

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	64 x 8
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 5x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f872-i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Name	Pin Name Pin# I/O/P Buffer Type Type			Description		
				PORTB is a bi-directional I/O port. PORTB can be software		
				programmed for internal weak pull-up on all inputs.		
RB0/INT	21	I/O	TTL/ST ⁽¹⁾			
RB0				Digital I/O.		
INT				External interrupt pin.		
RB1	22	I/O	TTL	Digital I/O.		
RB2	23	I/O	TTL	Digital I/O.		
RB3/PGM	24	I/O	TTL			
RB3				Digital I/O.		
PGM				Low voltage ICSP programming enable pin.		
RB4	25	I/O	TTL	Digital I/O.		
RB5	26	I/O	TTL	Digital I/O.		
RB6/PGC	27	I/O	TTL/ST ⁽²⁾			
RB6				Digital I/O.		
PGC				In-Circuit Debugger and ICSP programming clock.		
RB7/PGD	28	I/O	TTL/ST ⁽²⁾			
RB7 PGD				Digital I/O. In-Circuit Debugger and ICSP programming data.		
FGD						
			o 	PORTC is a bi-directional I/O port.		
RC0/T1OSO/T1CKI	11	I/O	ST	Divite 1/0		
RC0 T1OSO				Digital I/O. Timer1 oscillator output.		
T1CKI				Timer1 clock input.		
RC1/T1OSI	12	I/O	ST			
RC1		., 0	01	Digital I/O.		
T1OSI				Timer1 oscillator input.		
RC2/CCP1	13	I/O	ST			
RC2				Digital I/O.		
CCP1				Capture1 input/Compare1 output/PWM1 output.		
RC3/SCK/SCL	14	I/O	ST			
RC3				Digital I/O.		
SCK				Synchronous serial clock input/output for SPI mode. Synchronous serial clock input/output for I ² C mode.		
SCL	4 -	1/2	O T	Synchronous senal clock input/output for I=C mode.		
RC4/SDI/SDA RC4	15	I/O	ST			
SDI				Digital I/O. SPI Data In pin (SPI mode).		
SDA				SPI Data I/O pin (I ² C mode).		
RC5/SDO	16	I/O	ST			
RC5				Digital I/O.		
SDO				SPI Data Out pin (SPI mode).		
RC6	17	I/O	ST	Digital I/O.		
RC7	18	I/O	ST	Digital I/O.		
Vss	8, 19	P		Ground reference for logic and I/O pins.		
VDD	20	P	<u> </u>	Positive supply for logic and I/O pins.		
	-	O = outp	I	I/O = input/output $P = power$		

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.

2.2.2.3 INTCON Register

The INTCON Register is a readable and writable register, which contains various enable and flag bits for the TMR0 register overflow, RB Port change and External RB0/INT pin interrupts.

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 2-3: INTCON REGISTER (ADDRESS: 0Bh, 8Bh, 10Bh, 18Bh)

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x
	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF
	bit 7							bit 0
bit 7		I Interrupt E						
		s all unmasl s all interru	ked interrupt pts	S				
bit 6	PEIE: Perip	heral Interr	upt Enable b	bit				
			ked peripher eral interrup	•				
bit 5	TMR0IE: T	MR0 Overflo	ow Interrupt	Enable bit				
		s the TMR0 s the TMR0	•					
bit 4	INTE: RB0/	INT Externa	al Interrupt E	nable bit				
	 1 = Enables the RB0/INT external interrupt 0 = Disables the RB0/INT external interrupt 							
bit 3	RBIE: RB R	Port Change	Interrupt Er	nable bit				
			rt change in ort change in					
bit 2	TMR0IF: T	MR0 Overflo	ow Interrupt	Flag bit				
			overflowed not overflow		ared in soft	ware)		
bit 1	INTF: RB0/	INT Externa	al Interrupt F	lag bit				
			nal interrupt nal interrupt	•		red in softwa	are)	
bit 0	RBIF: RB F	Port Change	Interrupt Fl	ag bit				
	1 = At least one of the RB7:RB4 pins changed state; a mismatch condition will continue to set the bit. Reading PORTB will end the mismatch condition and allow the bit to be cleared (must be cleared in software).							
	0 = None o	f the RB7:R	B4 pins hav	e changed s	tate			
	Legend:							
	R = Reada	ble bit	W = W	ritable bit	U = Unim	plemented	bit, read as	'0'
	- n = Value	at POR	'1' = B	t is set	'0' = Bit is	s cleared	x = Bit is u	nknown

PIC16F872

2.2.2.7 PIR2 Register

bit 3

The PIR2 register contains the flag bits for the CCP2 interrupt, the SSP bus collision interrupt and the EEPROM write operation interrupt.

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 2-7: PIR2 REGISTER (ADDRESS: 0Dh)

U-0	R/W-0	U-0	R/W-0	R/W-0	U-0	U-0	R/W-0
—	reserved	—	EEIF	BCLIF	—	-	reserved
bit 7							bit 0

- bit 7 Unimplemented: Read as '0'
- bit 6 Reserved: Always maintain this bit clear
- bit 5 Unimplemented: Read as '0'
- bit 4 **EEIF**: EEPROM Write Operation Interrupt Flag bit
 - 1 = The write operation completed (must be cleared in software)
 - 0 = The write operation is not complete or has not been started
 - **BCLIF**: Bus Collision Interrupt Flag bit 1 = A bus collision has occurred in the SSP, when configured for I²C Master mode 0 = No bus collision has occurred
- bit 2-1 Unimplemented: Read as '0'
- bit 0 Reserved: Always maintain this bit clear

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

Name	Bit#	Buffer	Function
RB0/INT	bit0	TTL/ST ⁽¹⁾	Input/output pin or external interrupt input. Internal software programmable weak pull-up.
RB1	bit1	TTL	Input/output pin. Internal software programmable weak pull-up.
RB2	bit2	TTL	Input/output pin. Internal software programmable weak pull-up.
RB3/PGM	bit3	TTL	Input/output pin or programming pin in LVP mode. Internal software programmable weak pull-up.
RB4	bit4	TTL	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up.
RB5	bit5	TTL	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up.
RB6/PGC	bit6	TTL/ST ⁽²⁾	Input/output pin (with interrupt-on-change) or In-Circuit Debugger pin. Internal software programmable weak pull-up. Serial programming clock.
RB7/PGD	bit7	TTL/ST ⁽²⁾	Input/output pin (with interrupt-on-change) or In-Circuit Debugger pin. Internal software programmable weak pull-up. Serial programming data.

TABLE 4-3: PORTB FUNCTIONS

Legend: TTL = TTL input, ST = Schmitt Trigger input

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.

TABLE 4-4: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
06h, 106h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	XXXX XXXX	uuuu uuuu
86h, 186h	TRISB	PORTB	PORTB Data Direction Register						1111 1111	1111 1111	
81h, 181h	OPTION_REG	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111

Legend: \mathbf{x} = unknown, \mathbf{u} = unchanged. Shaded cells are not used by PORTB.

TABLE 4-5:PORTC FUNCTIONS

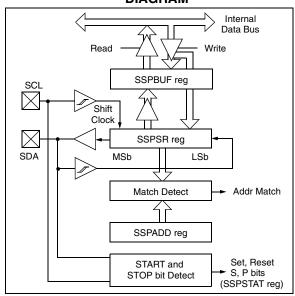
Name	Bit#	Buffer Type	Function
RC0/T1OSO/T1CKI	bit0	ST	Input/output port pin or Timer1 oscillator output/Timer1 clock input.
RC1/T1OSI/CCP2	bit1	ST	Input/output port pin or Timer1 oscillator input or Capture2 input/ Compare2 output/PWM2 output.
RC2/CCP1	bit2	ST	Input/output port pin or Capture1 input/Compare1 output/ PWM output.
RC3/SCK/SCL	bit3	ST	RC3 can also be the synchronous serial clock for both SPI and I^2C modes.
RC4/SDI/SDA	bit4	ST	RC4 can also be the SPI Data In (SPI mode) or Data I/O (I ² C mode).
RC5/SDO	bit5	ST	Input/output port pin or Synchronous Serial Port data output (SPI mode).
RC6	bit6	ST	Input/output port pin.
RC7	bit7	ST	Input/output port pin.

Legend: ST = Schmitt Trigger input

TABLE 4-6: SUMMARY OF REGISTERS ASSOCIATED WITH PORTC

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
07h	PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	XXXX XXXX	uuuu uuuu
87h	TRISC	PORTC	PORTC Data Direction Register							1111 1111	1111 1111

Legend: x = unknown, u = unchanged


9.2 MSSP I²C Operation

The MSSP module in I²C mode, fully implements all master and slave functions (including general call support) and provides interrupts on START and STOP bits in hardware to determine a free bus (multi-master function). The MSSP module implements the standard mode specifications, as well as 7-bit and 10-bit addressing.

Refer to Application Note (AN578), "Use of the SSP Module in the I^2C Multi-Master Environment."

A "glitch" filter is on the SCL and SDA pins when the pin is an input. This filter operates in both the 100 kHz and 400 kHz modes. In the 100 kHz mode, when these pins are an output, there is a slew rate control of the pin that is independent of device frequency.

FIGURE 9-5: I²C SLAVE MODE BLOCK DIAGRAM

Two pins are used for data transfer. These are the SCL pin, which is the clock, and the SDA pin, which is the data. The SDA and SCL pins are automatically configured when the l^2C mode is enabled. The SSP module functions are enabled by setting SSP Enable bit SSPEN (SSPCON<5>).

The MSSP module has six registers for ${\rm I}^2{\rm C}$ operation. They are the:

- SSP Control Register (SSPCON)
- SSP Control Register2 (SSPCON2)
- SSP Status Register (SSPSTAT)
- Serial Receive/Transmit Buffer (SSPBUF)
- SSP Shift Register (SSPSR) Not directly accessible
- SSP Address Register (SSPADD)

The SSPCON register allows control of the I^2C operation. Four mode selection bits (SSPCON<3:0>) allow one of the following I^2C modes to be selected:

- I²C Slave mode (7-bit address)
- I²C Slave mode (10-bit address)
- I²C Master mode, clock = OSC/4 (SSPADD +1)

Before selecting any I^2C mode, the SCL and SDA pins must be programmed to inputs by setting the appropriate TRIS bits. Selecting an I^2C mode by setting the SSPEN bit, enables the SCL and SDA pins to be used as the clock and data lines in I^2C mode. Pull-up resistors must be provided externally to the SCL and SDA pins for the proper operation of the I^2C module.

The CKE bit (SSPSTAT<6:7>) sets the levels of the SDA and SCL pins in either Master or Slave mode. When CKE = 1, the levels will conform to the SMBus specification. When CKE = 0, the levels will conform to the l^2C specification.

The SSPSTAT register gives the status of the data transfer. This information includes detection of a START (S) or STOP (P) bit, specifies if the received byte was data or address, if the next byte is the completion of 10-bit address, and if this will be a read or write data transfer.

SSPBUF is the register to which the transfer data is written to or read from. The SSPSR register shifts the data in or out of the device. In receive operations, the SSPBUF and SSPSR create a doubled buffered receiver. This allows reception of the next byte to begin before reading the last byte of received data. When the complete byte is received, it is transferred to the SSPBUF register and flag bit SSPIF is set. If another complete byte is received before the SSPBUF register is read, a receiver overflow has occurred and bit SSPOV (SSPCON<6>) is set and the byte in the SSPSR is lost.

The SSPADD register holds the slave address. In 10-bit mode, the user needs to write the high byte of the address (1111 0 A9 A8 0). Following the high byte address match, the low byte of the address needs to be loaded (A7:A0).

9.2.1 SLAVE MODE

In Slave mode, the SCL and SDA pins must be configured as inputs. The MSSP module will override the input state with the output data when required (slavetransmitter).

When an address is matched, or the data transfer after an address match is received, the hardware automatically will generate the Acknowledge (\overline{ACK}) pulse, and then load the SSPBUF register with the received value currently in the SSPSR register.

9.2.7 I²C MASTER MODE SUPPORT

Master mode is enabled by setting and clearing the appropriate SSPM bits in SSPCON and by setting the SSPEN bit. Once Master mode is enabled, the user has six options.

- · Assert a START condition on SDA and SCL.
- Assert a Repeated START condition on SDA and SCL.
- Write to the SSPBUF register, initiating transmission of data/address.
- Generate a STOP condition on SDA and SCL.
- Configure the I²C port to receive data.
- Generate an Acknowledge condition at the end of a received byte of data.
 - **Note:** The MSSP module, when configured in I²C Master mode, does not allow queueing of events. For instance, the user is not allowed to initiate a START condition and immediately write the SSPBUF register to initiate transmission, before the START condition is complete. In this case, the SSPBUF will not be written to and the WCOL bit will be set, indicating that a write to the SSPBUF did not occur.

9.2.7.1 I²C Master Mode Operation

The master device generates all of the serial clock pulses and the START and STOP conditions. A transfer is ended with a STOP condition or with a Repeated START condition. Since the Repeated START condition is also the beginning of the next serial transfer, the l^2C bus will not be released.

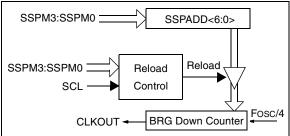
In Master Transmitter mode, serial data is output through SDA, while SCL outputs the serial clock. The first byte transmitted contains the slave address of the receiving device (7 bits) and the Read/Write (R/\overline{W}) bit. In this case, the R/\overline{W} bit will be logic '0'. Serial data is transmitted 8 bits at a time. After each byte is transmitted, an Acknowledge bit is received. START and STOP conditions are output to indicate the beginning and the end of a serial transfer.

In Master Receive mode, the first byte transmitted contains the slave address of the transmitting device (7 bits) and the R/W bit. In this case, the R/W bit will be logic '1'. Thus, the first byte transmitted is a 7-bit slave address followed by a '1' to indicate receive bit. Serial data is received via SDA, while SCL outputs the serial clock. Serial data is received 8 bits at a time. After each byte is received, an Acknowledge bit is transmitted. START and STOP conditions indicate the beginning and end of transmission.

The baud rate generator used for SPI mode operation is now used to set the SCL clock frequency for either 100 kHz, 400 kHz or 1 MHz I^2C operation. The baud rate generator reload value is contained in the lower 7 bits of the SSPADD register. The baud rate generator will automatically begin counting on a write to the SSPBUF. Once the given operation is complete (i.e., transmission of the last data bit is followed by ACK) the internal clock will automatically stop counting and the SCL pin will remain in its last state

A typical transmit sequence would go as follows:

- a) The user generates a Start Condition by setting the START enable bit (SEN) in SSPCON2.
- b) SSPIF is set. The module will wait the required start time before any other operation takes place.
- c) The user loads the SSPBUF with address to transmit.
- d) Address is shifted out the SDA pin until all 8 bits are transmitted.
- e) The MSSP module shifts in the ACK bit from the slave device and writes its value into the SSPCON2 register (SSPCON2<6>).
- f) The module generates an interrupt at the end of the ninth clock cycle by setting SSPIF.
- g) The user loads the SSPBUF with eight bits of data.
- h) DATA is shifted out the SDA pin until all 8 bits are transmitted.
- i) The MSSP module shifts in the ACK bit from the slave device, and writes its value into the SSPCON2 register (SSPCON2<6>).
- j) The MSSP module generates an interrupt at the end of the ninth clock cycle by setting the SSPIF bit.
- k) The user generates a STOP condition by setting the STOP enable bit PEN in SSPCON2.
- I) Interrupt is generated once the STOP condition is complete.


9.2.8 BAUD RATE GENERATOR

In I^2C Master mode, the reload value for the BRG is located in the lower 7 bits of the SSPADD register (Figure 9-10). When the BRG is loaded with this value, the BRG counts down to 0 and stops until another reload has taken place. The BRG count is decremented twice per instruction cycle (TCY), on the Q2 and Q4 clock.

In I²C Master mode, the BRG is reloaded automatically. If Clock Arbitration is taking place, for instance, the BRG will be reloaded when the SCL pin is sampled high (Figure 9-11).

FIGURE 9-10:

BAUD RATE GENERATOR BLOCK DIAGRAM

9.2.12 I²C MASTER MODE RECEPTION

Master mode reception is enabled by programming the receive enable bit, RCEN (SSPCON2<3>).

Note: The SSP module must be in an IDLE state before the RCEN bit is set, or the RCEN bit will be disregarded.

The baud rate generator begins counting, and on each rollover, the state of the SCL pin changes (high to low/ low to high), and data is shifted into the SSPSR. After the falling edge of the eighth clock, the receive enable flag is automatically cleared, the contents of the SSPSR are loaded into the SSPBUF, the BF flag is set, the SSPIF is set, and the baud rate generator is suspended from counting, holding SCL low. The SSP is now in IDLE state, awaiting the next command. When the buffer is read by the CPU, the BF flag is automatically cleared. The user can then send an Acknowledge bit at the end of reception, by setting the Acknowledge sequence enable bit, ACKEN (SSPCON2<4>).

9.2.12.1 BF Status Flag

In receive operation, BF is set when an address or data byte is loaded into SSPBUF from SSPSR. It is cleared when SSPBUF is read.

9.2.12.2 SSPOV Status Flag

In receive operation, SSPOV is set when 8 bits are received into the SSPSR, and the BF flag is already set from a previous reception.

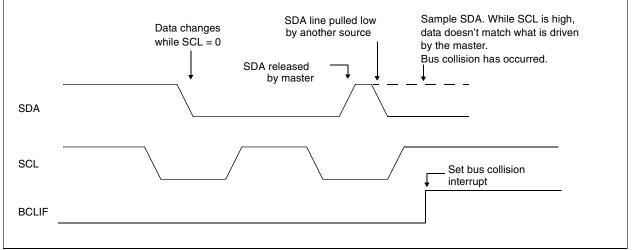
9.2.12.3 WCOL Status Flag

If the user writes the SSPBUF when a receive is already in progress (i.e., SSPSR is still shifting in a data byte), then WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

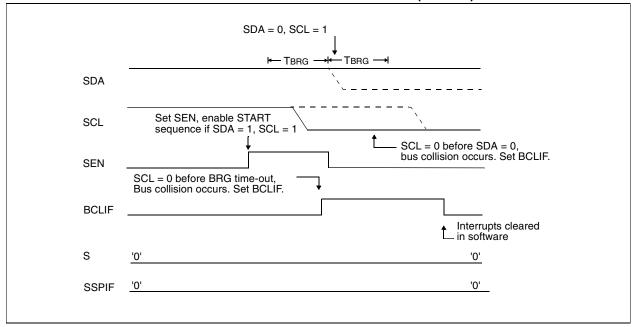
9.2.18 MULTI -MASTER COMMUNICATION, BUS COLLISION, AND BUS ARBITRATION

Multi-Master mode support is achieved by bus arbitration. When the master outputs address/data bits onto the SDA pin, arbitration takes place when the master outputs a '1' on SDA, by letting SDA float high and another master asserts a '0'. When the SCL pin floats high, data should be stable. If the expected data on SDA is a '1' and the data sampled on the SDA pin = '0', a bus collision has taken place. The master will set the Bus Collision Interrupt Flag, BCLIF and reset the I^2C port to its IDLE state. (Figure 9-19).

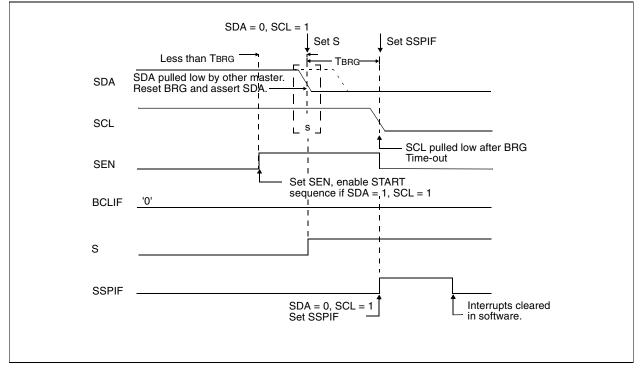
If a transmit was in progress when the bus collision occurred, the transmission is halted, the BF flag is cleared, the SDA and SCL lines are de-asserted, and the SSPBUF can be written to. When the user services the bus collision Interrupt Service Routine, and if the I^2C bus is free, the user can resume communication by asserting a START condition.


If a START, Repeated START, STOP or Acknowledge condition was in progress when the bus collision occurred, the condition is aborted, the SDA and SCL lines are de-asserted, and the respective control bits in the SSPCON2 register are cleared. When the user services the bus collision Interrupt Service Routine, and if the l^2C bus is free, the user can resume communication by asserting a START condition.

The master will continue to monitor the SDA and SCL pins, and if a STOP condition occurs, the SSPIF bit will be set.

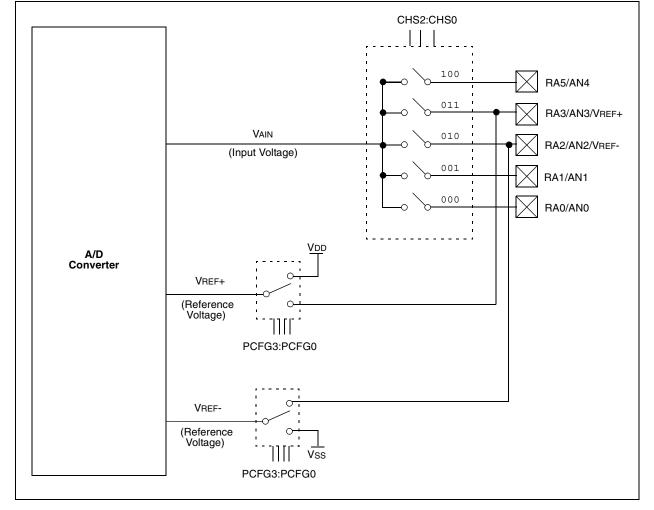

A write to the SSPBUF will start the transmission of data at the first data bit, regardless of where the transmitter left off when the bus collision occurred.

In Multi-Master mode, the interrupt generation on the detection of START and STOP conditions allows the determination of when the bus is free. Control of the I^2C bus can be taken when the P bit is set in the SSPSTAT register, or the bus is IDLE and the S and P bits are cleared.



The ADRESH:ADRESL registers contain the 10-bit result of the A/D conversion. When the A/D conversion is complete, the result is loaded into this A/D result register pair, the GO/DONE bit (ADCON0<2>) is cleared and the A/D interrupt flag bit ADIF is set. The block diagram of the A/D module is shown in Figure 10-1.

After the A/D module has been configured as desired, the selected channel must be acquired before the conversion is started. The analog input channels must have their corresponding TRIS bits selected as inputs.


To determine sample time, see Section 10.1. After this acquisition time has elapsed, the A/D conversion can be started.

These steps should be followed for doing an A/D conversion:

- 1. Configure the A/D module:
 - Configure analog pins/voltage reference and digital I/O (ADCON1)
 - Select A/D input channel (ADCON0)
 - Select A/D conversion clock (ADCON0)
 - Turn on A/D module (ADCON0)

- 2. Configure A/D interrupt (if desired):
 - Clear ADIF bit
 - Set ADIE bit
 - Set PEIE bit
 - · Set GIE bit
- 3. Wait the required acquisition time.
- 4. Start conversion:
 - Set GO/DONE bit (ADCON0)
- 5. Wait for A/D conversion to complete, by either:
 - Polling for the GO/DONE bit to be cleared (with interrupts enabled); OR
 - Waiting for the A/D interrupt
- 6. Read A/D Result register pair (ADRESH:ADRESL), clear bit ADIF if required.
- 7. For the next conversion, go to step 1 or step 2, as required. The A/D conversion time per bit is defined as TAD.

DECFSZ	Decrement f, Skip if 0
Syntax:	[label] DECFSZ f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \ [0,1] \end{array}$
Operation:	(f) - 1 \rightarrow (destination); skip if result = 0
Status Affected:	None
Description:	The contents of register 'f' are decremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'. If the result is 1, the next instruc- tion is executed. If the result is 0, then a NOP is executed instead, making it a 2TCY instruction.

INCFSZ	Increment f, Skip if 0					
Syntax:	[label] INCFSZ f,d					
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \left[0,1\right] \end{array}$					
Operation:	(f) + 1 \rightarrow (destination), skip if result = 0					
Status Affected:	None					
Description:	The contents of register 'f' are incremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'. If the result is 1, the next instruc- tion is executed. If the result is 0, a NOP is executed instead, making it a 2TCY instruction.					

GOTO	Unconditional Branch							
Syntax:	[<i>label</i>] GOTO k							
Operands:	$0 \le k \le 2047$							
Operation:	$\label{eq:kappa} \begin{array}{l} k \to PC{<}10{:}0{>} \\ PCLATH{<}4{:}3{>} \to PC{<}12{:}11{>} \end{array}$							
Status Affected:	None							
Description:	GOTO is an unconditional branch. The eleven-bit immediate value is loaded into PC bits <10:0>. The upper bits of PC are loaded from PCLATH<4:3>. GOTO is a two- cycle instruction.							

IORLW	Inclusive OR Literal with W
Syntax:	[<i>label</i>] IORLW k
Operands:	$0 \le k \le 255$
Operation:	(W) .OR. $k \rightarrow$ (W)
Status Affected:	Z
Description:	The contents of the W register are OR'ed with the eight-bit literal 'k'. The result is placed in the W register.

INCF	Increment f	IORWF	Inclusive OR W with f
Syntax:	[<i>label</i>] INCF f,d	Syntax:	[label] IORWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \left[0,1\right] \end{array}$	Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \left[0,1\right] \end{array}$
Operation:	(f) + 1 \rightarrow (destination)	Operation:	(W) .OR. (f) \rightarrow (destination)
Status Affected:	Z	Status Affected:	Z
Description:	The contents of register 'f' are incremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'.	Description:	Inclusive OR the W register with register 'f'. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'.

13.8 MPLAB ICD In-Circuit Debugger

Microchip's In-Circuit Debugger, MPLAB ICD, is a powerful, low cost, run-time development tool. This tool is based on the FLASH PICmicro MCUs and can be used to develop for this and other PICmicro microcontrollers. The MPLAB ICD utilizes the in-circuit debugging capability built into the FLASH devices. This feature, along with Microchip's In-Circuit Serial Programming[™] protocol, offers cost-effective in-circuit FLASH debugging from the graphical user interface of the MPLAB Integrated Development Environment. This enables a designer to develop and debug source code by watching variables, single-stepping and setting break points. Running at full speed enables testing hardware in realtime.

13.9 PRO MATE II Universal Device Programmer

The PRO MATE II universal device programmer is a full-featured programmer, capable of operating in stand-alone mode, as well as PC-hosted mode. The PRO MATE II device programmer is CE compliant.

The PRO MATE II device programmer has programmable VDD and VPP supplies, which allow it to verify programmed memory at VDD min and VDD max for maximum reliability. It has an LCD display for instructions and error messages, keys to enter commands and a modular detachable socket assembly to support various package types. In stand-alone mode, the PRO MATE II device programmer can read, verify, or program PICmicro devices. It can also set code protection in this mode.

13.10 PICSTART Plus Entry Level Development Programmer

The PICSTART Plus development programmer is an easy-to-use, low cost, prototype programmer. It connects to the PC via a COM (RS-232) port. MPLAB Integrated Development Environment software makes using the programmer simple and efficient.

The PICSTART Plus development programmer supports all PICmicro devices with up to 40 pins. Larger pin count devices, such as the PIC16C92X and PIC17C76X, may be supported with an adapter socket. The PICSTART Plus development programmer is CE compliant.

13.11 PICDEM 1 Low Cost PICmicro Demonstration Board

The PICDEM 1 demonstration board is a simple board which demonstrates the capabilities of several of Microchip's microcontrollers. The microcontrollers supported are: PIC16C5X (PIC16C54 to PIC16C58A), PIC16C61, PIC16C62X, PIC16C71, PIC16C8X, PIC17C42, PIC17C43 and PIC17C44, All necessary hardware and software is included to run basic demo programs. The user can program the sample microcontrollers provided with the PICDEM 1 demonstration board on a PRO MATE II device programmer, or a PICSTART Plus development programmer, and easily test firmware. The user can also connect the PICDEM 1 demonstration board to the MPLAB ICE incircuit emulator and download the firmware to the emulator for testing. A prototype area is available for the user to build some additional hardware and connect it to the microcontroller socket(s). Some of the features include an RS-232 interface, a potentiometer for simulated analog input, push button switches and eight LEDs connected to PORTB.

13.12 PICDEM 2 Low Cost PIC16CXX Demonstration Board

The PICDEM 2 demonstration board is a simple demonstration board that supports the PIC16C62, PIC16C64, PIC16C65, PIC16C73 and PIC16C74 microcontrollers. All the necessary hardware and software is included to run the basic demonstration programs. The user can program the sample microcontrollers provided with the PICDEM 2 demonstration board on a PRO MATE II device programmer, or a PICSTART Plus development programmer, and easily test firmware. The MPLAB ICE in-circuit emulator may also be used with the PICDEM 2 demonstration board to test firmware. A prototype area has been provided to the user for adding additional hardware and connecting it to the microcontroller socket(s). Some of the features include a RS-232 interface, push button switches, a potentiometer for simulated analog input, a serial EEPROM to demonstrate usage of the I²C[™] bus and separate headers for connection to an LCD module and a keypad.

TABLE 13-1: DEVELOPMENT TOOLS FROM MICROCHIP

Definition Image: processing state Definition	PIC12CXXX	PIC16C5X	PIC16C6X	PIC16CXXX	PIC16F62X	X7OðfOld	PIC16C7XX	X8O91OId	PIC16F8XX	XX6O9FOI9	X4271219	2XX2212191	PIC18FXXX	54CXX	63CXX SeCXX/	XXXSOH	МСВЕХХХ
IntrAd [®] C 1 C Complier IntrAd [®] C 1 C C Complier IntrAd [®] C 1 C C C C C C C C C C C C C C C C C	>			>	>	>	>	>	>	>							
WPLAB* Complet >	C Compiler																
MPCARIW Messame V <	C Compiler											`					
MPLAB*/GE Inclorent Emulator /	>			>	>	>	>	>	>	>					~	~	
International conditional conditiconal conditional conditional conditional conditional cond	imulator 🗸			>	**/	>	>	>	>	>		_					
MPLAB® (CD In-Circuit Debugger MPLAB® (CD In-Circuit MPLAB® (CD In-Circuit <th></th> <th>></th> <th></th> <th>></th> <th></th> <th>></th> <th>></th> <th>></th> <th></th> <th>></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>		>		>		>	>	>		>							
PICSTART® Plus Entry Level <th< th=""><th>n-Circuit</th><th></th><th>*</th><th></th><th></th><th>*></th><th></th><th></th><th>></th><th></th><th></th><th></th><th>```</th><th></th><th></th><th></th><th></th></th<>	n-Circuit		*			*>			>				```				
The Mattelling interval programmer For Mattelling For Mat	>			>	**>	>	>	>	>	>							
PICDEM™ 1 Demonstration v	ice Programmer			>	**>	>	>	>	>	>					>	>	
PICDEM™ 2 Demonstration →	emonstration	>		>		÷,		>			>						
PICDEM™ 3 Demonstration C	emonstration		∕+			✓†						*					
PICDEM™ 14A Demonstration Board PICDEM™ 17 Demonstration PICDEM™ 17 Demonstration ReELOd® Evaluation Kit KEELod® Evaluation Kit MicroID™ Programmer's Kit 125 KHz microID™ 125 KHz Anticollision 125 KHz Anticollision 13.56 MHz Anticollision <th>emonstration</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	emonstration									>							
PICDEM™ 17 Demonstration PICDEM™ 17 Demonstration Board KEELod® Evaluation Kit P		<u>\</u>															
	Demonstration											<u> </u>					
	uation Kit															~	
	sponder Kit															>	
	grammer's Kit																>
125 kHz Anticollision microlD TM Developer's Kit 13.56 MHz Anticollision microlD TM Developer's Kit	lD™ it																>
13.56 MHz Anticollision microID TM Developer's Kit	ollision microlD TM .it																~
	ticollision eloper's Kit																>
	MCP2510 CAN Developer's Kit																

 $\ensuremath{\textcircled{}^{\odot}}$ 2006 Microchip Technology Inc.

PIC16F87	2 (Extend	ed)					ons (unless otherwise stated) C ≤ Ta ≤ +125°C
Param No.	Symbol	Characteristic/ Device	Min	Тур†	Max	Units	Conditions
	Vdd	Supply Voltage					
D001			4.0	—	5.5	V	LP, XT, RC osc configuration
D001A			4.5		5.5	V	HS osc configuration
D001A			VBOR		5.5	V	BOR enabled, FMAX = 14 MHz ⁽⁷⁾
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾	—	1.5	—	V	
D003	VPOR	VDD Start Voltage to ensure internal Power-on Reset signal	—	Vss		V	See section on Power-on Reset for details
D004	SVDD	VDD Rise Rate to ensure internal Power-on Reset signal	0.05			V/ms	See section on Power-on Reset for details
D005	VBOR	Brown-out Reset Voltage	3.7	4.0	4.35	V	BODEN bit in configuration word enabled
	IDD	Supply Current ^(2,5)					
D010			_	1.6	4	mA	RC osc configurations Fosc = 4 MHz, VDD = 5.5V
D013			_	7	15	mA	HS osc configuration, Fosc = 20 MHz, VDD = 5.5V
D015	ΔIBOR	Brown-out Reset Current ⁽⁶⁾	—	85	200	μA	BOR enabled, VDD = 5.0V
	IPD	Power-down Current ^(3,5)					
D020A				10.5	60	μA	VDD = 4.0V, WDT enabled
D021B				1.5	30	μA	VDD = 4.0V, WDT disabled
D023	Δ IBOR	Brown-out Reset Current ⁽⁶⁾	—	85	200	μA	BOR enabled, VDD = 5.0V

14.3 DC Characteristics: PIC16F872 (Extended)

† Data in "Typ" column is at 5V, 25°C, unless otherwise stated. These parameters are for design guidance only, and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

- 2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature also have an impact on the current consumption.
 - The test conditions for all IDD measurements in active operation mode are:
 - OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD \overline{MCLR} = VDD; WDT enabled/disabled as specified.
- **3:** The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.
- 4: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kOhm.
- **5:** Timer1 oscillator (when enabled) adds approximately 20 μA to the specification. This value is from characterization and is for design guidance only. This is not tested.
- 6: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.
- 7: When BOR is enabled, the device will operate correctly until the VBOR voltage trip point is reached.

14.4 DC Characteristics: PIC16F872 (Extended)

DC CHA	RACTE	RISTICS	Operating	tempe voltag	erature -4	0°C ≤	s (unless otherwise stated) TA \leq +125°C described in DC specification
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
	VIL	Input Low Voltage					
		I/O ports:					
D030		with TTL buffer	Vss	-	0.15VDD	V	For entire VDD range
D030A			Vss	-	0.8V	V	$4.5V \le VDD \le 5.5V$
D031		with Schmitt Trigger buffer	Vss	-	0.2Vdd	V	
D032		MCLR, OSC1 (in RC mode)	Vss	-	0.2VDD	V	
D033		OSC1 (in XT, HS and LP modes)	Vss	-	0.3VDD	V	(Note1)
		Ports RC3 and RC4:					
D034		with Schmitt Trigger buffer	Vss	-	0.3VDD	V	For entire VDD range
D034A		with SMBus	-0.5	-	0.6	V	for VDD = 4.5 to 5.5V
	VIH	Input High Voltage					
		I/O ports:		-			
D040		with TTL buffer	2.0	-	Vdd	V	$4.5V \le VDD \le 5.5V$
D040A			0.25Vdd + 0.8V	-	Vdd	V	For entire VDD range
D041		with Schmitt Trigger buffer	0.8VDD	-	Vdd	V	For entire VDD range
D042		MCLR	0.8VDD	-	Vdd	V	
D042A		OSC1 (XT, HS and LP modes)	0.7Vdd	-	Vdd	V	(Note1)
D043		OSC1 (in RC mode)	0.9Vdd	-	Vdd	V	
		Ports RC3 and RC4:					
D044		with Schmitt Trigger buffer	0.7Vdd	-	Vdd	V	For entire VDD range
D044A		with SMBus	1.4	-	5.5	V	for VDD = 4.5 to 5.5V
D070A	IPURB	PORTB Weak Pull-up Current	50	300	500	μA	VDD = 5V, $VPIN = VSS$,
	lı∟	Input Leakage Current ^(2, 3)					
D060		I/O ports	-	-	±1	μA	$Vss \leq VPIN \leq VDD$,
							Pin at hi-impedance
D061		MCLR, RA4/T0CKI	-	-	±5	μA	$Vss \le VPIN \le VDD$
D063		OSC1	-	-	±5	μA	Vss \leq VPIN \leq VDD, XT, HS and LP osc configuration

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

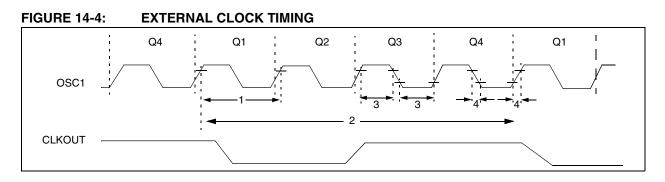
Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16F872 be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

14.4	DC Characteristics:	PIC16F872 (E	xtended)	(Continued)
------	----------------------------	--------------	----------	-------------

DC CHA	ARACTE	RISTICS	Operating	i tempe i voltag	erature -	40°C ≤ 1	s (unless otherwise stated) TA \leq +125°C described in DC specification
Param No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
	Vol	Output Low Voltage					
D080A		I/O Ports			0.6	V	IOL =2.5 mA, VDD = 4.5V
D083A		OSC2/CLKOUT (RC osc config)			0.6	V	IOL = 1.2 mA, VDD = 4.5V
	Vон	Output High Voltage					
D090A		I/O ports ⁽³⁾	Vdd - 0.7	-	-	V	IOH = -2.5 mA, VDD = 4.5V
D092A		OSC2/CLKOUT (RC osc config)	Vdd - 0.7	-	-	V	IOH = -1.0 mA, VDD = 4.5V
D150*	Vod	Open Drain High Voltage	-	-	8.5	V	RA4 pin
		Capacitive Loading Specs on Output Pins					
D100	Cosc2	OSC2 pin	-	-	15	pF	In XT, HS and LP modes when external clock is used to drive OSC1
D101	Сю	All I/O pins and OSC2 (RC mode)	-	-	50	pF	
D102	Св	SCL, SDA (I ² C mode)	-	-	400	pF	
		Data EEPROM Memory					
D120	ED	Endurance	100K	-	-	E/W	25°C at 5V
D121	Vdrw	VDD for read/write	Vmin	-	5.5	V	Using EECON to read/write VMIN = min. operating voltage
D122	TDEW	Erase/write cycle time	-	4	8	ms	
		Program FLASH Memory					
D130	Eр	Endurance	1000	-	-	E/W	25°C at 5V
D131	Vpr	VDD for read	VMIN	-	5.5	V	VMIN = min. operating voltage
D132A		VDD for erase/write	Vmin	-	5.5	V	Using EECON to read/write, VMIN = min. operating voltage
D133	TPEW	Erase/Write cycle time	-	4	8	ms	


These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16F872 be driven with external clock in RC mode.

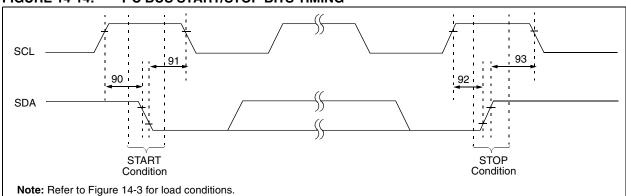
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

TABLE 14-1: EXTERNAL CLOCK TIMING REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
	Fosc	External CLKIN Frequency	DC		4	MHz	XT and RC osc mode
		(Note 1)	DC	_	4	MHz	HS osc mode (-04)
			DC	_	20	MHz	HS osc mode (-20)
			DC	_	200	kHz	LP osc mode
		Oscillator Frequency	DC		4	MHz	RC osc mode
		(Note 1)	0.1	_	4	MHz	XT osc mode
			4	_	20	MHz	HS osc mode
			5	_	200	kHz	LP osc mode
1	Tosc	External CLKIN Period	250	—	—	ns	XT and RC osc mode
		(Note 1)	250	—		ns	HS osc mode (-04)
			50	—		ns	HS osc mode (-20)
			5	—		μs	LP osc mode
		Oscillator Period	250	_	—	ns	RC osc mode
		(Note 1)	250	—	10,000	ns	XT osc mode
			250	—	250	ns	HS osc mode (-04)
			50	_	250	ns	HS osc mode (-20)
			5	_		μs	LP osc mode
2	Тсү	Instruction Cycle Time (Note 1)	200	Тсү	DC	ns	Tcy = 4/Fosc
3	TosL,	External Clock in (OSC1) High or	100			ns	XT oscillator
	TosH	Low Time	2.5	—	—	μs	LP oscillator
			15	—	—	ns	HS oscillator
4	TosR,	External Clock in (OSC1) Rise or	_	_	25	ns	XT oscillator
	TosF	Fall Time	—	—	50	ns	LP oscillator
			—	—	15	ns	HS oscillator

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.


Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "Min." values with an external clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.

Param No.	Symbol	Characteristic		Min	Тур†	Мах	Units	Conditions
70*	TssL2scH, TssL2scL	$\overline{SS}\downarrow$ to SCK \downarrow or SCK \uparrow Input		Тсү		—	ns	
71*	TscH	SCK Input High Time (Slave mode)		TCY + 20	_	_	ns	
72*	TscL	SCK Input Low Time (Slave mode)		TCY + 20	_	-	ns	
73*	TdiV2scH, TdiV2scL	Setup Time of SDI Data Input to SCK	Edge	100	_	—	ns	
74*	TscH2diL, TscL2diL	Hold Time of SDI Data Input to SCK E	dge	100	_	—	ns	
75*	TdoR	SDO Data Output Rise Time	Standard(F) Extended(LF)		10 25	25 50	ns ns	
76*	TdoF	SDO Data Output Fall Time	•	—	10	25	ns	
77*	TssH2doZ	SS [↑] to SDO Output Hi-Impedance		10	_	50	ns	
78*	TscR	SCK Output Rise Time (Master mode)	Standard(F) Extended(LF)		10 25	25 50	ns ns	
79*	TscF	SCK Output Fall Time (Master mode)	•	_	10	25	ns	
80*	TscH2doV, TscL2doV	SDO Data Output Valid after SCK Edge	Standard(F) Extended(LF)			50 145	ns	
81*	TdoV2scH, TdoV2scL	SDO Data Output Setup to SCK Edge		Тсү	_	—	ns	
82*	TssL2doV	SDO Data Output Valid after $\overline{SS}\downarrow$ Edg	е	_	—	50	ns	
83*	TscH2ssH, TscL2ssH	SS [↑] after SCK Edge		1.5Tcy + 40		—	ns	

TABLE 14-6: SPI MODE REQUIREMENTS

* These parameters are characterized but not tested.

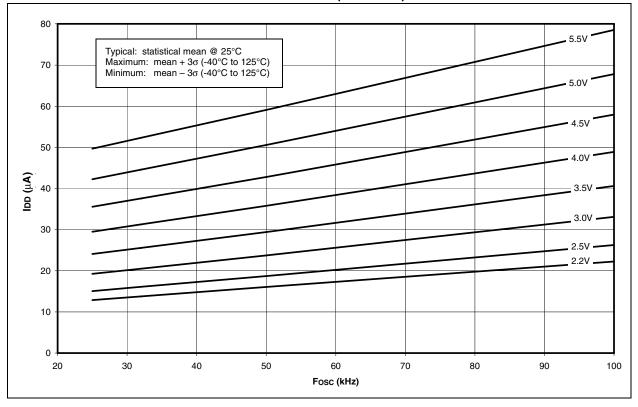
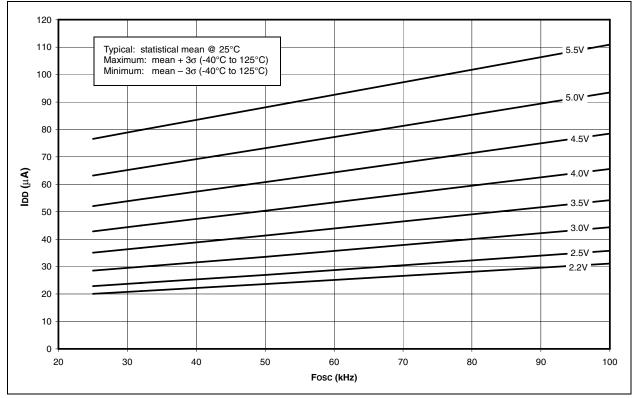

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 14-14: I²C BUS START/STOP BITS TIMING


TABLE 14-7: I²C BUS START/STOP BITS REQUIREMENTS

Parameter No.	Symbol	Charact	eristic	Min	Тур	Max	Units	Conditions
90	TSU:STA	START condition	100 kHz mode	4700	_	_	ns	Only relevant for Repeated
		Setup time	400 kHz mode	600	—	—		START condition
91	THD:STA	START condition	100 kHz mode	4000	—	_	ns	After this period, the first clock
		Hold time	400 kHz mode	600	_	_		pulse is generated
92	Tsu:sto	STOP condition	100 kHz mode	4700	_	_	ns	
		Setup time	400 kHz mode	600	_	_		
93	THD:STO	STOP condition	100 kHz mode	4000			ns	
		Hold time	400 kHz mode	600	_	_		

