pull-up.
RB3/PGM	bit3	TTL	Input/output pin or programming pin in LVP mode. Internal software programmable weak pull-up.
RB4	bit4	TTL	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up.
RB5	bit5	TTL	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up.
RB6/PGC	bit6	TTL/ST ⁽²⁾	Input/output pin (with interrupt-on-change) or In-Circuit Debugger pin. Internal software programmable weak pull-up. Serial programming clock.
RB7/PGD	bit7	TTL/ST ⁽²⁾	Input/output pin (with interrupt-on-change) or In-Circuit Debugger pin. Internal software programmable weak pull-up. Serial programming data.

TABLE 4-3: PORTB FUNCTIONS

Legend: TTL = TTL input, ST = Schmitt Trigger input

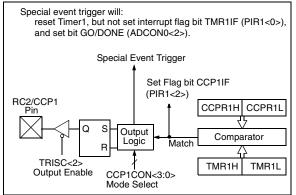
Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.

TABLE 4-4: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
06h, 106h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	XXXX XXXX	uuuu uuuu
86h, 186h	TRISB	PORTB	PORTB Data Direction Register							1111 1111	1111 1111
81h, 181h	OPTION_REG	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111

Legend: \mathbf{x} = unknown, \mathbf{u} = unchanged. Shaded cells are not used by PORTB.


8.2 Compare Mode

In Compare mode, the 16-bit CCPR1 register value is constantly compared against the TMR1 register pair value. When a match occurs, the RC2/CCP1 pin is:

- Driven high
- Driven low
- · Remains unchanged

The action on the pin is based on the value of control bits, CCP1M3:CCP1M0 (CCP1CON<3:0>). At the same time, interrupt flag bit CCP1IF is set.

FIGURE 8-2: COMPARE MODE OPERATION BLOCK DIAGRAM

8.2.1 CCP PIN CONFIGURATION

The user must configure the RC2/CCP1 pin as an output by clearing the TRISC<2> bit.

Note:	Clearing the CCP1CON register will force							
	the RC2/CCP1 compare output latch to the							
	default low level. This is not the PORTC							
	I/O data latch.							

8.2.2 TIMER1 MODE SELECTION

Timer1 must be running in Timer mode or Synchronized Counter mode if the CCP module is using the compare feature. In Asynchronous Counter mode, the compare operation may not work.

8.2.3 SOFTWARE INTERRUPT MODE

When Generate Software Interrupt mode is chosen, the CCP1 pin is not affected. The CCPIF bit is set, causing a CCP interrupt (if enabled).

8.2.4 SPECIAL EVENT TRIGGER

In this mode, an internal hardware trigger is generated, which may be used to initiate an action.

The special event trigger output of CCP1 resets the TMR1 register pair and starts an A/D conversion (if the A/D module is enabled). This allows the CCPR1 register to effectively be a 16-bit programmable period register for Timer1.

Note: The special event trigger from the CCP module will not set interrupt flag bit TMR1IF (PIR1<0>).

TABLE 8-2: REGISTERS ASSOCIATED WITH CAPTURE, COMPARE, AND TIMER1

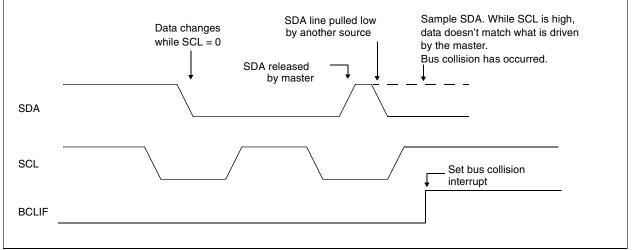
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value PO BC	R,	all o	e on other SETS
0Bh,8Bh, 10Bh, 18Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000	000x	0000	000u
0Ch	PIR1	(1)	ADIF	(1)	(1)	SSPIF	CCP1IF	TMR2IF	TMR1IF	r0rr	0000	0000	0000
8Ch	PIE1	(1)	ADIE	(1)	(1)	SSPIE	CCP1IE	TMR2IE	TMR1IE	r0rr	0000	0000	0000
87h	TRISC	PORTC	Data Di	rection Reg	ister					1111	1111	1111	1111
0Eh	TMR1L	Holding	Registe	r for the Lea	ast Significa	nt Byte of th	ie 16-bit Tl	MR1 Regis	ster	xxxx	xxxx	uuuu	uuuu
0Fh	TMR1H	Holding	Registe	r for the Mo	st Significar	nt Byte of the	e 16-bit TN	/IR1 Regis	ter	xxxx	xxxx	uuuu	uuuu
10h	T1CON	—	—	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00	0000	uu	uuuu
15h	CCPR1L	Capture	/Compa	re/PWM Re	gister1 (LSE	3)				xxxx	xxxx	uuuu	uuuu
16h	CCPR1H	Capture	Capture/Compare/PWM Register1 (MSB)								xxxx	uuuu	uuuu
17h	CCP1CON	_	_	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00	0000	00	0000

Note 1: These bits are reserved; always maintain clear.

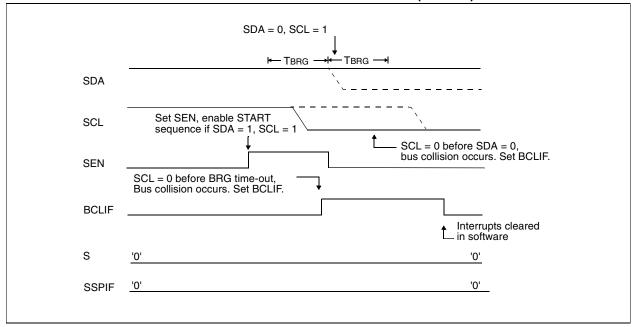
9.2.18 MULTI -MASTER COMMUNICATION, BUS COLLISION, AND BUS ARBITRATION

Multi-Master mode support is achieved by bus arbitration. When the master outputs address/data bits onto the SDA pin, arbitration takes place when the master outputs a '1' on SDA, by letting SDA float high and another master asserts a '0'. When the SCL pin floats high, data should be stable. If the expected data on SDA is a '1' and the data sampled on the SDA pin = '0', a bus collision has taken place. The master will set the Bus Collision Interrupt Flag, BCLIF and reset the I^2C port to its IDLE state. (Figure 9-19).

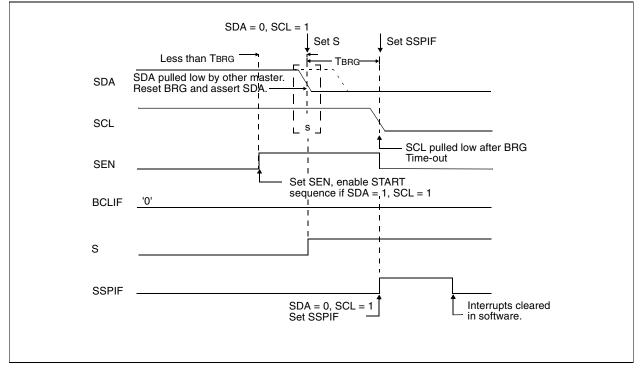
If a transmit was in progress when the bus collision occurred, the transmission is halted, the BF flag is cleared, the SDA and SCL lines are de-asserted, and the SSPBUF can be written to. When the user services the bus collision Interrupt Service Routine, and if the I^2C bus is free, the user can resume communication by asserting a START condition.


If a START, Repeated START, STOP or Acknowledge condition was in progress when the bus collision occurred, the condition is aborted, the SDA and SCL lines are de-asserted, and the respective control bits in the SSPCON2 register are cleared. When the user services the bus collision Interrupt Service Routine, and if the l^2C bus is free, the user can resume communication by asserting a START condition.

The master will continue to monitor the SDA and SCL pins, and if a STOP condition occurs, the SSPIF bit will be set.


A write to the SSPBUF will start the transmission of data at the first data bit, regardless of where the transmitter left off when the bus collision occurred.

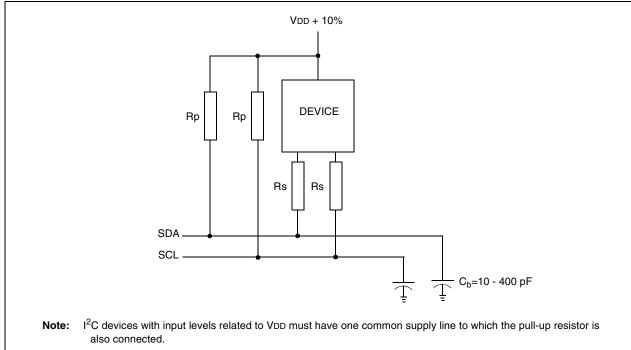
In Multi-Master mode, the interrupt generation on the detection of START and STOP conditions allows the determination of when the bus is free. Control of the I^2C bus can be taken when the P bit is set in the SSPSTAT register, or the bus is IDLE and the S and P bits are cleared.



9.3 Connection Considerations for I²C Bus

For standard mode I^2C bus devices, the values of resistors R_p and R_s in Figure 9-27 depend on the following parameters:

- Supply voltage
- Bus capacitance
- Number of connected devices (input current + leakage current).


The supply voltage limits the minimum value of resistor R_p , due to the specified minimum sink current of 3 mA at VoL max = 0.4V, for the specified output stages. For example, with a supply voltage of VDD = $5V\pm10\%$ and

VoL max = 0.4V at 3 mA, $R_{p \text{ min}} = (5.5-0.4)/0.003 = 1.7 \text{ k}\Omega$. VDD, as a function of R_p , is shown in Figure 9-27. The desired noise margin of 0.1 VDD for the low level limits the maximum value of R_s . Series resistors are optional and used to improve ESD susceptibility.

The bus capacitance is the total capacitance of wire, connections, and pins. This capacitance limits the maximum value of R_{p} , due to the specified rise time (Figure 9-27).

The SMP bit is the slew rate control enabled bit. This bit is in the SSPSTAT register, and controls the slew rate of the I/O pins when in I^2C mode (master or slave).

FIGURE 9-27: SAMPLE DEVICE CONFIGURATION FOR I²C BUS

PIC16F872

REGISTER 10-2: ADCON1 REGISTER (ADDRESS: 9Fh)

	U-0	U-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
	ADFM	—	—	—	PCFG3	PCFG2	PCFG1	PCFG0
k	oit 7							bit 0

bit 7 ADFM: A/D Result Format Select bit

1 = Right justified. Six Most Significant bits of ADRESH are read as '0'.

0 = Left justified. Six Least Significant bits of ADRESL are read as '0'.

bit 6-4 Unimplemented: Read as '0'

bit 3-0	PCFG3:PCFG0:	A/D Port	Configuration	Control bits:

PCFG3: PCFG0	AN4 RA5	AN3 RA3	AN2 RA2	AN1 RA1	AN0 RA0	VREF+	VREF-	CHAN/ Refs ⁽¹⁾
0000	А	А	Α	Α	Α	Vdd	Vss	8/0
0001	А	VREF+	Α	Α	Α	RA3	Vss	7/1
0010	А	А	Α	Α	Α	Vdd	Vss	5/0
0011	А	VREF+	А	А	Α	RA3	Vss	4/1
0100	D	А	D	А	Α	Vdd	Vss	3/0
0101	D	VREF+	D	Α	Α	RA3	Vss	2/1
011x	D	D	D	D	D	Vdd	Vss	0/0
1000	А	VREF+	VREF-	А	Α	RA3	RA2	6/2
1001	А	А	А	А	Α	Vdd	Vss	6/0
1010	А	VREF+	А	А	Α	RA3	Vss	5/1
1011	А	VREF+	VREF-	А	Α	RA3	RA2	4/2
1100	А	VREF+	VREF-	Α	Α	RA3	RA2	3/2
1101	D	VREF+	VREF-	А	Α	RA3	RA2	2/2
1110	D	D	D	D	А	Vdd	Vss	1/0
1111	D	VREF+	VREF-	D	Α	RA3	RA2	1/2

A = Analog input

D = Digital I/O

Note 1: This column indicates the number of analog channels available as A/D inputs and the number of analog channels used as voltage reference inputs.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

10.2 Selecting the A/D Conversion Clock

The A/D conversion time per bit is defined as TAD. The A/D conversion requires a minimum 12TAD per 10-bit conversion. The source of the A/D conversion clock is software selected. The four possible options for TAD are:

- 2Tosc
- 8Tosc
- 32Tosc
- Internal A/D module RC oscillator (2-6 μs)

For correct A/D conversions, the A/D conversion clock (TAD) must be selected to ensure a minimum TAD time of 1.6 $\mu s.$

Table 10-1
shows the resultant TAD times derived from the device operating frequencies and the
 A/D clock source selected.

10.3 Configuring Analog Port Pins

The ADCON1, and TRIS registers control the operation of the A/D port pins. The port pins that are desired as analog inputs must have their corresponding TRIS bits set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) will be converted.

The A/D operation is independent of the state of the CHS2:CHS0 bits and the TRIS bits.

- Note 1: When reading the port register, any pin configured as an analog input channel will read as cleared (a low level). Pins configured as digital inputs will convert an analog input. Analog levels on a digitally configured input will not affect the conversion accuracy.
 - 2: Analog levels on any pin that is defined as a digital input (including the AN7:AN0 pins), may cause the input buffer to consume current that is out of the device specifications.

TABLE 10-1: TAD VS. MAXIMUM DEVICE OPERATING FREQUENCIES (STANDARD DEVICES (C))

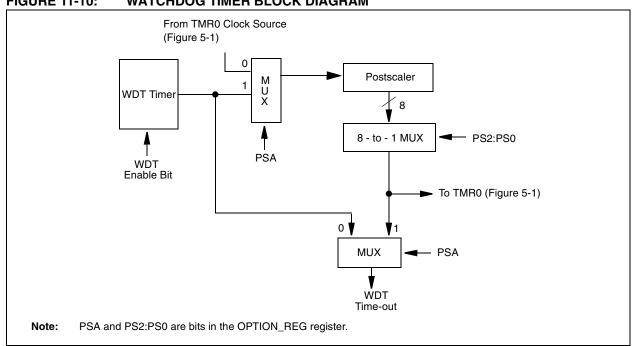
AD Clock S				
Operation	ADCS1:ADCS0	Maximum Device Frequency		
2Tosc	0 0	1.25 MHz		
8Tosc	01	5 MHz		
32Tosc	10	20 MHz		
RC ^(1, 2, 3)	11	(Note 1)		

Note 1: The RC source has a typical TAD time of 4 µs, but can vary between 2-6 µs.

2: When the device frequencies are greater than 1 MHz, the RC A/D conversion clock source is only recommended for SLEEP operation.

3: For extended voltage devices (LC), please refer to the Electrical Characteristics (Sections 14.1 and 14.2).

11.12 Watchdog Timer (WDT)


The Watchdog Timer is a free running on-chip RC oscillator, which does not require any external components. This RC oscillator is separate from the RC oscillator of the OSC1/CLKI pin. That means that the WDT will run, even if the clock on the OSC1/CLKI and OSC2/CLKO pins of the device has been stopped, for example, by execution of a SLEEP instruction.

During normal operation, a WDT time-out generates a device RESET (Watchdog Timer Reset). If the device is in SLEEP mode, a WDT time-out causes the device to wake-up and continue with normal operation (Watchdog Timer Wake-up). The TO bit in the STATUS register will be cleared upon a Watchdog Timer time-out.

The WDT can be permanently disabled by clearing configuration bit WDTE (Section 11.1).

WDT time-out period values may be found in the Electrical Specifications section under parameter #31. Values for the WDT prescaler (actually a postscaler, but shared with the Timer0 prescaler) may be assigned using the OPTION_REG register.

- Note 1: The CLRWDT and SLEEP instructions clear the WDT and the postscaler, if assigned to the WDT, and prevent it from timing out and generating a device RESET condition.
 - 2: When a CLRWDT instruction is executed and the prescaler is assigned to the WDT, the prescaler count will be cleared, but the prescaler assignment is not changed.

FIGURE 11-10: WATCHDOG TIMER BLOCK DIAGRAM

TABLE 11-7: SUMMARY OF WATCHDOG TIMER REGISTERS

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
2007h	Config. bits	(1)	BODEN ⁽¹⁾	CP1	CP0	PWRTE ⁽¹⁾	WDTE	FOSC1	FOSC0
81h,181h	OPTION_REG	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0

Legend: Shaded cells are not used by the Watchdog Timer.

Note 1: See Register 11-1 for operation of these bits.

DECFSZ	Decrement f, Skip if 0
Syntax:	[label] DECFSZ f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \ [0,1] \end{array}$
Operation:	(f) - 1 \rightarrow (destination); skip if result = 0
Status Affected:	None
Description:	The contents of register 'f' are decremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'. If the result is 1, the next instruc- tion is executed. If the result is 0, then a NOP is executed instead, making it a 2TCY instruction.

INCFSZ	Increment f, Skip if 0				
Syntax:	[label] INCFSZ f,d				
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \\ (f) + 1 \rightarrow (destination), \\ skip \ if \ result = 0 \end{array}$				
Operation:					
Status Affected:	None				
Description:	The contents of register 'f' are incremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'. If the result is 1, the next instruc- tion is executed. If the result is 0, a NOP is executed instead, making it a 2TCY instruction.				

GOTO	Unconditional Branch	
Syntax:	[<i>label</i>] GOTO k	
Operands:	$0 \le k \le 2047$	
Operation:	$k \rightarrow PC<10:0>$ PCLATH<4:3> \rightarrow PC<12:11>	
Status Affected:	None	
Description:	GOTO is an unconditional branch. The eleven-bit immediate value is loaded into PC bits <10:0>. The upper bits of PC are loaded from PCLATH<4:3>. GOTO is a two- cycle instruction.	

IORLW	Inclusive OR Literal with W					
Syntax:	[<i>label</i>] IORLW k					
Operands:	$0 \le k \le 255$					
Operation:	(W) .OR. $k \rightarrow$ (W)					
Status Affected:	Z					
Description:	The contents of the W register are OR'ed with the eight-bit literal 'k'. The result is placed in the W register.					

INCF	Increment f	IORWF	Inclusive OR W with f	
Syntax:	[label] INCF f,d	Syntax:	[label] IORWF f,d	
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \left[0,1\right] \end{array}$	Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \left[0,1\right] \end{array}$	
Operation:	(f) + 1 \rightarrow (destination)	Operation:	(W) .OR. (f) \rightarrow (destination)	
Status Affected:	Z	Status Affected:	Z	
Description: The contents of register 'f' are incremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'.		Description:	Inclusive OR the W register with register 'f'. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'.	

13.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK object linker combines relocatable objects created by the MPASM assembler and the MPLAB C17 and MPLAB C18 C compilers. It can also link relocatable objects from pre-compiled libraries, using directives from a linker script.

The MPLIB object librarian is a librarian for precompiled code to be used with the MPLINK object linker. When a routine from a library is called from another source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications. The MPLIB object librarian manages the creation and modification of library files.

The MPLINK object linker features include:

- Integration with MPASM assembler and MPLAB C17 and MPLAB C18 C compilers.
- Allows all memory areas to be defined as sections to provide link-time flexibility.

The MPLIB object librarian features include:

- Easier linking because single libraries can be included instead of many smaller files.
- Helps keep code maintainable by grouping related modules together.
- Allows libraries to be created and modules to be added, listed, replaced, deleted or extracted.

13.5 MPLAB SIM Software Simulator

The MPLAB SIM software simulator allows code development in a PC-hosted environment by simulating the PICmicro series microcontrollers on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a file, or user-defined key press, to any of the pins. The execution can be performed in single step, execute until break, or trace mode.

The MPLAB SIM simulator fully supports symbolic debugging using the MPLAB C17 and the MPLAB C18 C compilers and the MPASM assembler. The software simulator offers the flexibility to develop and debug code outside of the laboratory environment, making it an excellent multiproject software development tool.

13.6 MPLAB ICE High Performance Universal In-Circuit Emulator with MPLAB IDE

The MPLAB ICE universal in-circuit emulator is intended to provide the product development engineer with a complete microcontroller design tool set for PICmicro microcontrollers (MCUs). Software control of the MPLAB ICE in-circuit emulator is provided by the MPLAB Integrated Development Environment (IDE), which allows editing, building, downloading and source debugging from a single environment.

The MPLAB ICE 2000 is a full-featured emulator system with enhanced trace, trigger and data monitoring features. Interchangeable processor modules allow the system to be easily reconfigured for emulation of different processors. The universal architecture of the MPLAB ICE in-circuit emulator allows expansion to support new PICmicro microcontrollers.

The MPLAB ICE in-circuit emulator system has been designed as a real-time emulation system, with advanced features that are generally found on more expensive development tools. The PC platform and Microsoft[®] Windows environment were chosen to best make these features available to you, the end user.

13.7 ICEPIC In-Circuit Emulator

The ICEPIC low cost, in-circuit emulator is a solution for the Microchip Technology PIC16C5X, PIC16C6X, PIC16C7X and PIC16CXXX families of 8-bit One-Time-Programmable (OTP) microcontrollers. The modular system can support different subsets of PIC16C5X or PIC16CXXX products through the use of interchangeable personality modules, or daughter boards. The emulator is capable of emulating without target application circuitry being present.

13.8 MPLAB ICD In-Circuit Debugger

Microchip's In-Circuit Debugger, MPLAB ICD, is a powerful, low cost, run-time development tool. This tool is based on the FLASH PICmicro MCUs and can be used to develop for this and other PICmicro microcontrollers. The MPLAB ICD utilizes the in-circuit debugging capability built into the FLASH devices. This feature, along with Microchip's In-Circuit Serial Programming[™] protocol, offers cost-effective in-circuit FLASH debugging from the graphical user interface of the MPLAB Integrated Development Environment. This enables a designer to develop and debug source code by watching variables, single-stepping and setting break points. Running at full speed enables testing hardware in realtime.

13.9 PRO MATE II Universal Device Programmer

The PRO MATE II universal device programmer is a full-featured programmer, capable of operating in stand-alone mode, as well as PC-hosted mode. The PRO MATE II device programmer is CE compliant.

The PRO MATE II device programmer has programmable VDD and VPP supplies, which allow it to verify programmed memory at VDD min and VDD max for maximum reliability. It has an LCD display for instructions and error messages, keys to enter commands and a modular detachable socket assembly to support various package types. In stand-alone mode, the PRO MATE II device programmer can read, verify, or program PICmicro devices. It can also set code protection in this mode.

13.10 PICSTART Plus Entry Level Development Programmer

The PICSTART Plus development programmer is an easy-to-use, low cost, prototype programmer. It connects to the PC via a COM (RS-232) port. MPLAB Integrated Development Environment software makes using the programmer simple and efficient.

The PICSTART Plus development programmer supports all PICmicro devices with up to 40 pins. Larger pin count devices, such as the PIC16C92X and PIC17C76X, may be supported with an adapter socket. The PICSTART Plus development programmer is CE compliant.

13.11 PICDEM 1 Low Cost PICmicro Demonstration Board

The PICDEM 1 demonstration board is a simple board which demonstrates the capabilities of several of Microchip's microcontrollers. The microcontrollers supported are: PIC16C5X (PIC16C54 to PIC16C58A), PIC16C61, PIC16C62X, PIC16C71, PIC16C8X, PIC17C42, PIC17C43 and PIC17C44, All necessary hardware and software is included to run basic demo programs. The user can program the sample microcontrollers provided with the PICDEM 1 demonstration board on a PRO MATE II device programmer, or a PICSTART Plus development programmer, and easily test firmware. The user can also connect the PICDEM 1 demonstration board to the MPLAB ICE incircuit emulator and download the firmware to the emulator for testing. A prototype area is available for the user to build some additional hardware and connect it to the microcontroller socket(s). Some of the features include an RS-232 interface, a potentiometer for simulated analog input, push button switches and eight LEDs connected to PORTB.

13.12 PICDEM 2 Low Cost PIC16CXX Demonstration Board

The PICDEM 2 demonstration board is a simple demonstration board that supports the PIC16C62, PIC16C64, PIC16C65, PIC16C73 and PIC16C74 microcontrollers. All the necessary hardware and software is included to run the basic demonstration programs. The user can program the sample microcontrollers provided with the PICDEM 2 demonstration board on a PRO MATE II device programmer, or a PICSTART Plus development programmer, and easily test firmware. The MPLAB ICE in-circuit emulator may also be used with the PICDEM 2 demonstration board to test firmware. A prototype area has been provided to the user for adding additional hardware and connecting it to the microcontroller socket(s). Some of the features include a RS-232 interface, push button switches, a potentiometer for simulated analog input, a serial EEPROM to demonstrate usage of the I²C[™] bus and separate headers for connection to an LCD module and a keypad.

PIC16F872

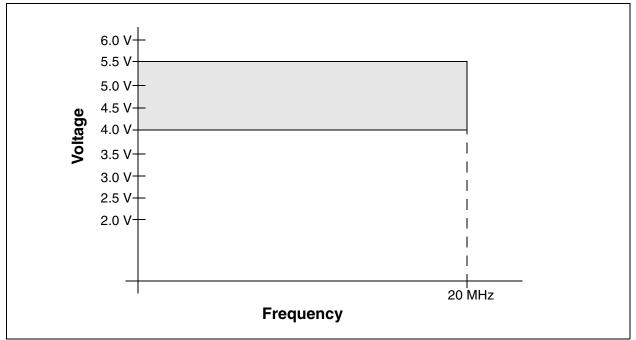
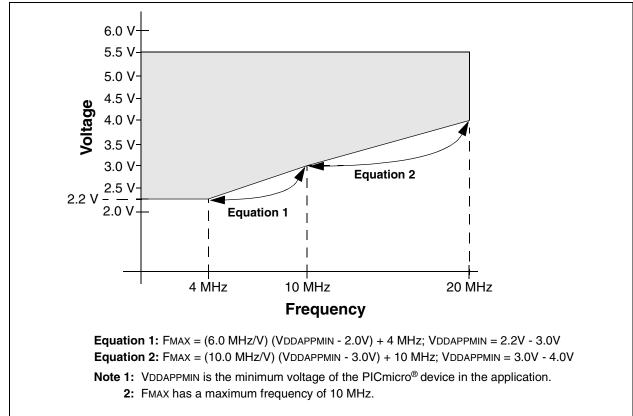
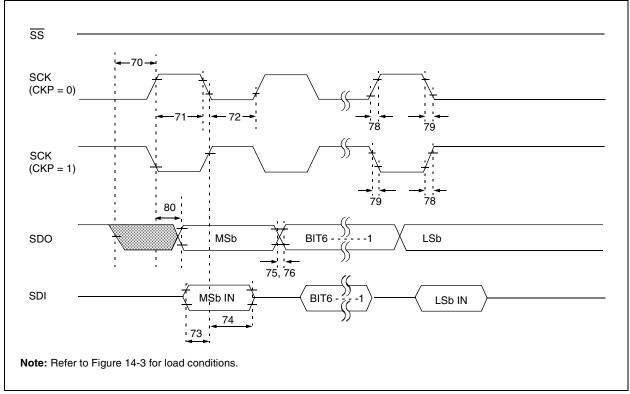



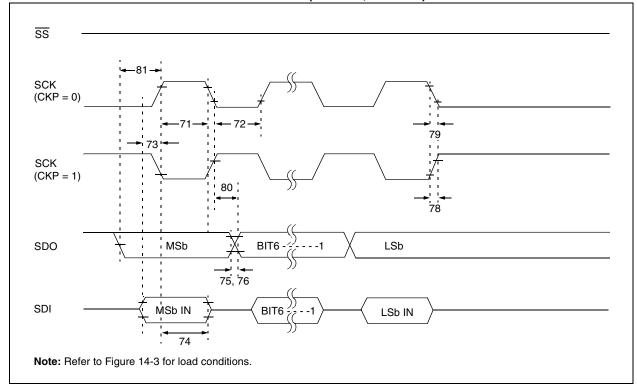
FIGURE 14-2: PIC16LF872 VOLTAGE-FREQUENCY GRAPH

14.4 DC Characteristics: PIC16F872 (Extended)

DC CHARACTERISTICS		Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$ Operating voltage VDD range as described in DC specification (Section 14.1)					
Param No.	Sym	Characteristic	Min Typ	Тур†	/p† Max	Units	Conditions
	VIL	Input Low Voltage					
		I/O ports:					
D030		with TTL buffer	Vss	-	0.15VDD	V	For entire VDD range
D030A			Vss	-	0.8V	V	$4.5V \le VDD \le 5.5V$
D031		with Schmitt Trigger buffer	Vss	-	0.2Vdd	V	
D032		MCLR, OSC1 (in RC mode)	Vss	-	0.2VDD	V	
D033		OSC1 (in XT, HS and LP modes)	Vss	-	0.3VDD	V	(Note1)
		Ports RC3 and RC4:					
D034		with Schmitt Trigger buffer	Vss	-	0.3VDD	V	For entire VDD range
D034A		with SMBus	-0.5	-	0.6	V	for VDD = 4.5 to 5.5V
	VIH	Input High Voltage					
		I/O ports:		-			
D040		with TTL buffer	2.0	-	Vdd	V	$4.5V \le VDD \le 5.5V$
D040A			0.25Vdd + 0.8V	-	Vdd	V	For entire VDD range
D041		with Schmitt Trigger buffer	0.8VDD	-	Vdd	V	For entire VDD range
D042		MCLR	0.8VDD	-	Vdd	V	
D042A		OSC1 (XT, HS and LP modes)	0.7Vdd	-	Vdd	V	(Note1)
D043		OSC1 (in RC mode)	0.9Vdd	-	Vdd	V	
		Ports RC3 and RC4:					
D044		with Schmitt Trigger buffer	0.7Vdd	-	Vdd	V	For entire VDD range
D044A		with SMBus	1.4	-	5.5	V	for VDD = 4.5 to 5.5V
D070A	IPURB	PORTB Weak Pull-up Current	50	300	500	μΑ	VDD = 5V, $VPIN = VSS$,
	lı∟	Input Leakage Current ^(2, 3)					
D060		I/O ports	-	-	±1	μA	$Vss \leq VPIN \leq VDD$,
							Pin at hi-impedance
D061		MCLR, RA4/T0CKI	-	-	±5	μA	$Vss \le VPIN \le VDD$
D063		OSC1	-	-	±5	μA	Vss \leq VPIN \leq VDD, XT, HS and LP osc configuration

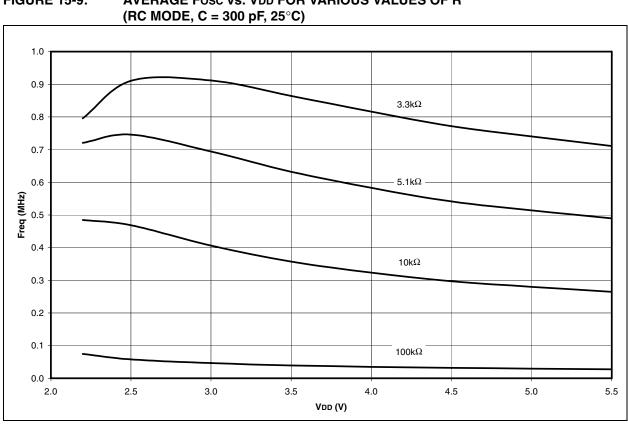
These parameters are characterized but not tested.

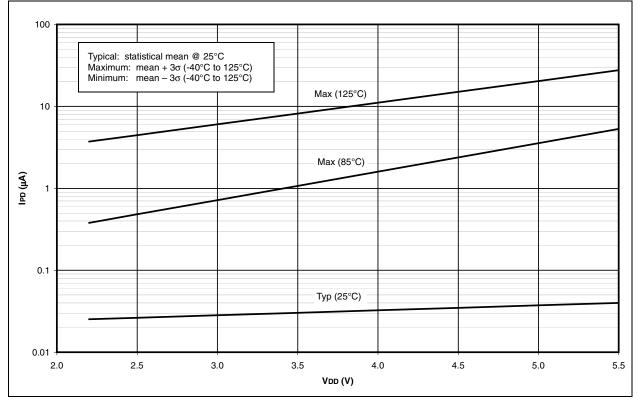

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.


Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16F872 be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.




FIGURE 14-11: SPI MASTER MODE TIMING (CKE = 1, SMP = 1)

NOTES:

AVERAGE FOSC vs. VDD FOR VARIOUS VALUES OF R **FIGURE 15-9:**

© 2006 Microchip Technology Inc.

NOTES:

INDEX

A/D 79 Acquisition Requirements 82 ADCON0 Register 79 ADCON1 Register 79 ADIF Bit 81 ADRESH Register 79 ADRESH Register 83 Configuring the Module 81 Conversion Clock 83 Conversion Succk 84 Effects of a RESET 85 GO/DONE Bit 81 Internal Sampling Switch (Rss) Impedance 82 Operation During SLEEP 85 Result Registers 84 Source Impedance 82 TaD 83 Acknowledge Data Bit (ACKDT) 54 Acknowledge Sequence Enable Bit (ACKEN) 54 Acknowledge Status Bit (ACKSTAT) 54 ACKSTAT Status Flag 79	Α
ADCON0 Register 79 ADCN1 Register 79 ADIF Bit 81 ADRESH Register 79 ADRESL Register 79 ADRESL Register 79 ADRESL Register 79 Associated Registers and Bits 85 Configuring the Interrupt 81 Configuring the Module 81 Conversion Clock 83 Conversion S 84 Effects of a RESET 85 GO/DONE Bit 81 Internal Sampling Switch (Rss) Impedance 82 Operation During SLEEP 85 Result Registers 84 Source Impedance 82 ACKD Bit Acknowledge Sequence Enable Bit (ACKEN) ACKNowledge Sequence Enable Bit (ACKSTAT) 5	A/D79
ADCON1 Register 79 ADIF Bit 81 ADRESH Register 79 ADRESL Register 79 Associated Registers and Bits 85 Configuring Analog Port Pins 83 Configuring the Interrupt 81 Configuring the Module 81 Conversion Clock 83 Conversion S 84 Effects of a RESET 85 GO/DONE Bit 81 Internal Sampling Switch (Rss) Impedance 82 Operation During SLEEP 85 Result Registers 84 Source Impedance 82 TaD 83 Acknowledge Data Bit (ACKDT) 54 Acknowledge Data Bit (ACKDT) 54 Acknowledge Sequence Enable Bit (ACKEN) 54 Acknowledge Status Bit (ACKSTAT) 54 AcKNowledge Pulse (ACK) 59 ADCON1 Register 9 ADESH Register 9 ADESH Register 9 ADESH Register 10 Analog-to-Digital Converte	Acquisition Requirements82
ADIF Bit 81 ADRESH Register 79 ADRESL Registers and Bits 85 Configuring the Interrupt 81 Configuring the Module 81 Conversion 83 Conversions 84 Effects of a RESET 85 GO/DONE Bit 81 Internal Sampling Switch (Rss) Impedance 82 Operation During SLEEP 85 Result Registers 84 Source Impedance 82 TAD 83 Acknowledge Data Bit (ACKDT) 54 Acknowledge Data Bit (ACKDT) 54 Acknowledge Status Bit (ACKSTAT) 54 Acknowledge Status Bit (ACKSTAT) 54 Acknowledge Status Bit (ACKSTAT) 54 ACKSTAT Status Flag 67 ADCON0 Register 9 ADCON1 Register 10 Anleg-to-Digital Converter. See A/D <	ADCON0 Register
ADRESL Register 79 ADRESL Register 79 Associated Registers and Bits 85 Configuring Analog Port Pins 83 Configuring the Interrupt 81 Conversion Clock 83 GO/DONE Bit 81 Internal Sampling Switch (Rss) Impedance 82 Operation During SLEEP 85 Result Registers 84 Source Impedance 82 TAD 83 Acknowledge Data Bit (ACKDT) 54 Acknowledge Pulse (ACK) 59 Acknowledge Sequence Enable Bit (ACKEN) 54 Acknowledge Status Bit (ACKSTAT) 54 ACKSTAT Status Flag 67 ADCON1 Register 9 ADRESL Register 10 AN552 (Implementing Wake-up on Key Stroke)	ADCON1 Register79
ADRESL Register 79 Associated Registers and Bits 85 Configuring Analog Port Pins 83 Configuring the Interrupt 81 Conversion Clock 83 Conversion S 84 Effects of a RESET 85 GO/DONE Bit 81 Internal Sampling Switch (Rss) Impedance 82 Operation During SLEEP 85 Result Registers 84 Source Impedance 82 TAD 83 Absolute Maximum Ratings 117 ACK pulse 59 ACKDT Bit 54 Acknowledge Data Bit (ACKDT) 54 ACKNT Bit 54 Acknowledge Sequence Enable Bit (ACKEN) 54 ACKNTAT Bit 54 ACKNTAT Status Flag 67 ADCON1 Register 9 ADCON1 Register 9 ADCON1 Register 10 ADRESL Register 9 ADCON1 Register 10 ADRESL Register 9 ADCON1 Register 10 AN526 (Implementing a Table Re	
Associated Registers and Bits 85 Configuring Analog Port Pins 83 Configuring the Interrupt 81 Conversion Clock 83 Conversion Clock 83 Conversion Clock 83 Conversion S 84 Effects of a RESET 85 GO/DONE Bit 81 Internal Sampling Switch (Rss) Impedance 82 Operation During SLEEP 85 Result Registers 84 Source Impedance 82 TAD 83 Absolute Maximum Ratings 117 ACK pulse 59 ACKDT Bit 54 Acknowledge Data Bit (ACKDT) 54 Acknowledge Sequence Enable Bit (ACKEN) 54 Acknowledge Status Bit (ACKSTAT) 54 ACKSTAT Bit Acknowledge Status Flag 67 ADCON1 Register 9 ADCON1 Register 9 ADCON1 Register 10 Analog-to-Digital Converter. See A/D 20 AN552 (Implementing Wake-up on Key Stroke) 31 AN556 (Implementing a Table Read) 20 AN578 (Use of the SSP Modul	•
Configuring Analog Port Pins 83 Configuring the Interrupt 81 Configuring the Module 81 Conversion Clock 83 Conversions 84 Effects of a RESET 85 GO/DONE Bit 81 Internal Sampling Switch (Rss) Impedance 82 Operation During SLEEP 85 Result Registers 84 Source Impedance 82 TAD 83 Absolute Maximum Ratings 117 ACK pulse 59 ACKDT Bit Acknowledge Data Bit (ACKDT) AcKnowledge Sequence Enable Bit (ACKEN) 54 Acknowledge Pulse (ACK) 59 ACKSTAT Bit Acknowledge Status Bit (ACKSTAT) ACKSTAT Status Flag 67 ADCON0 Register 9 ADCON1 Register 10 ADRESH Register 9 ADCON1 Register 10 Analog-to-Digital Converter. See A/D Application Notes AN556 (Implementing Wake-up on Key Stroke) AN578 (Use of the SSP Module in the I ² C	
Configuring the Interrupt 81 Configuring the Module 81 Conversion Clock 83 Conversion Clock 83 Conversions 84 Effects of a RESET 84 GO/DONE Bit 81 Internal Sampling Switch (Rss) Impedance 82 Operation During SLEEP 85 Result Registers 84 Source Impedance 82 TAD 83 Absolute Maximum Ratings 117 ACK pulse 59 ACKDT Bit Acknowledge Data Bit (ACKDT) ACKEN Bit Acknowledge Sequence Enable Bit (ACKEN) ACKSTAT Bit Acknowledge Status Bit (ACKSTAT) ACKSTAT Status Flag 67 ADCON0 Register 9 ADCON1 Register 10 ADRESL Register 9 ADCON1 Register 10 Analog-to-Digital Converter. See A/D Application Notes AN552 (Implementing Wake-up on Key Stroke) AN578 (Use of the SSP Module in the I ² C Multi-Master Environment) 58	•
Configuring the Module 81 Conversion Clock 83 GO/DONE Bit 85 Internal Sampling Switch (Rss) Impedance 82 Operation During SLEEP 85 Result Registers 84 Source Impedance 82 TAD 83 Absolute Maximum Ratings 117 ACK pulse 59 ACKDT Bit 54 Acknowledge Data Bit (ACKDT) 54 Acknowledge Sequence Enable Bit (ACKEN) 54 Acknowledge Status Bit (ACKSTAT) 54 ACKSTAT Bit Acknowledge Status Flag 67 ADCON Register 9 ADCON Register 9 ADRESL Register 10 Anlaog-to-Digital Converter. See A/D Application Notes AN556 (Implementing a Table Read) 20 AN578 (Use of the SSP Module in the I	
Conversion Clock 83 Conversions 84 Effects of a RESET 85 GO/DONE Bit 81 Internal Sampling Switch (Rss) Impedance 82 Operation During SLEEP 85 Result Registers 84 Source Impedance 82 TAD 83 Absolute Maximum Ratings 117 ACK pulse 59 ACKDT Bit Acknowledge Data Bit (ACKDT) ACKEN Bit Acknowledge Sequence Enable Bit (ACKEN) ACKSTAT Bit Acknowledge Status Bit (ACKSTAT) ACKSTAT Status Flag 67 ADCON Register 9 ADCON Register 9 ADCON Register 9 ADCON Register 10 Analog-to-Digital Converter. See A/D Application Notes AN552 (Implementing Wake-up on Key Stroke) 31 AN5532 (Implementing a Table Read) 20 AN578 (Use of the SSP Module in the I ² C Multi-Master Environment) Assembler 111 B Batifer Full Status Bit (BF) 52	
Conversions 84 Effects of a RESET 85 GO/DONE Bit 81 Internal Sampling Switch (Rss) Impedance 82 Operation During SLEEP 85 Result Registers 84 Source Impedance 82 TAD 83 Absolute Maximum Ratings 117 ACK pulse 59 ACKDT Bit Acknowledge Data Bit (ACKDT) Acknowledge Sequence Enable Bit (ACKEN) 54 Acknowledge Status Bit (ACKSTAT) 54 ACKSTAT Bit Acknowledge Status Bit (ACKSTAT) ACKSTAT Status Flag 67 ADCON1 Register 9 ADCON1 Register 10 ADRESL Register 9 ADRESL Register 10 Analog-to-Digital Converter. See A/D 20 AN552 (Implementing Wake-up on Key Stroke) 31 AN552 (Implementing a Table Read) 20 AN578 (Use of the SSP Module in the I ² C Multi-Master Environment) MPASM Assembler 111 B Buffer Full Status Bit (BF) 52 <td></td>	
Effects of a RESET 85 GO/DONE Bit 81 Internal Sampling Switch (Rss) Impedance 82 Operation During SLEEP 85 Result Registers 84 Source Impedance 82 TAD 83 Absolute Maximum Ratings 117 ACK pulse 59 ACKDT Bit 54 Acknowledge Data Bit (ACKDT) 54 Acknowledge Sequence Enable Bit (ACKEN) 54 Acknowledge Pulse (ACK) 59 ACKSTAT Bit 67 Acknowledge Status Bit (ACKSTAT) 54 ACKSTAT Status Flag 67 ADCON1 Register 9 ADESH Register 10 Analog-to-Digital Converter. See A/D Application Notes AN552 (Implementing Wake-up on Key Stroke) 31 AN552 (Implementing a Table Read) 20 AN578 (Use of the SSP Module in the I ² C Multi-Master Environment) MPASM Assembler 111 B 8 Banking, Data Memory 7 BCLIF Bit 18 BF Bit Buffer Full Status Bit (BF)	
GO/DONE Bit 81 Internal Sampling Switch (Rss) Impedance 82 Operation During SLEEP 85 Result Registers 84 Source Impedance 82 TAD 83 Absolute Maximum Ratings 117 ACK pulse 59 ACKDT Bit 54 Acknowledge Data Bit (ACKDT) 54 ACKEN Bit Acknowledge Sequence Enable Bit (ACKEN) ACKSTAT Bit 67 Acknowledge Status Bit (ACKSTAT) 54 Acknowledge Status Bit (ACKSTAT) 54 ACKSTAT Status Flag 67 ADCON0 Register 9 ADCON1 Register 10 ADRESL Register 10 ADRESL Register 10 Analog-to-Digital Converter. See A/D 31 AN552 (Implementing Wake-up on Key Stroke) 31 AN553 (Use of the SSP Module in the I ² C Multi-Master Environment) ANS78 (Use of the SSP Module in the I ² C Multi-Master Environment) ASB Sasembler 111 B Banking, Data Memory<	
Internal Sampling Switch (Rss) Impedance 82 Operation During SLEEP 85 Result Registers 84 Source Impedance 82 TAD 83 Absolute Maximum Ratings 117 ACK pulse 59 ACKDT Bit 54 Acknowledge Data Bit (ACKDT) 54 ACKEN Bit 54 Acknowledge Valse (ACK) 59 ACKSTAT Bit 54 Acknowledge Status Bit (ACKSTAT) 54 ACKSTAT Status Flag 67 ADCON1 Register 9 ADCON1 Register 9 ADCON1 Register 10 Analog-to-Digital Converter. See A/D 31 AN552 (Implementing Wake-up on Key Stroke) 31 AN556 (Implementing a Table Read) 20 AN578 (Use of the SSP Module in the I ² C Multi-Master Environment) MPASM Assembler 111 B Banking, Data Memory 7 BCLIF Bit 18 BF Bit 81 Budfer Full Status Bit (BF) 52 </td <td></td>	
Operation During SLEEP 85 Result Registers 84 Source Impedance 82 TAD 83 Absolute Maximum Ratings 117 ACK pulse 59 ACKDT Bit Acknowledge Data Bit (ACKDT) ACKEN Bit Acknowledge Sequence Enable Bit (ACKEN) Acknowledge Pulse (ACK) 59 ACKSTAT Bit Acknowledge Status Bit (ACKSTAT) Acknowledge Status Bit (ACKSTAT) 54 ACKSTAT Status Flag 67 ADCON1 Register 9 ADCON1 Register 9 ADRESL Register 10 Analog-to-Digital Converter. See A/D Application Notes AN552 (Implementing Wake-up on Key Stroke) 31 AN552 (Implementing a Table Read) 20 AN578 (Use of the SSP Module in the I ² C Multi-Master Environment) Assembler 111 B Banking, Data Memory 7 BCLIF Bit 18 BF Bit 81 Buffer Full Status Bit (BF) 52 BF Status Flag 67, 69	
Result Registers 84 Source Impedance 82 TAD 83 Absolute Maximum Ratings 117 ACK pulse 59 ACKDT Bit Acknowledge Data Bit (ACKDT) ACKEN Bit Acknowledge Sequence Enable Bit (ACKEN) Acknowledge Pulse (ACK) 59 ACKSTAT Bit Acknowledge Status Bit (ACKSTAT) ACKSTAT Status Flag 67 ADCON0 Register 9 ADCC0N1 Register 10 ADRESL Register 10 ADRESL Register 9 ADRESL Register 10 Analog-to-Digital Converter. See A/D Application Notes AN552 (Implementing Wake-up on Key Stroke) AN552 (Implementing a Table Read) 20 AN578 (Use of the SSP Module in the I ² C Multi-Master Environment) 58 Assembler 111 B 8 Banking, Data Memory 7 BCLIF Bit 18 BF Bit 8 Buffer Full Status Bit (BF) 52 BF Status Flag 67, 69 Block Diagrams A/D	Operation During SI FEP 85
Source Impedance 82 TAD 83 Absolute Maximum Ratings 117 ACK pulse 59 ACKDT Bit 54 Acknowledge Data Bit (ACKDT) 54 ACKEN Bit Acknowledge Sequence Enable Bit (ACKEN) 54 Acknowledge Pulse (ACK) 59 ACKSTAT Bit Acknowledge Status Bit (ACKSTAT) 54 ACKSTAT Status Flag 67 ADCON0 Register 9 ADCON1 Register 10 ADRESL Register 9 ADRESL Register 10 Analog-to-Digital Converter. See A/D Application Notes AN552 (Implementing Wake-up on Key Stroke) 31 AN552 (Implementing a Table Read) 20 AN578 (Use of the SSP Module in the I ² C Multi-Master Environment) Assembler 111 B Banking, Data Memory 7 BCLIF Bit 18 BF Bit Buffer Full Status Bit (BF) 52 BF Status Flag 67, 69 Block Diagrams A/D Converter <td< td=""><td>Besult Begisters 84</td></td<>	Besult Begisters 84
TAD 83 Absolute Maximum Ratings 117 ACK pulse 59 ACKDT Bit 54 Acknowledge Data Bit (ACKDT) 54 ACKEN Bit 59 Acknowledge Sequence Enable Bit (ACKEN) 54 Acknowledge Sequence Enable Bit (ACKEN) 54 Acknowledge Status Bit (ACKSTAT) 54 ACKSTAT Bit 67 ADCON0 Register 9 ADCON1 Register 9 ADRESL Register 10 Analog-to-Digital Converter. See A/D 7 Application Notes AN552 (Implementing Wake-up on Key Stroke) 31 AN552 (Implementing Table Read) 20 AN578 (Use of the SSP Module in the I ² C Multi-Master Environment) 58 Assembler 111 B Banking, Data Memory 7 7 BCLIF Bit 18 18 BF Bit Buffer Full Status Bit (BF) 52 BF Status Flag 67, 69 69 Block Diagrams A/D Converter 81 Analog Input Model 82 Baud Rate Generator 64	
Absolute Maximum Ratings 117 ACK pulse 59 ACKDT Bit 59 ACKEN Bit 54 ACKEN Bit 59 Acknowledge Data Bit (ACKDT) 54 Acknowledge Pulse (ACK) 59 ACKSTAT Bit 59 ACKSTAT Bit 67 ACKSTAT Status Flag 67 ADCON0 Register 9 ADCON1 Register 10 ADRESL Register 10 Analog-to-Digital Converter. See A/D 7 Application Notes 110 AN552 (Implementing Wake-up on Key Stroke) 31 AN552 (Implementing a Table Read) 20 AN552 (Implementing a Table Read) 20 AN578 (Use of the SSP Module in the I ² C 111 B 8 Banking, Data Memory 7 BCLIF Bit 18 BF Bit 52 Buffer Full Status Bit (BF) 52 BF Status Flag 67, 69 Block Diagrams 4/D Converter A/D Converter 81 Analog Input Model 82	•
ACKDT Bit Acknowledge Data Bit (ACKDT)	
Acknowledge Data Bit (ACKDT) 54 ACKEN Bit 54 Acknowledge Sequence Enable Bit (ACKEN) 59 Acknowledge Pulse (ACK) 59 ACKSTAT Bit 67 Acknowledge Status Bit (ACKSTAT) 54 ACKSTAT Status Flag 67 ADCON0 Register 9 ADCON1 Register 10 ADRESH Register 10 Analog-to-Digital Converter. See A/D 10 Analog-to-Digital Converter. See A/D 31 AN552 (Implementing Wake-up on Key Stroke) 31 AN556 (Implementing a Table Read) 20 AN578 (Use of the SSP Module in the I ² C Multi-Master Environment) MPASM Assembler 111 B Banking, Data Memory 7 BCLIF Bit 18 BF Bit Buffer Full Status Bit (BF) 52 BF Status Flag 67, 69 Block Diagrams A/D Converter 81 Analog Input Model 82 Baud Rate Generator 64 Capture Mode 46 Compare Mode 47 A ² C Slave Mode 58	
ACKEN Bit Acknowledge Sequence Enable Bit (ACKEN) 54 Acknowledge Pulse (ACK) 59 ACKSTAT Bit Acknowledge Status Bit (ACKSTAT) 54 ACKSTAT Status Flag 67 ADCON0 Register 9 ADCON1 Register 10 ADRESH Register 9 ADRESL Register 9 ADRESL Register 10 Analog-to-Digital Converter. See A/D Application Notes AN552 (Implementing Wake-up on Key Stroke) AN552 (Implementing a Table Read) 20 AN578 (Use of the SSP Module in the I ² C Multi-Master Environment) MPASM Assembler 111 B Banking, Data Memory 7 BCLIF Bit 18 BF Bit 18 Buffer Full Status Bit (BF) 52 BF Status Flag 67, 69 Block Diagrams A/D Converter A/D Converter 81 Analog Input Model 82 Baud Rate Generator 64 Capture Mode 46 Compare Mode 47 I ² C Slave Mode 58	•
Acknowledge Sequence Enable Bit (ACKEN) 54 Acknowledge Pulse (ACK) 59 ACKSTAT Bit 54 Acknowledge Status Bit (ACKSTAT) 54 ACKSTAT Status Flag 67 ADCON0 Register 9 ADCON1 Register 10 ADRESH Register 10 Analog-to-Digital Converter. See A/D 10 Anst52 (Implementing Wake-up on Key Stroke) 31 AN552 (Implementing a Table Read) 20 AN578 (Use of the SSP Module in the I ² C Multi-Master Environment) MPASM Assembler 111 B Banking, Data Memory 7 BCLIF Bit 18 BF Bit 81 Buffer Full Status Bit (BF) 52 BF Status Flag 67, 69 Block Diagrams A/D Converter A/D Converter 81 Analog Input Model 82 Baud Rate Generator 64 Compare Mode 46 Compare Mode 47 A ² C Slave Mode 58	Acknowledge Data Bit (ACKDT)54
Acknowledge Pulse (ACK) 59 ACKSTAT Bit 54 Acknowledge Status Bit (ACKSTAT) 54 ACKSTAT Status Flag 67 ADCON0 Register 9 ADCON1 Register 10 ADRESH Register 9 ADRESL Register 9 ADRESL Register 10 Analog-to-Digital Converter. See A/D 7 Application Notes AN552 (Implementing Wake-up on Key Stroke) 31 AN556 (Implementing a Table Read) 20 AN578 (Use of the SSP Module in the I ² C Multi-Master Environment) 58 Assembler 111 8 Banking, Data Memory 7 7 BCLIF Bit 18 8F Bit 18 BF Bit Buffer Full Status Bit (BF) 52 BF Status Flag 67, 69 810 Block Diagrams A/D Converter 81 Analog Input Model 82 82 Baud Rate Generator 64 64 Compare Mode 46 67 Compare Mode 46 67	
ACKSTAT Bit Acknowledge Status Bit (ACKSTAT) 54 ACKSTAT Status Flag 67 ADCON0 Register 9 ADCON1 Register 10 ADRESH Register 9 ADRESL Register 9 ADRESL Register 10 Analog-to-Digital Converter. See A/D 10 Application Notes AN552 (Implementing Wake-up on Key Stroke) 31 AN556 (Implementing a Table Read) 20 AN578 (Use of the SSP Module in the I ² C Multi-Master Environment) 58 Assembler 111 B Banking, Data Memory 7 7 BCLIF Bit 18 BF Bit 18 BF Bit 18 52 BF Status Flag 67, 69 Block Diagrams A/D Converter 81 Analog Input Model 82 Baud Rate Generator 64 64 Compare Mode 46 Compare Mode 47 1 ² C Slave Mode 58	
Acknowledge Status Bit (ACKSTAT) 54 ACKSTAT Status Flag 67 ADCON0 Register 9 ADCON1 Register 10 ADRESH Register 10 Anlog-to-Digital Converter. See A/D 10 Anplication Notes AN552 (Implementing Wake-up on Key Stroke) 31 AN552 (Implementing a Table Read) 20 AN578 (Use of the SSP Module in the I ² C Multi-Master Environment) 58 Assembler 111 11 11 B Banking, Data Memory 7 7 BCLIF Bit 18 18 18 18 BF Bit Status Flag 67, 69 10 Block Diagrams A/D Converter 81 Analog Input Model 82 Baud Rate Generator 64 64 64 67 64 Compare Mode 46 64 6	Acknowledge Pulse (ACK)59
ACKSTAT Status Flag 67 ADCON0 Register 9 ADCON1 Register 10 ADRESH Register 10 Anlog-to-Digital Converter. See A/D 10 Application Notes AN552 (Implementing Wake-up on Key Stroke) 31 AN556 (Implementing a Table Read) 20 AN578 (Use of the SSP Module in the I ² C Multi-Master Environment) 58 Assembler 111 11 B 18 18 Both F Full Status Bit (BF) 52 25 BF Status Flag 67, 69 67, 69 Block Diagrams A/D Converter 81 Analog Input Model 82 82 Baud Rate Generator 64 64 Compare Mode 46 67 Compare Mode 47 1 ² C Slave Mode 58	
ADCON0 Register	
ADCON1 Register	
ADRESH Register	
ADRESL Register 10 Analog-to-Digital Converter. See A/D Application Notes AN552 (Implementing Wake-up on Key Stroke) 31 AN556 (Implementing a Table Read) 20 AN578 (Use of the SSP Module in the I ² C 11 Multi-Master Environment) 58 Assembler 111 B 11 Banking, Data Memory 7 BCLIF Bit 18 BF Bit 18 Buffer Full Status Bit (BF) 52 BF Status Flag 67, 69 Block Diagrams A/D Converter A/D Converter 81 Analog Input Model 82 Baud Rate Generator 64 Compare Mode 46 Compare Mode 47 I ² C Slave Mode 58	
Analog-to-Digital Converter. See A/D Application Notes AN552 (Implementing Wake-up on Key Stroke) AN556 (Implementing a Table Read) AN578 (Use of the SSP Module in the I ² C Multi-Master Environment) MPASM Assembler MPASM Assembler MPASM Assembler Service Banking, Data Memory T BCLIF Bit Buffer Full Status Bit (BF) Ser Status Flag Analog Input Model April Compare Mode Analog Input Model Status Flag Baud Rate Generator April Compare Mode April	5
Application Notes AN552 (Implementing Wake-up on Key Stroke) 31 AN556 (Implementing a Table Read) 20 AN578 (Use of the SSP Module in the I ² C 20 Multi-Master Environment) 58 Assembler 111 B 111 B 111 B 18 BAsing, Data Memory 7 BCLIF Bit 18 BF Bit 18 Buffer Full Status Bit (BF) 52 BF Status Flag 67, 69 Block Diagrams A/D Converter A/D Converter 81 Analog Input Model 82 Baud Rate Generator 64 Compare Mode 46 Compare Mode 58	
AN552 (Implementing Wake-up on Key Stroke) 31 AN556 (Implementing a Table Read) 20 AN578 (Use of the SSP Module in the I ² C 20 Multi-Master Environment) 58 Assembler 111 B 111 B 7 BCLIF Bit 18 BF Bit 18 By Status Flag 67, 69 Block Diagrams A/D Converter A/D Converter 81 Analog Input Model 82 Baud Rate Generator 64 Capture Mode 46 Compare Mode 47 I ² C Slave Mode 58	
AN556 (Implementing a Table Read) 20 AN578 (Use of the SSP Module in the I ² C Multi-Master Environment) Multi-Master Environment) 58 Assembler 111 B 111 Banking, Data Memory 7 BCLIF Bit 18 BF Bit 18 Buffer Full Status Bit (BF) 52 BF Status Flag 67, 69 Block Diagrams A/D Converter A/D Converter 81 Analog Input Model 82 Baud Rate Generator 64 Compare Mode 46 Compare Mode 47 I ² C Slave Mode 58	
AN578 (Use of the SSP Module in the I²C Multi-Master Environment)	
Multi-Master Environment) 58 Assembler 111 B 111 Banking, Data Memory 7 BCLIF Bit 18 BF Bit 18 By Status Flag 67, 69 Block Diagrams A/D Converter Analog Input Model 82 Baud Rate Generator 64 Compare Mode 47 I ² C Slave Mode 58	
Assembler MPASM Assembler	
MPASM Assembler 111 B	
B 7 Banking, Data Memory 7 BCLIF Bit 18 BF Bit 52 BF Status Flag 67, 69 Block Diagrams 4/D Converter A/D Converter 81 Analog Input Model 82 Baud Rate Generator 64 Capture Mode 46 Compare Mode 47 I ² C Slave Mode 58	
Banking, Data Memory 7 BCLIF Bit 18 BF Bit 52 BF Status Flag 67, 69 Block Diagrams 81 A/D Converter 81 Analog Input Model 82 Baud Rate Generator 64 Compare Mode 47 I ² C Slave Mode 58	
BCLIF Bit 18 BF Bit 52 BF Status Flag 67, 69 Block Diagrams 4/D Converter A/D Converter 81 Analog Input Model 82 Baud Rate Generator 64 Capture Mode 46 Compare Mode 47 I ² C Slave Mode 58	В
BF Bit Buffer Full Status Bit (BF)	Banking, Data Memory7
Buffer Full Status Bit (BF) 52 BF Status Flag 67, 69 Block Diagrams 67, 69 A/D Converter 81 Analog Input Model 82 Baud Rate Generator 64 Capture Mode 46 Compare Mode 47 I ² C Slave Mode 58	BCLIF Bit18
BF Status Flag	
Block Diagrams 81 A/D Converter 81 Analog Input Model 82 Baud Rate Generator 64 Capture Mode 46 Compare Mode 47 I ² C Slave Mode 58	
A/D Converter 81 Analog Input Model 82 Baud Rate Generator 64 Capture Mode 46 Compare Mode 47 I ² C Slave Mode 58	-
Analog Input Model 82 Baud Rate Generator 64 Capture Mode 46 Compare Mode 47 I ² C Slave Mode 58	5
Baud Rate Generator 64 Capture Mode 46 Compare Mode 47 I ² C Slave Mode 58	
Capture Mode 46 Compare Mode 47 I ² C Slave Mode 58	
Compare Mode	
I ² C Slave Mode58	
Interrupt Logio 07	Interrupt Logic
MSSP (SPI Mode)	

 On-Chip Reset Circuit
 91

 Peripheral Output Override (RC 2:0, 7:5)
 33

 Peripheral Output Override (RC 4:3)
 33

 PIC16F872
 4

PWM Mode	48
RA3:RA0 and RA5 Pins	29
RA4/T0CKI Pin	29
RB3:RB0 Pins	31
RB7:RB4 Pins	31
RC Oscillator Mode	90
SSP (I ² C Master Mode)	
Timer0/WDT Prescaler	
Timer1	40
Timer2	43
Watchdog Timer	99
BOR. See Brown-out Reset	
Brown-out Reset (BOR)	93
Bus Arbitration	73
Bus Collision	
Section	73
Bus Collision During a Repeated START Condition	76
Bus Collision During a START Condition	74
Bus Collision During a STOP Condition	
Bus Collision Interrupt Flag (BCLIF)	18

С

Capture Mode
CCP Pin Configuration
Software Interrupt 46
Timer1 Mode Selection 46
Capture/Compare/PWM (CCP)45
Associated Registers 47
PWM and Timer2 49
Capture Mode 46
CCP1IF 46
Prescaler 46
CCP Timer Resources 45
Compare Mode 47
Software Interrupt Mode 47
Special Event Trigger 47
PWM Mode 48
Duty Cycle 48
Example Frequencies/
Resolutions (Table) 49
PWM Period 48
Special Event Trigger and A/D Conversions
CCP. See Capture/Compare/PWM
CCP1CON Register 9
CCP1M3:CCP1M0 bits 45
CCP1X bit 45
CCP1Y bit 45
CCPR1H Register9, 45
CCPR1L Register9, 45
CKE Bit
CKP Bit 53
Clock Polarity Select Bit (CKP)53
Code Examples
Changing Between Capture Prescalers 46
EEPROM Data Read 25
EEPROM Data Write 25
FLASH Program Read 26
FLASH Program Write 27
Indirect Addressing 21
Initializing PORTA 29
Saving STATUS, W and PCLATH Registers
Code Protected Operation
Data EEPROM and FLASH Program Memory

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- **Product Support** Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com, click on Customer Change Notification and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support
- Development Systems Information Line

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://support.microchip.com