

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I²C, SPI
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	64 × 8
RAM Size	128 × 8
Voltage - Supply (Vcc/Vdd)	2.2V ~ 5.5V
Data Converters	A/D 5x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf872-i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

10		~
1.0	Device Overview	3
2.0	Memory Organization	
3.0	Data EEPROM and FLASH Program Memory	23
4.0	I/O Ports	
5.0	Timer0 Module	35
6.0	Timer1 Module	39
7.0	Timer2 Module	
8.0	Capture/Compare/PWM Module	45
9.0	Master Synchronous Serial Port (MSSP) Module	
10.0	Analog-to-Digital Converter (A/D) Module	79
11.0	Special Features of the CPU	87
12.0	Instruction Set Summary	
13.0	Development Support	111
14.0	Electrical Characteristics	
15.0	DC and AC Characteristics Graphs and Tables	139
16.0	Packaging Information	151
Apper	ndix A: Revision History	155
Apper	ndix B: Conversion Considerations	155
Index		157
On-Li	ne Support	163
	er Response	
PIC16	6F872 Product Identification System	165

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@mail.microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)
- The Microchip Corporate Literature Center; U.S. FAX: (480) 792-7277

When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com/cn to receive the most current information on all of our products.

Pin Name	Pin#	I/O/P Type	Buffer Type	Description				
				PORTB is a bi-directional I/O port. PORTB can be software				
				programmed for internal weak pull-up on all inputs.				
RB0/INT	21	I/O	TTL/ST ⁽¹⁾					
RB0				Digital I/O.				
INT				External interrupt pin.				
RB1	22	I/O	TTL	Digital I/O.				
RB2	23	I/O	TTL	Digital I/O.				
RB3/PGM	24	I/O	TTL					
RB3				Digital I/O.				
PGM				Low voltage ICSP programming enable pin.				
RB4	25	I/O	TTL	Digital I/O.				
RB5	26	I/O	TTL	Digital I/O.				
RB6/PGC	27	I/O	TTL/ST ⁽²⁾					
RB6				Digital I/O.				
PGC				In-Circuit Debugger and ICSP programming clock.				
RB7/PGD	28	I/O	TTL/ST ⁽²⁾					
RB7 PGD				Digital I/O. In-Circuit Debugger and ICSP programming data.				
FGD								
			o 	PORTC is a bi-directional I/O port.				
RC0/T1OSO/T1CKI	11	I/O	ST	Divite 1/0				
RC0 T1OSO				Digital I/O. Timer1 oscillator output.				
T1CKI				Timer1 clock input.				
RC1/T1OSI	12	I/O	ST					
RC1		., 0	01	Digital I/O.				
T1OSI				Timer1 oscillator input.				
RC2/CCP1	13	I/O	ST					
RC2				Digital I/O.				
CCP1				Capture1 input/Compare1 output/PWM1 output.				
RC3/SCK/SCL	14	I/O	ST					
RC3				Digital I/O.				
SCK				Synchronous serial clock input/output for SPI mode. Synchronous serial clock input/output for I ² C mode.				
SCL	4 -	1/2	O T	Synchronous senal clock input/output for I=C mode.				
RC4/SDI/SDA RC4	15	I/O	ST					
SDI				Digital I/O. SPI Data In pin (SPI mode).				
SDA				SPI Data I/O pin (I ² C mode).				
RC5/SDO	16	I/O	ST					
RC5				Digital I/O.				
SDO				SPI Data Out pin (SPI mode).				
RC6	17	I/O	ST	Digital I/O.				
RC7	18	I/O	ST	Digital I/O.				
Vss	8, 19	P		Ground reference for logic and I/O pins.				
VDD	20	P	<u> </u>	Positive supply for logic and I/O pins.				
	-	O = outp	I	I/O = input/output $P = power$				

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.

2.2.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers are registers used by the CPU and peripheral modules for controlling the desired operation of the device. These registers are implemented as static RAM. A list of these registers is given in Table 2-1. The Special Function Registers can be classified into two sets: core (CPU) and peripheral. Those registers associated with the core functions are described in detail in this section. Those related to the operation of the peripheral features are described in detail in the peripheral feature section.

TABLE 2-1:	SPECIAL FUNCTION REGISTER SUMMARY
------------	-----------------------------------

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Details on page:
Bank 0											
00h ⁽²⁾	INDF		Addressing this location uses contents of FSR to address data memory (not a physical register)								
01h	TMR0	Timer0 M	odule Regist	ter						xxxx xxxx	35, 93
02h ⁽²⁾	PCL	Program (Counter (PC) Least Sign	ificant Byte					0000 0000	20, 93
03h ⁽²⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	12, 93
04h ⁽²⁾	FSR	Indirect D	ata Memory	Address Po	inter		•		•	xxxx xxxx	21, 93
05h	PORTA	_	_	PORTA Da	ta Latch whe	en written: P	ORTA pins	when read		0x 0000	29, 93
06h	PORTB	PORTB D	ata Latch w	hen written:	PORTB pins	when read				xxxx xxxx	31, 93
07h	PORTC	PORTC D	ata Latch w	hen written:	PORTC pin	s when read				xxxx xxxx	33, 93
08h	—	Unimplem	nented							—	
09h	—	Unimplem	nented							—	—
0Ah ^(1,2)	PCLATH	—	—	_	Write Buffe	er for the up	per 5 bits of	the Program	m Counter	0 0000	20, 93
0Bh ⁽²⁾	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	14, 93
0Ch	PIR1	(3)	ADIF	(3)	(3)	SSPIF	CCP1IF	TMR2IF	TMR1IF	r0rr 0000	16, 93
0Dh	PIR2	_	(3)		EEIF	BCLIF	_	_	(3)	-r-0 0r	18, 93
0Eh	TMR1L	Holding R	egister for th	ne Least Sig	nificant Byte	of the 16-bi	t TMR1 Reg	gister		xxxx xxxx	40, 94
0Fh	TMR1H	Holding R	egister for th	ne Most Sigr	nificant Byte	of the 16-bit	TMR1 Reg	ister		xxxx xxxx	40, 94
10h	T1CON	—	—	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR1ON	00 0000	39, 94
11h	TMR2	Timer2 M	odule Regist	ter						0000 0000	43, 94
12h	T2CON	—	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	43, 94
13h	SSPBUF	Synchron	ous Serial P	ort Receive	Buffer/Trans	mit Register				XXXX XXXX	55, 94
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	53, 94
15h	CCPR1L			/M Register	, ,					xxxx xxxx	45, 94
16h	CCPR1H	Capture/C	Compare/PW	/M Register	I (MSB)			-	_	XXXX XXXX	45, 94
17h	CCP1CON	—		CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	45, 94
18h	—	Unimplem	nented							—	—
19h	—	Unimplem								—	
1Ah	—	Unimplem	nented							—	
1Bh	—	Unimplem								—	—
1Ch	—	Unimplem								—	—
1Dh	—	Unimplem								—	—
1Eh	ADRESH		It Register H		r		T			XXXX XXXX	84, 94
1Fh	ADCON0	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/ DONE	—	ADON	0000 00-0	79, 94

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'.

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose contents are transferred to the upper byte of the program counter.

2: These registers can be addressed from any bank.

3: These bits are reserved; always maintain these bits clear.

PIC16F872

2.2.2.5 PIR1 Register

The PIR1 register contains the individual flag bits for the peripheral interrupts.

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt bits are clear prior to enabling an interrupt.

REGISTER 2-5: PIR1 REGISTER (ADDRESS: 0Ch)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
reserved	ADIF	reserved	reserved	SSPIF	CCP1IF	TMR2IF	TMR1IF
bit 7							bit 0

- bit 7 Reserved: Always maintain these bits clear
- bit 6 ADIF: A/D Converter Interrupt Flag bit
 - 1 = An A/D conversion completed
 - 0 = The A/D conversion is not complete
- bit 5-4 Reserved: Always maintain these bits clear
- bit 3 SSPIF: Synchronous Serial Port (SSP) Interrupt Flag
 - 1 = The SSP interrupt condition has occurred, and must be cleared in software before returning from the Interrupt Service Routine. The conditions that will set this bit are:
 - SPI
 - A transmission/reception has taken place
 - I²C Slave
 - A transmission/reception has taken place
 - I²C Master
 - A transmission/reception has taken place
 - The initiated START condition was completed by the SSP module
 - The initiated STOP condition was completed by the SSP module
 - The initiated Restart condition was completed by the SSP module
 - The initiated Acknowledge condition was completed by the SSP module
 - A START condition occurred while the SSP module was idle (multi-master system)
 - A STOP condition occurred while the SSP module was idle (multi-master system)
 - 0 = No SSP interrupt condition has occurred
- bit 2 CCP1IF: CCP1 Interrupt Flag bit

Capture mode:

- 1 = A TMR1 register capture occurred (must be cleared in software)
- 0 = No TMR1 register capture occurred

Compare mode:

- 1 = A TMR1 register compare match occurred (must be cleared in software)
- 0 = No TMR1 register compare match occurred
- PWM mode: Unused in this mode
- bit 1 **TMR2IF**: TMR2 to PR2 Match Interrupt Flag bit
 - 1 = TMR2 to PR2 match occurred (must be cleared in software)
 - 0 = No TMR2 to PR2 match occurred

bit 0 TMR1IF: TMR1 Overflow Interrupt Flag bit

- 1 = TMR1 register overflowed (must be cleared in software)
- 0 = TMR1 register did not overflow

Legend:				
R = Readable bit	W = Writable bit U = Unimplemented bit, read as '0'			
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

3.4 Reading the FLASH Program Memory

Reading FLASH Program memory is much like that of EEPROM Data memory, only two NOP instructions must be inserted after the RD bit is set. These two instruction cycles that the NOP instructions execute will be used by the microcontroller to read the data out of program memory and insert the value into the EEDATH:EEDATA registers. Data will be available following the second NOP instruction. EEDATH and EEDATA will hold their value until another read operation is initiated, or until they are written by firmware.

The steps to reading the FLASH Program Memory are:

- 1. Write the address to EEADRH:EEADR. Make sure that the address is not larger than the memory size of the device.
- 2. Set the EEPGD bit to point to FLASH Program memory.
- 3. Set the RD bit to start the read operation.
- 4. Execute two NOP instructions to allow the microcontroller to read out of program memory.
- 5. Read the data from the EEDATH:EEDATA registers.

		I EAGITT HOUHA	
	BSF	STATUS, RP1	;
	BCF	STATUS, RPO	;Bank 2
	MOVF	ADDRL, W	;Write the
	MOVWF	EEADR	;address bytes
	MOVF	ADDRH,W	; for the desired
	MOVWF	EEADRH	;address to read
	BSF	STATUS, RPO	;Bank 3
	BSF	EECON1, EEPGD	;Point to Program memory
8 9	BSF	EECON1, RD	;Start read operation
uen	NOP		;Required two NOPs
Required Sequence	NOP		;
	BCF	STATUS, RPO	;Bank 2
	MOVF	EEDATA, W	;DATAL = EEDATA
	MOVWF	DATAL	;
	MOVF	EEDATH,W	;DATAH = EEDATH
	MOVWF	DATAH	;

EXAMPLE 3-3: FLASH PROGRAM READ

3.5 Writing to the FLASH Program Memory

Writing to FLASH Program memory is unique in that the microcontroller does not execute instructions while programming is taking place. The oscillator continues to run and all peripherals continue to operate and queue interrupts, if enabled. Once the write operation completes (specification #D133), the processor begins executing code from where it left off. The other important difference when writing to FLASH Program memory is that the WRT configuration bit, when clear, prevents any writes to program memory (see Table 3-1).

Just like EEPROM Data memory, there are many steps in writing to the FLASH Program memory. Both address and data values must be written to the SFRs. The EEPGD bit must be set and the WREN bit must be set to enable writes. The WREN bit should be kept clear at all times, except when writing to the FLASH Program memory. The WR bit can only be set if the WREN bit was set in a previous operation, i.e., they both cannot be set in the same operation. The WREN bit should then be cleared by firmware after the write. Clearing the WREN bit before the write actually completes will not terminate the write in progress.

Writes to program memory must also be prefaced with a special sequence of instructions that prevent inadvertent write operations. This is a sequence of five instructions that must be executed without interruption for each byte written. These instructions must then be followed by two NOP instructions to allow the microcontroller to setup for the write operation. Once the write is complete, the execution of instructions starts with the instruction after the second NOP.

Name	Bit#	Buffer	Function
RA0/AN0	bit0	TTL	Input/output or analog input.
RA1/AN1	bit1	TTL	Input/output or analog input.
RA2/AN2	bit2	TTL	Input/output or analog input.
RA3/AN3/VREF	bit3	TTL	Input/output or analog input or VREF.
RA4/T0CKI	bit4	ST	Input/output or external clock input for Timer0. Output is open drain type.
RA5/SS/AN4	bit5	TTL	Input/output or slave select input for synchronous serial port or analog input.

TABLE 4-1: PORTA FUNCTIONS

Legend: TTL = TTL input, ST = Schmitt Trigger input

TABLE 4-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
05h	PORTA	—	—	RA5	RA4	RA3	RA2	RA1	RA0	0x 0000	0u 0000
85h	TRISA	—		PORTA	PORTA Data Direction Register						11 1111
9Fh	ADCON1	ADFM	_	_		PCFG3	PCFG2	PCFG1	PCFG0	0- 0000	0- 0000

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTA.

Note: When using the SSP module in SPI Slave mode and \overline{SS} enabled, the A/D converter must be set to one of the following modes, where PCFG3:PCFG0 = 0100, 0101, 011x, 1101, 1110, 1111.

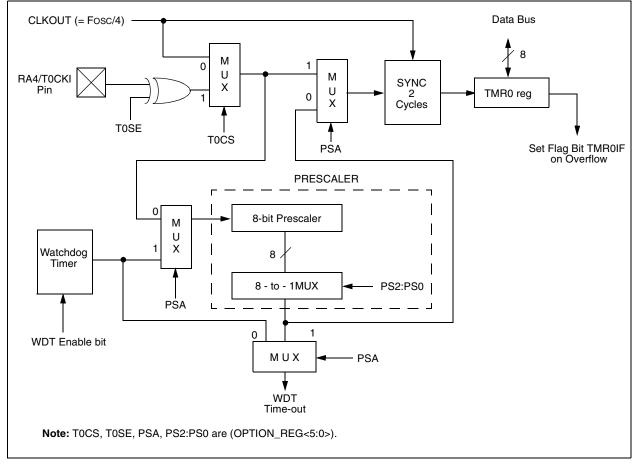
5.0 TIMER0 MODULE

The Timer0 module timer/counter has the following features:

- 8-bit timer/counter
- Readable and writable
- 8-bit software programmable prescaler
- Internal or external clock select
- Interrupt on overflow from FFh to 00h
- Edge select for external clock

Figure 5-1 is a block diagram of the Timer0 module and the prescaler shared with the WDT.

Additional information on the Timer0 module is available in the PICmicro[™] Mid-Range MCU Family Reference Manual (DS33023).


Timer mode is selected by clearing bit TOCS (OPTION_REG<5>). In Timer mode, the Timer0 module will increment every instruction cycle (without prescaler). If the TMR0 register is written, the increment is inhibited for the following two instruction cycles. The user can work around this by writing an adjusted value to the TMR0 register. Counter mode is selected by setting bit TOCS (OPTION_REG<5>). In Counter mode, Timer0 will increment either on every rising or falling edge of pin RA4/T0CKI. The incrementing edge is determined by the Timer0 Source Edge Select bit T0SE (OPTION_REG<4>). Clearing bit T0SE selects the rising edge. Restrictions on the external clock input are discussed in detail in Section 5.2.

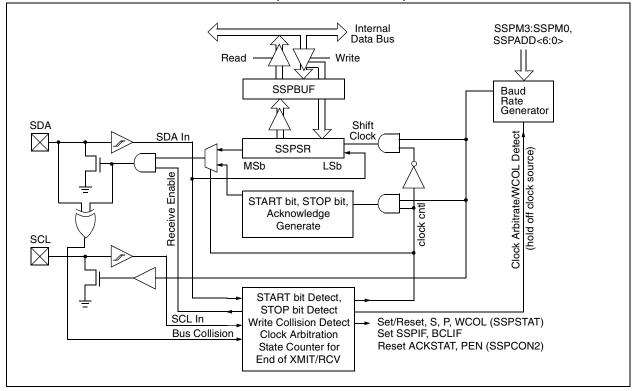
The prescaler is mutually exclusively shared between the Timer0 module and the Watchdog Timer. The prescaler is not readable or writable. Section 5.3 details the operation of the prescaler.

5.1 Timer0 Interrupt

The TMR0 interrupt is generated when the TMR0 register overflows from FFh to 00h. This overflow sets bit TMR0IF (INTCON<2>). The interrupt can be masked by clearing bit TMR0IE (INTCON<5>). Bit TMR0IF must be cleared in software by the Timer0 module Interrupt Service Routine before re-enabling this interrupt. The TMR0 interrupt cannot awaken the processor from SLEEP, since the timer is shut-off during SLEEP.

FIGURE 5-1: BLOCK DIAGRAM OF THE TIMER0/WDT PRESCALER

9.2.5 MASTER MODE


Master mode of operation is supported by interrupt generation on the detection of the START and STOP conditions. The STOP (P) and START (S) bits are cleared from a RESET or when the MSSP module is disabled. Control of the I^2C bus may be taken when the P bit is set, or the bus is IDLE, with both the S and P bits clear.

In Master mode, the SCL and SDA lines are manipulated by the MSSP hardware.

The following events will cause the SSP Interrupt Flag bit, SSPIF, to be set (an SSP Interrupt will occur if enabled):

- START condition
- STOP condition
- · Data transfer byte transmitted/received
- Acknowledge transmit
- Repeated START

FIGURE 9-9: SSP BLOCK DIAGRAM (I²C MASTER MODE)

9.2.6 MULTI-MASTER MODE

In Multi-Master mode, the interrupt generation on the detection of the START and STOP conditions allows the determination of when the bus is free. The STOP (P) and START (S) bits are cleared from a RESET or when the MSSP module is disabled. Control of the I²C bus may be taken when bit P (SSPSTAT<4>) is set, or the bus is IDLE with both the S and P bits clear. When the bus is busy, enabling the SSP interrupt will generate the interrupt when the STOP condition occurs.

In Multi-Master operation, the SDA line must be monitored for arbitration to see if the signal level is the expected output level. This check is performed in hardware, with the result placed in the BCLIF bit. The states where arbitration can be lost are:

- Address Transfer
- Data Transfer
- A START Condition
- A Repeated START Condition
- An Acknowledge Condition

9.2.7 I²C MASTER MODE SUPPORT

Master mode is enabled by setting and clearing the appropriate SSPM bits in SSPCON and by setting the SSPEN bit. Once Master mode is enabled, the user has six options.

- · Assert a START condition on SDA and SCL.
- Assert a Repeated START condition on SDA and SCL.
- Write to the SSPBUF register, initiating transmission of data/address.
- Generate a STOP condition on SDA and SCL.
- Configure the I²C port to receive data.
- Generate an Acknowledge condition at the end of a received byte of data.
 - **Note:** The MSSP module, when configured in I²C Master mode, does not allow queueing of events. For instance, the user is not allowed to initiate a START condition and immediately write the SSPBUF register to initiate transmission, before the START condition is complete. In this case, the SSPBUF will not be written to and the WCOL bit will be set, indicating that a write to the SSPBUF did not occur.

9.2.7.1 I²C Master Mode Operation

The master device generates all of the serial clock pulses and the START and STOP conditions. A transfer is ended with a STOP condition or with a Repeated START condition. Since the Repeated START condition is also the beginning of the next serial transfer, the l^2C bus will not be released.

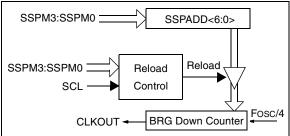
In Master Transmitter mode, serial data is output through SDA, while SCL outputs the serial clock. The first byte transmitted contains the slave address of the receiving device (7 bits) and the Read/Write (R/\overline{W}) bit. In this case, the R/\overline{W} bit will be logic '0'. Serial data is transmitted 8 bits at a time. After each byte is transmitted, an Acknowledge bit is received. START and STOP conditions are output to indicate the beginning and the end of a serial transfer.

In Master Receive mode, the first byte transmitted contains the slave address of the transmitting device (7 bits) and the R/W bit. In this case, the R/W bit will be logic '1'. Thus, the first byte transmitted is a 7-bit slave address followed by a '1' to indicate receive bit. Serial data is received via SDA, while SCL outputs the serial clock. Serial data is received 8 bits at a time. After each byte is received, an Acknowledge bit is transmitted. START and STOP conditions indicate the beginning and end of transmission.

The baud rate generator used for SPI mode operation is now used to set the SCL clock frequency for either 100 kHz, 400 kHz or 1 MHz I^2C operation. The baud rate generator reload value is contained in the lower 7 bits of the SSPADD register. The baud rate generator will automatically begin counting on a write to the SSPBUF. Once the given operation is complete (i.e., transmission of the last data bit is followed by ACK) the internal clock will automatically stop counting and the SCL pin will remain in its last state

A typical transmit sequence would go as follows:

- a) The user generates a Start Condition by setting the START enable bit (SEN) in SSPCON2.
- b) SSPIF is set. The module will wait the required start time before any other operation takes place.
- c) The user loads the SSPBUF with address to transmit.
- d) Address is shifted out the SDA pin until all 8 bits are transmitted.
- e) The MSSP module shifts in the ACK bit from the slave device and writes its value into the SSPCON2 register (SSPCON2<6>).
- f) The module generates an interrupt at the end of the ninth clock cycle by setting SSPIF.
- g) The user loads the SSPBUF with eight bits of data.
- h) DATA is shifted out the SDA pin until all 8 bits are transmitted.
- i) The MSSP module shifts in the ACK bit from the slave device, and writes its value into the SSPCON2 register (SSPCON2<6>).
- j) The MSSP module generates an interrupt at the end of the ninth clock cycle by setting the SSPIF bit.
- k) The user generates a STOP condition by setting the STOP enable bit PEN in SSPCON2.
- I) Interrupt is generated once the STOP condition is complete.


9.2.8 BAUD RATE GENERATOR

In I^2C Master mode, the reload value for the BRG is located in the lower 7 bits of the SSPADD register (Figure 9-10). When the BRG is loaded with this value, the BRG counts down to 0 and stops until another reload has taken place. The BRG count is decremented twice per instruction cycle (TCY), on the Q2 and Q4 clock.

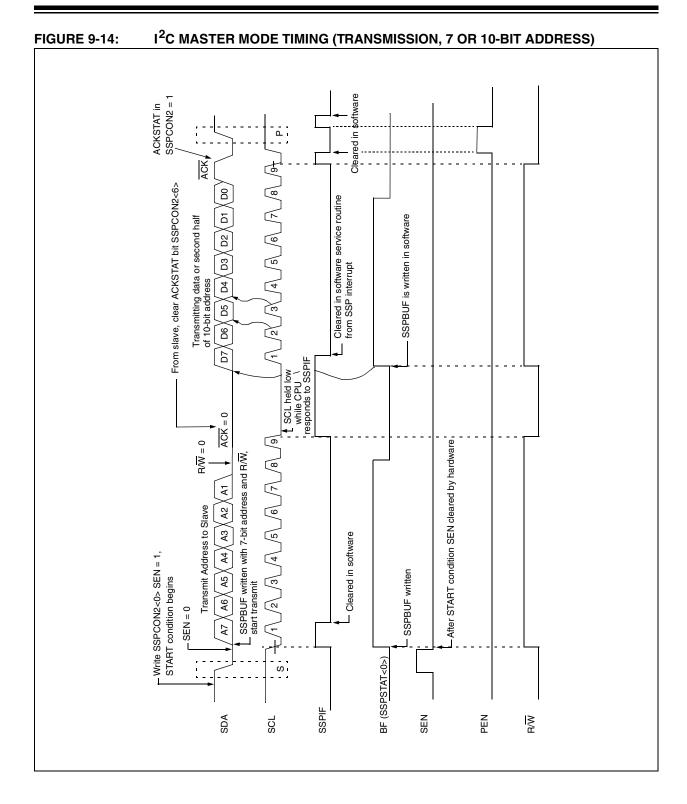

In I²C Master mode, the BRG is reloaded automatically. If Clock Arbitration is taking place, for instance, the BRG will be reloaded when the SCL pin is sampled high (Figure 9-11).

FIGURE 9-10:

BAUD RATE GENERATOR BLOCK DIAGRAM

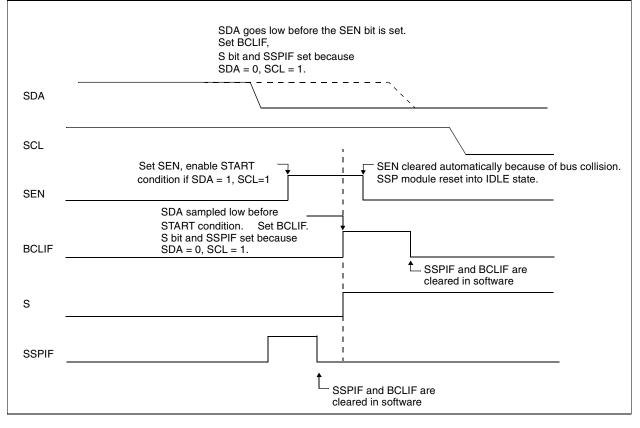
PIC16F872

9.2.18.1 Bus Collision During a START Condition

During a START condition, a bus collision occurs if:

- a) SDA or SCL are sampled low at the beginning of the START condition (Figure 9-20).
- b) SCL is sampled low before SDA is asserted low. (Figure 9-21).

During a START condition, both the SDA and the SCL pins are monitored. If either the SDA pin <u>or</u> the SCL pin is already low, then these events all occur:


- the START condition is aborted,
- and the BCLIF flag is set
- <u>and</u> the SSP module is reset to its IDLE state (Figure 9-20).

The START condition begins with the SDA and SCL pins de-asserted. When the SDA pin is sampled high, the baud rate generator is loaded from SSPADD<6:0> and counts down to 0. If the SCL pin is sampled low while SDA is high, a bus collision occurs, because it is assumed that another master is attempting to drive a data '1' during the START condition.

If the SDA pin is sampled low during this count, the BRG is reset and the SDA line is asserted early (Figure 9-22). If, however, a '1' is sampled on the SDA pin, the SDA pin is asserted low at the end of the BRG count. The baud rate generator is then reloaded and counts down to 0. During this time, if the SCL pins are sampled as '0', a bus collision does not occur. At the end of the BRG count, the SCL pin is asserted low.

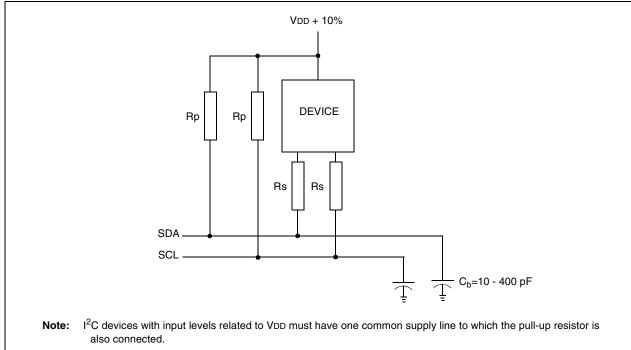
Note: The reason that bus collision is not a factor during a START condition, is that no two bus masters can assert a START condition at the exact same time. Therefore, one master will always assert SDA before the other. This condition does not cause a bus collision, because the two masters must be allowed to arbitrate the first address following the START condition. If the address is the same, arbitration must be allowed to continue into the data portion, Repeated START or STOP conditions.

FIGURE 9-20: BUS COLLISION DURING START CONDITION (SDA ONLY)

9.3 Connection Considerations for I²C Bus

For standard mode I^2C bus devices, the values of resistors R_p and R_s in Figure 9-27 depend on the following parameters:

- Supply voltage
- Bus capacitance
- Number of connected devices (input current + leakage current).


The supply voltage limits the minimum value of resistor R_p , due to the specified minimum sink current of 3 mA at VoL max = 0.4V, for the specified output stages. For example, with a supply voltage of VDD = $5V\pm10\%$ and

VoL max = 0.4V at 3 mA, $R_{p \text{ min}} = (5.5-0.4)/0.003 = 1.7 \text{ k}\Omega$. VDD, as a function of R_p , is shown in Figure 9-27. The desired noise margin of 0.1 VDD for the low level limits the maximum value of R_s . Series resistors are optional and used to improve ESD susceptibility.

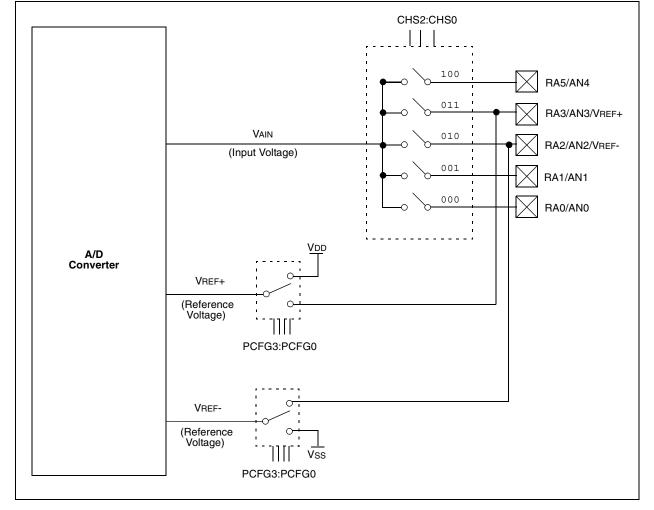
The bus capacitance is the total capacitance of wire, connections, and pins. This capacitance limits the maximum value of R_{p} , due to the specified rise time (Figure 9-27).

The SMP bit is the slew rate control enabled bit. This bit is in the SSPSTAT register, and controls the slew rate of the I/O pins when in I^2C mode (master or slave).

FIGURE 9-27: SAMPLE DEVICE CONFIGURATION FOR I²C BUS

The ADRESH:ADRESL registers contain the 10-bit result of the A/D conversion. When the A/D conversion is complete, the result is loaded into this A/D result register pair, the GO/DONE bit (ADCON0<2>) is cleared and the A/D interrupt flag bit ADIF is set. The block diagram of the A/D module is shown in Figure 10-1.

After the A/D module has been configured as desired, the selected channel must be acquired before the conversion is started. The analog input channels must have their corresponding TRIS bits selected as inputs.


To determine sample time, see Section 10.1. After this acquisition time has elapsed, the A/D conversion can be started.

These steps should be followed for doing an A/D conversion:

- 1. Configure the A/D module:
 - Configure analog pins/voltage reference and digital I/O (ADCON1)
 - Select A/D input channel (ADCON0)
 - Select A/D conversion clock (ADCON0)
 - Turn on A/D module (ADCON0)

- 2. Configure A/D interrupt (if desired):
 - Clear ADIF bit
 - Set ADIE bit
 - Set PEIE bit
 - · Set GIE bit
- 3. Wait the required acquisition time.
- 4. Start conversion:
 - Set GO/DONE bit (ADCON0)
- 5. Wait for A/D conversion to complete, by either:
 - Polling for the GO/DONE bit to be cleared (with interrupts enabled); OR
 - Waiting for the A/D interrupt
- 6. Read A/D Result register pair (ADRESH:ADRESL), clear bit ADIF if required.
- 7. For the next conversion, go to step 1 or step 2, as required. The A/D conversion time per bit is defined as TAD.

TABLE 12-2: PIC16F872 INSTRUCTION SET

Mnemonic, Operands		Description	Cycles		14-Bit	Opcode	Status	Notes	
		Description		MSb			LSb	Affected	Notes
BYTE-ORIENTED FILE REGISTER OPERATIONS									
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C,DC,Z	1,2
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	1,2
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2
CLRW	-	Clear W	1	00	0001	0xxx	xxxx	Z	
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	1,2
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z	1,2
DECFSZ	f, d	Decrement f, Skip if 0	1(2)	00	1011	dfff	ffff		1,2,3
INCF	f, d	Increment f	1	00	1010	dfff	ffff	Z	1,2
INCFSZ	f, d	Increment f, Skip if 0	1(2)	00	1111	dfff	ffff		1,2,3
IORWF	f, d	Inclusive OR W with f	1	00	0100	dfff	ffff	Z	1,2
MOVF	f, d	Move f	1	00	1000	dfff	ffff	Z	1,2
MOVWF	f	Move W to f	1	00	0000	lfff	ffff		
NOP	-	No Operation	1	00	0000	0xx0	0000		
RLF	f, d	Rotate Left f through Carry	1	00	1101	dfff	ffff	С	1,2
RRF	f, d	Rotate Right f through Carry	1	00	1100	dfff	ffff	С	1,2
SUBWF	f, d	Subtract W from f	1	00	0010	dfff	ffff	C,DC,Z	1,2
SWAPF	f, d	Swap nibbles in f	1	00	1110	dfff	ffff		1,2
XORWF	f, d	Exclusive OR W with f	1	00	0110	dfff	ffff	Z	1,2
		BIT-ORIENTED FILE RI	EGISTER OPEF	RATION	IS				
BCF	f, b	Bit Clear f	1	01	00bb	bfff	ffff		1,2
BSF	f, b	Bit Set f	1	01	01bb	bfff	ffff		1,2
BTFSC	f, b	Bit Test f, Skip if Clear	1 (2)	01	10bb	bfff	ffff		3
BTFSS	f, b	Bit Test f, Skip if Set	1 (2)	01	11bb	bfff	ffff		3
			TROL OPERAT	IONS					
ADDLW	k	Add literal and W	1	11	111x	kkkk	kkkk	C,DC,Z	
ANDLW	k	AND literal with W	1	11	1001	kkkk	kkkk	Z	
CALL	k	Call subroutine	2	10	0kkk	kkkk	kkkk		
CLRWDT	-	Clear Watchdog Timer	1	00	0000	0110	0100	TO,PD	
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk		
IORLW	k	Inclusive OR literal with W	1	11	1000	kkkk	kkkk	Z	
MOVLW	k	Move literal to W	1	11	00xx	kkkk	kkkk		
RETFIE	-	Return from interrupt	2	00	0000	0000	1001		
RETLW	k	Return with literal in W	2	11	01xx	kkkk	kkkk		
RETURN	-	Return from Subroutine	2	00	0000	0000	1000		
SLEEP	-	Go into Standby mode	1	00	0000	0110	0011	TO,PD	
SUBLW	k	Subtract W from literal	1	11	110x	kkkk	kkkk	C,DC,Z	
XORLW	k	Exclusive OR literal with W	1	11	1010	kkkk	kkkk	Z	
Note 1:	When an	/O register is modified as a function of itself ((e.g., MOVF POP	RTB, I	1), the v	alue use	ed will b	e that value	present

Note 1: When an I/O register is modified as a function of itself (e.g., MOVF PORTB, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned to the Timer0 module.

3: If Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

Note: Additional information on the mid-range instruction set is available in the PICmicro[™] Mid-Range MCU Family Reference Manual (DS33023).

PIC16F872

MOVF	Move f
Syntax:	[<i>label</i>] MOVF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \ [0,1] \end{array}$
Operation:	(f) \rightarrow (destination)
Status Affected:	Z
Description:	The contents of register f are moved to a destination dependant upon the status of d. If $d = 0$, destination is W register. If $d = 1$, the destination is file register f itself. d = 1 is useful to test a file register, since status flag Z is affected.

NOP	No Operation
Syntax:	[label] NOP
Operands:	None
Operation:	No operation
Status Affected:	None
Description:	No operation.

MOVLW	Move Literal to W						
Syntax:	[<i>label</i>] MOVLW k						
Operands:	$0 \le k \le 255$						
Operation:	$k \to (W)$						
Status Affected:	None						
Description:	The eight-bit literal 'k' is loaded into W register. The don't cares will assemble as 0's.						

RETFIE	Return from Interrupt
Syntax:	[label] RETFIE
Operands:	None
Operation:	$\begin{array}{l} TOS \to PC, \\ 1 \to GIE \end{array}$
Status Affected:	None

MOVWF	Move W to f						
Syntax:	[label] MOVWF f						
Operands:	$0 \le f \le 127$						
Operation:	$(W) \rightarrow (f)$						
Status Affected:	None						
Description:	Move data from W register to register 'f'.						

RETLW	Return with Literal in W							
Syntax:	[<i>label</i>] RETLW k							
Operands:	$0 \le k \le 255$							
Operation:	$\begin{array}{l} k \rightarrow (W);\\ TOS \rightarrow PC \end{array}$							
Status Affected:	None							
Description:	The W register is loaded with the eight-bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a two-cycle instruction.							

TABLE 13-1: DEVELOPMENT TOOLS FROM MICROCHIP

Definition Image: processing state Definition	PIC12CXXX	PIC16C5X	PIC16C6X	PIC16CXXX	PIC16F62X	X7OðfOld	PIC16C7XX	X8O91OId	PIC16F8XX	XX6O9FOI9	X4271219	XX7371319	PIC18FXXX	54CXX	63CXX SeCXX/	XXXSOH	МСВЕХХХ
IntrAd [®] C 1 C Complier IntrAd [®] C 1 C C Complier IntrAd [®] C 1 C C C C C C C C C C C C C C C C C	>			>	>	>	>	>	>	>							
WPLAB* Complet >	C Compiler																
MPCARIW Messame V <	C Compiler											`					
MPLAB*/GE Inclorent Emulator /	>			>	>	>	>	>	>	>					~	~	
International conditional condi	imulator 🗸			>	**/	>	>	>	>	>		_					
MPLAB® (CD In-Circuit Debugger MPLAB® (CD In-Circuit MPLAB® (CD In-Circuit <th></th> <th>></th> <th></th> <th>></th> <th></th> <th>></th> <th>></th> <th>></th> <th></th> <th>></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>		>		>		>	>	>		>							
PICSTART® Plus Entry Level <th< th=""><th>n-Circuit</th><th></th><th>*</th><th></th><th></th><th>*></th><th></th><th></th><th>></th><th></th><th></th><th></th><th>```</th><th></th><th></th><th></th><th></th></th<>	n-Circuit		*			*>			>				```				
The Mattelling interval programmer For Mattelling For Mat	>			>	**>	>	>	>	>	>							
PICDEM™ 1 Demonstration v	ice Programmer			>	**>	>	>	>	>	>					>	>	
PICDEM™ 2 Demonstration →	emonstration	>		>		÷,		>			>						
PICDEM™ 3 Demonstration C	emonstration		∕+			✓†	ļ					*					
PICDEM™ 14A Demonstration Board PICDEM™ 17 Demonstration PICDEM™ 17 Demonstration ReELOd® Evaluation Kit KEELod® Evaluation Kit MicroID™ Programmer's Kit 125 KHz microID™ 125 KHz Anticollision 125 KHz Anticollision 13.56 MHz Anticollision <th>emonstration</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	emonstration									>							
PICDEM™ 17 Demonstration PICDEM™ 17 Demonstration Board KEELod® Evaluation Kit P		<u>\</u>															
	Demonstration											<u> </u>					
	uation Kit															~	
	sponder Kit															>	
	grammer's Kit																>
125 kHz Anticollision microlD TM Developer's Kit 13.56 MHz Anticollision microlD TM Developer's Kit	lD™ it																>
13.56 MHz Anticollision microID TM Developer's Kit	ollision microlD TM .it																~
	ticollision eloper's Kit																>
	MCP2510 CAN Developer's Kit																

 $\ensuremath{\textcircled{}^{\odot}}$ 2006 Microchip Technology Inc.

PIC16F872

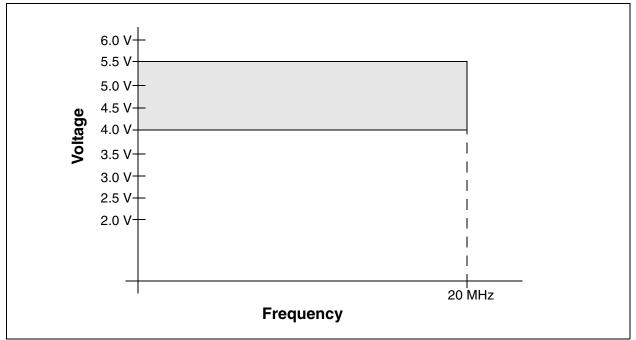
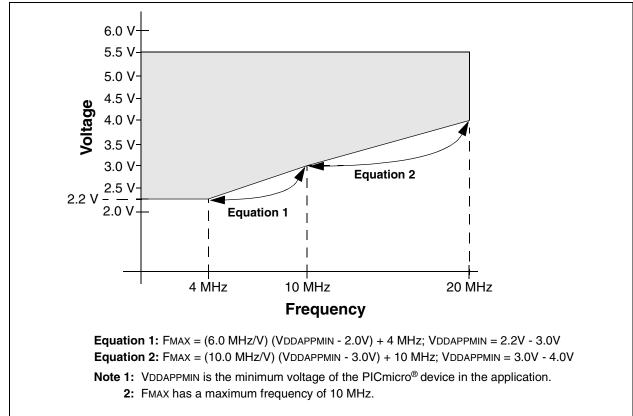



FIGURE 14-2: PIC16LF872 VOLTAGE-FREQUENCY GRAPH

PIC16F87	2 (Extend	ed)					ons (unless otherwise stated) C ≤ Ta ≤ +125°C	
Param No.	Symbol	Characteristic/ Device	Min	Тур†	Max	Units	Conditions	
	Vdd	Supply Voltage						
D001			4.0	—	5.5	V	LP, XT, RC osc configuration	
D001A			4.5		5.5	V	HS osc configuration	
D001A			VBOR		5.5	V	BOR enabled, FMAX = 14 MHz ⁽⁷⁾	
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾	—	1.5	—	V		
D003	VPOR	VDD Start Voltage to ensure internal Power-on Reset signal	—	Vss		V	See section on Power-on Reset for details	
D004	SVDD	VDD Rise Rate to ensure internal Power-on Reset signal	0.05			V/ms	See section on Power-on Reset for details	
D005	VBOR	Brown-out Reset Voltage	3.7	4.0	4.35	V	BODEN bit in configuration word enabled	
	IDD	Supply Current ^(2,5)						
D010			_	1.6	4	mA	RC osc configurations Fosc = 4 MHz, VDD = 5.5V	
D013			_	7	15	mA	HS osc configuration, Fosc = 20 MHz, VDD = 5.5V	
D015	ΔIBOR	Brown-out Reset Current ⁽⁶⁾	—	85	200	μA	BOR enabled, VDD = 5.0V	
	IPD	Power-down Current ^(3,5)						
D020A				10.5	60	μA	VDD = 4.0V, WDT enabled	
D021B				1.5	30	μA	VDD = 4.0V, WDT disabled	
D023	Δ IBOR	Brown-out Reset Current ⁽⁶⁾	—	85	200	μA	BOR enabled, VDD = 5.0V	

14.3 DC Characteristics: PIC16F872 (Extended)

† Data in "Typ" column is at 5V, 25°C, unless otherwise stated. These parameters are for design guidance only, and are not tested.

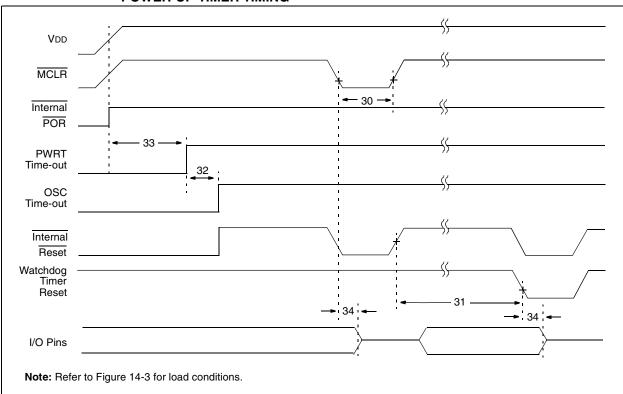
Note 1: This is the limit to which VDD can be lowered without losing RAM data.

- 2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature also have an impact on the current consumption.
 - The test conditions for all IDD measurements in active operation mode are:
 - OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD \overline{MCLR} = VDD; WDT enabled/disabled as specified.
- **3:** The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.
- 4: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kOhm.
- **5:** Timer1 oscillator (when enabled) adds approximately 20 μA to the specification. This value is from characterization and is for design guidance only. This is not tested.
- 6: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.
- 7: When BOR is enabled, the device will operate correctly until the VBOR voltage trip point is reached.

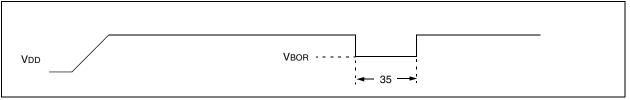
14.4 DC Characteristics: PIC16F872 (Extended)

DC CHARACTERISTICS			Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$ Operating voltage VDD range as described in DC specification (Section 14.1)						
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions		
	VIL	Input Low Voltage							
		I/O ports:							
D030		with TTL buffer	Vss	-	0.15VDD	V	For entire VDD range		
D030A			Vss	-	0.8V	V	$4.5V \le VDD \le 5.5V$		
D031		with Schmitt Trigger buffer	Vss	-	0.2Vdd	V			
D032		MCLR, OSC1 (in RC mode)	Vss	-	0.2VDD	V			
D033		OSC1 (in XT, HS and LP modes)	Vss	-	0.3VDD	V	(Note1)		
		Ports RC3 and RC4:							
D034		with Schmitt Trigger buffer	Vss	-	0.3VDD	V	For entire VDD range		
D034A		with SMBus	-0.5	-	0.6	V	for VDD = 4.5 to 5.5V		
	VIH	Input High Voltage							
		I/O ports:		-					
D040		with TTL buffer	2.0	-	Vdd	V	$4.5V \le VDD \le 5.5V$		
D040A			0.25Vdd + 0.8V	-	Vdd	V	For entire VDD range		
D041		with Schmitt Trigger buffer	0.8VDD	-	Vdd	V	For entire VDD range		
D042		MCLR	0.8VDD	-	Vdd	V			
D042A		OSC1 (XT, HS and LP modes)	0.7Vdd	-	Vdd	V	(Note1)		
D043		OSC1 (in RC mode)	0.9Vdd	-	Vdd	V			
		Ports RC3 and RC4:							
D044		with Schmitt Trigger buffer	0.7Vdd	-	Vdd	V	For entire VDD range		
D044A		with SMBus	1.4	-	5.5	V	for VDD = 4.5 to 5.5V		
D070A	IPURB	PORTB Weak Pull-up Current	50	300	500	μΑ	VDD = 5V, $VPIN = VSS$,		
	lı∟	Input Leakage Current ^(2, 3)							
D060		I/O ports	-	-	±1	μA	$Vss \leq VPIN \leq VDD$,		
							Pin at hi-impedance		
D061		MCLR, RA4/T0CKI	-	-	±5	μA	$Vss \le VPIN \le VDD$		
D063		OSC1	-	-	±5	μA	Vss \leq VPIN \leq VDD, XT, HS and LP osc configuration		

These parameters are characterized but not tested.


† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16F872 be driven with external clock in RC mode.


2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

FIGURE 14-7: BROWN-OUT RESET TIMING

TABLE 14-3:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER,
AND BROWN-OUT RESET REQUIREMENTS

Parameter No.	Symbol	Characteristic	Min	Тур†	Max	Units	Conditions
30	TMCL	MCLR Pulse Width (Low)	2	—		μs	VDD = 5V, -40°C to +85°C
31*	Twdt	Watchdog Timer Time-out Period (No Prescaler)	7	18	33	ms	VDD = 5V, -40°C to +85°C
32	Tost	Oscillation Start-up Timer Period	_	1024 Tosc	_	_	Tosc = OSC1 period
33*	TPWRT	Power up Timer Period	28	72	132	ms	$VDD = 5V, -40^{\circ}C \text{ to } +85^{\circ}C$
34	Tıoz	I/O Hi-Impedance from MCLR Low or Watchdog Timer Reset	_	_	2.1	μs	
35	TBOR	Brown-out Reset Pulse Width	100	—	_	μs	$VDD \le VBOR (D005)$

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.