

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	64 x 8
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2.2V ~ 5.5V
Data Converters	A/D 5x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf872-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 2-1:	SPECIAL FUNCTION REGISTER SUMMARY	(CONTINUED)	ļ
------------	-----------------------------------	-------------	---

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Details on page:
Bank 2											
100h ⁽²⁾	INDF	Addressin (not a phy	ddressing this location uses contents of FSR to address data memory ot a physical register)								21, 93
101h	TMR0	Timer0 M	odule Regist	er						xxxx xxxx	35, 93
102h ⁽²⁾	PCL	Program (Counter (PC) Least Sign	ificant Byte					0000 0000	20, 93
103h ⁽²⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	12, 93
104h ⁽²⁾	FSR	Indirect D	ata Memory	Address Po	binter					xxxx xxxx	21, 93
105h	—	Unimplem	nented							—	—
106h	PORTB	PORTB D	ata Latch w	hen written:	PORTB pins	s when read				xxxx xxxx	31, 93
107h	—	Unimplem	nented							—	—
108h		Unimplem	nented							—	—
109h		Unimplem	nented							—	—
10Ah ^(1,2)	PCLATH	—	—	—	Write Buffe	r for the upp	er 5 bits of t	the Program	n Counter	0 0000	20, 93
10Bh ⁽²⁾	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	14, 93
10Ch	EEDATA	EEPROM	Data Regis	ter Low Byte	9					xxxx xxxx	23, 94
10Dh	EEADR	EEPROM	Address Re	egister Low I	Byte					xxxx xxxx	23, 94
10Eh	EEDATH	_		EEPROM [Data Registe	er High Byte				XXXX XXXX	23, 94
10Fh	EEADRH	—	_	—	EEPROM /	Address Reg	gister High E	Byte		xxxx xxxx	23, 94
Bank 3											
180h ⁽²⁾	INDF	Addressin (not a phy	g this locations is this location is the second s	on uses cont r)	tents of FSR	to address	data memo	ry		0000 0000	21, 93
181h	OPTION_REG	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	13, 94
182h ⁽²⁾	PCL	Program (Counter (PC) Least Sig	nificant Byte			•		0000 0000	20, 93
183h ⁽²⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	12, 93
184h ⁽²⁾	FSR	Indirect D	ata Memory	Address Po	binter					xxxx xxxx	21, 93
185h	—	Unimplem	nented							—	—
186h	TRISB	PORTB D	ata Direction	n Register						1111 1111	31, 94
187h		Unimplem	nented							—	—
188h		Unimplem	Unimplemented							—	_
189h	—	Unimplem	nented							—	—
18Ah ^(1,2)	PCLATH	— — — Write Buffer for the upper 5 bits of the Program Counter						0 0000	20, 93		
18Bh ⁽²⁾	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	14, 93
18Ch	EECON1	EEPGD				WRERR	WREN	WR	RD	x x000	24, 94
18Dh	EECON2	EEPROM	Control Reg	gister2 (not a	a physical re	gister)					23, 94
18Eh		Reserved	; maintain cl	ear						0000 0000	—
18Fh	_	Reserved	; maintain cl	ear						0000 0000	—

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'.

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose contents are transferred to the upper byte of the program counter.

2: These registers can be addressed from any bank.

3: These bits are reserved; always maintain these bits clear.

2.2.2.1 STATUS Register

The STATUS register contains the arithmetic status of the ALU, the RESET status and the bank select bits for data memory.

The STATUS register can be the destination for any instruction, as with any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable, therefore, the result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS will clear the upper three bits and set the Z bit. This leaves the STATUS register as $000u \ u1uu$ (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register, because these instructions do not affect the Z, C or DC bits from the STATUS register. For other instructions not affecting any status bits, see the "Instruction Set Summary."

Note:	The C and DC bits operate as a borrow
	and digit borrow bit, respectively, in sub-
	traction. See the SUBLW and SUBWF
	instructions for examples.

REGISTER 2-1: STATUS REGISTER (ADDRESS: 03h, 83h, 103h, 183h)

	R/W-0	R/W-0	R/W-0	R-1	R-1	R/W-x	R/W-x	R/W-x				
	IRP	RP1	RP0	TO	PD	Z	DC	С				
	bit 7							bit 0				
bit 7	IRP: Register Bank Select bit (used for indirect addressing)											
	1 = Bank 2, 3 (100h - 1FFh) 0 = Bank 0, 1 (00h - FFh)											
bit 6:5	RP1:RP0:	Register Ba	nk Select bit	ts (used for o	direct addre	ssing)						
	11 = Bank	3 (180h - 1F	Fh)									
	10 = Bank 01 = Bank	2 (100h - 17 1 (80h - FFI	′⊢n) n)									
	00 = Bank	0 (00h - 7Fi	יי ו)									
	Each bank	is 128 bytes	S									
bit 4	TO: Time-o	out bit										
	1 = After p 0 = A WDT	ower-up, CL f time-out oc	RWDT instruc	ction, or SLE	EP instruction	on						
bit 3	PD: Power-down bit											
	1 = After p 0 = By exe	ower-up or t ecution of the	oy the CLRWI SLEEP inst	⊃⊤ instructio ruction	n							
bit 2	Z: Zero bit											
	1 = The re 0 = The re	sult of an ari sult of an ari	thmetic or lo thmetic or lo	ogic operatio ogic operatio	n is zero n is not zero	D						
bit 1	DC: Digit o	arry/borrow	bit (ADDWF, 2	ADDLW,SUB	LW, SUBWF i	instructions)						
	(for borrow the polarity is reversed)											
	 1 = A carry-out from the 4th low order bit of the result occurred 0 = No carry-out from the 4th low order bit of the result 											
bit 0	C: Carry/b	orrow bit (AD	DWF, ADDLW	, SUBLW, SU	JBWF instru	ctions)						
	 1 = A carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred 											
	Note:	For borrow complement loaded with	the polarity It of the seco either the h	is reversed. and operance igh or low of	A subtracti I. For rotate rder bit of th	on is execut (RRF,RLF e source reg	ed by addin) instruction jister.	g the two's s, this bit is				
	Legend:]				
	R = Reada	able bit	W = W	ritable bit	U = Unin	nplemented	bit, read as '	ʻ0'				

'1' = Bit is set

- n = Value at POR

x = Bit is unknown

'0' = Bit is cleared

2.2.2.2 OPTION_REG Register

The OPTION_REG Register is a readable and writable register, which contains various control bits to configure the TMR0 prescaler/WDT postscaler (single assignable register known also as the prescaler), the External INT Interrupt, TMR0 and the weak pull-ups on PORTB.

Note: To achieve a 1:1 prescaler assignment for the TMR0 register, assign the prescaler to the Watchdog Timer.

REGISTER 2-2: OPTION_REG REGISTER (ADDRESS 81h, 181h)

	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1				
	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0				
	bit 7							bit 0				
bit 7	RBPU: PORTB Pull-up Enable bit											
	1 = PORT	1 = PORTB pull-ups are disabled										
	0 = PORTB pull-ups are enabled by individual port latch values											
bit 6	INTEDG	Interrupt Edg	e Select bit									
	1 = Interrupt on rising edge of RB0/INT pin											
	0 = Interru	ipt on falling	edge of RBC	/INT pin								
bit 5	TOCS: TM	IR0 Clock So	urce Select	bit								
	1 = Transi	tion on RA4/	T0CKI pin									
	0 = Interns		сусіе сіоск									
bit 4	TOSE: IM	R0 Source E	dge Select I	oit DA								
	1 = Incren	nent on high-	to-low trans	tion on RA4								
L:1 0			o-nign trans									
DIT 3	PSA: Pres	scaler Assign		D.T.								
	1 = Prescaler is assigned to the WDT											
hit 2.0	DE3-DE0-	Drocoolor Dr	eu lo lite Til	te	C							
DIL 2-0	F32.F30.			15								
	Bit Value	IMR0 Rate	WD1 Rate									
	000	1:2	1:1									
	001	1:4	1:2									
	010	1:16	1:8									
	100	1:32	1:16									
	101	1:64	1:32									
	110	1:128	1:128									
		1.200										
	Legend:											
	R = Readable bit $W = Writable bit$ $U = Unimplemented bit. read as '0'$											
	- n = Valu	e at POR	'1' = B	it is set	'0' = Bit i	s cleared	x = Bit is u	nknown				
]				
Note:	When using	low voltage	ICSP progra	mmina (I VE	P) and the p	ill-uns on P()RTB are en	abled bit 3				
	in the TRIS	B register mu	st be cleare	d to disable	the pull-up of	on RB3 and	ensure the n	roper oper-				

ation of the device

NOTES:

7.1 Timer2 Prescaler and Postscaler

The prescaler and postscaler counters are cleared when any of the following occurs:

- a write to the TMR2 register
- a write to the T2CON register
- any device RESET (POR, MCLR Reset, WDT Reset or BOR)

TMR2 is not cleared when T2CON is written.

7.2 Output of TMR2

The output of TMR2 (before the postscaler) is fed to the SSP module, which optionally uses it to generate shift clock.

TABLE 7-1:	REGISTERS ASSOCIATED WITH TIMER2 AS A TIMER/COUNTER
------------	--

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value PC BC	e on:)R,)R	Valu all c RES	e on other ETS
0Bh,8Bh, 10Bh, 18Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000	000x	0000	000u
0Ch	PIR1	(3)	ADIF	(3)	(3)	SSPIF	CCP1IF	TMR2IF	TMR1IF	r0rr	0000	0000	0000
8Ch	PIE1	(3)	ADIE	(3)	(3)	SSPIE	CCP1IE	TMR2IE	TMR1IE	r0rr	0000	0000	0000
11h	TMR2	Timer2	Timer2 Module Register 0000 00							0000	0000	0000	
12h	T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000	0000	-000	0000
92h	PR2	Timer2	Period Regi	ster						1111	1111	1111	1111

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the Timer2 module.

8.2 Compare Mode

In Compare mode, the 16-bit CCPR1 register value is constantly compared against the TMR1 register pair value. When a match occurs, the RC2/CCP1 pin is:

- Driven high
- Driven low
- · Remains unchanged

The action on the pin is based on the value of control bits, CCP1M3:CCP1M0 (CCP1CON<3:0>). At the same time, interrupt flag bit CCP1IF is set.

FIGURE 8-2: COMPARE MODE OPERATION BLOCK DIAGRAM

8.2.1 CCP PIN CONFIGURATION

The user must configure the RC2/CCP1 pin as an output by clearing the TRISC<2> bit.

Note:	Clearing the CCP1CON register will force
	the RC2/CCP1 compare output latch to the
	default low level. This is not the PORTC
	I/O data latch.

8.2.2 TIMER1 MODE SELECTION

Timer1 must be running in Timer mode or Synchronized Counter mode if the CCP module is using the compare feature. In Asynchronous Counter mode, the compare operation may not work.

8.2.3 SOFTWARE INTERRUPT MODE

When Generate Software Interrupt mode is chosen, the CCP1 pin is not affected. The CCPIF bit is set, causing a CCP interrupt (if enabled).

8.2.4 SPECIAL EVENT TRIGGER

In this mode, an internal hardware trigger is generated, which may be used to initiate an action.

The special event trigger output of CCP1 resets the TMR1 register pair and starts an A/D conversion (if the A/D module is enabled). This allows the CCPR1 register to effectively be a 16-bit programmable period register for Timer1.

Note: The special event trigger from the CCP module will not set interrupt flag bit TMR1IF (PIR1<0>).

TABLE 8-2: REGISTERS ASSOCIATED WITH CAPTURE, COMPARE, AND TIMER1

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
0Bh,8Bh, 10Bh, 18Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	(1)	ADIF	(1)	(1)	SSPIF	CCP1IF	TMR2IF	TMR1IF	r0rr 0000	0000 0000
8Ch	PIE1	(1)	ADIE	(1)	(1)	SSPIE	CCP1IE	TMR2IE	TMR1IE	r0rr 0000	0000 0000
87h	TRISC	PORTC	Data Di	irection Reg	ister					1111 1111	1111 1111
0Eh	TMR1L	Holding	Registe	r for the Lea	ast Significa	nt Byte of th	ne 16-bit Tl	MR1 Regis	ster	XXXX XXXX	uuuu uuuu
0Fh	TMR1H	Holding	Registe	r for the Mo	st Significar	nt Byte of the	e 16-bit TN	/IR1 Regis	ter	XXXX XXXX	uuuu uuuu
10h	T1CON	_	-	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00 0000	uu uuuu
15h	CCPR1L	Capture	e/Compa	re/PWM Re	gister1 (LSI	3)				XXXX XXXX	uuuu uuuu
16h	CCPR1H	Capture	e/Compa	re/PWM Re	gister1 (MS	B)				XXXX XXXX	uuuu uuuu
17h	CCP1CON		_	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000

Note 1: These bits are reserved; always maintain clear.

PIC16F872

9.2.13 ACKNOWLEDGE SEQUENCE TIMING

An Acknowledge sequence is enabled by setting the Acknowledge sequence enable bit, ACKEN (SSPCON2<4>). When this bit is set, the SCL pin is pulled low and the contents of the Acknowledge data bit are presented on the SDA pin. If the user wishes to generate an Acknowledge, the ACKDT bit should be cleared. If not, the user should set the ACKDT bit before starting an Acknowledge sequence. The baud rate generator then counts for one rollover period (TBRG), and the SCL pin is de-asserted high). When the SCL pin is sampled high (clock arbitration), the baud rate generator counts for TBRG. The SCL pin is then pulled low. Following this, the ACKEN bit is automatically cleared, the baud rate generator is turned off, and the SSP module then goes into IDLE mode (Figure 9-16).

9.2.13.1 WCOL Status Flag

If the user writes the SSPBUF when an acknowledge sequence is in progress, the WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

FIGURE 9-16: ACKNOWLEDGE SEQUENCE WAVEFORM

9.2.14 STOP CONDITION TIMING

A STOP bit is asserted on the SDA pin at the end of a receive/transmit, by setting the Stop Sequence Enable bit PEN (SSPCON2<2>). At the end of a receive/ transmit, the SCL line is held low after the falling edge of the ninth clock. When the PEN bit is set, the master will assert the SDA line low. When the SDA line is sampled low, the baud rate generator is reloaded and counts down to 0. When the baud rate generator times out, the SCL pin will be brought high, and one TBRG (baud rate generator rollover count) later, the SDA pin will be de-asserted. When the SDA pin is sampled high while SCL is high, the P bit (SSPSTAT<4>) is set. A TBRG later, the PEN bit is cleared and the SSPIF bit is set (Figure 9-17).

Whenever the firmware decides to take control of the bus, it will first determine if the bus is busy by checking the S and P bits in the SSPSTAT register. If the bus is busy, then the CPU can be interrupted (notified) when a STOP bit is detected (i.e., bus is free).

9.2.14.1 WCOL Status Flag

If the user writes the SSPBUF when a STOP sequence is in progress, then WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

FIGURE 9-17: STOP CONDITION RECEIVE OR TRANSMIT MODE

9.2.15 CLOCK ARBITRATION

Clock arbitration occurs when the master, during any receive, transmit, or Repeated START/STOP condition, de-asserts the SCL pin (SCL allowed to float high). When the SCL pin is allowed to float high, the baud rate generator (BRG) is suspended from counting until the SCL pin is actually sampled high. When the SCL pin is sampled high, the baud rate generator is reloaded with the contents of SSPADD<6:0> and begins counting. This ensures that the SCL high time will always be at least one BRG rollover count, in the event that the clock is held low by an external device (Figure 9-18).

9.2.16 SLEEP OPERATION

While in SLEEP mode, the I²C module can receive addresses or data, and when an address match or complete byte transfer occurs, wake the processor from SLEEP (if the SSP interrupt is enabled).

9.2.17 EFFECTS OF A RESET

A RESET disables the SSP module and terminates the current transfer.

FIGURE 9-18: CLOCK ARBITRATION TIMING IN MASTER TRANSMIT MODE

11.4 Power-on Reset (POR)

A Power-on Reset pulse is generated on-chip when VDD rise is detected (in the range of 1.2V - 1.7V). To take advantage of the POR, tie the MCLR pin directly (or through a resistor) to VDD. This will eliminate external RC components usually needed to create a Power-on Reset. A maximum rise time for VDD is specified. See Electrical Specifications for details.

When the device starts normal operation (exits the RESET condition), device operating parameters (voltage, frequency, temperature,...) must be met to ensure operation. If these conditions are not met, the device must be held in RESET until the operating conditions are met. Brown-out Reset may be used to meet the start-up conditions. For additional information, refer to Application Note (AN007), *"Power-up Trouble Shooting"*, (DS00007).

11.5 **Power-up Timer (PWRT)**

The Power-up Timer provides a fixed 72 ms nominal time-out on power-up only from the POR. The Power-up Timer operates on an internal RC oscillator. The chip is kept in RESET as long as the PWRT is active. The PWRT's time delay allows VDD to rise to an accept-able level. A configuration bit is provided to enable/disable the PWRT.

The power-up time delay will vary from chip to chip due to VDD, temperature and process variation. See DC parameters for details (TPWRT, parameter #33).

11.6 Oscillator Start-up Timer (OST)

The Oscillator Start-up Timer (OST) provides a delay of 1024 oscillator cycles (from OSC1 input) after the PWRT delay is over (if PWRT is enabled). This helps to ensure that the crystal oscillator or resonator has started and stabilized.

The OST time-out is invoked only for XT, LP and HS modes and only on Power-on Reset or wake-up from SLEEP.

11.7 Brown-out Reset (BOR)

The configuration bit, BODEN, can enable or disable the Brown-out Reset circuit. If VDD falls below VBOR (parameter #D005, about 4V) for longer than TBOR (parameter #35, about 100 μ S), the brown-out situation will reset the device. If VDD falls below VBOR for less than TBOR, a RESET may not occur.

Once the brown-out occurs, the device will remain in Brown-out Reset until VDD rises above VBOR. The Power-up Timer then keeps the device in RESET for TPWRT (parameter #33, about 72 mS). If VDD should fall below VBOR during TPWRT, the Brown-out Reset process will restart when VDD rises above VBOR with the Power-up Timer Reset. The Power-up Timer is always enabled when the Brown-out Reset circuit is enabled, regardless of the state of the PWRT configuration bit.

11.8 Time-out Sequence

On power-up, the time-out sequence is as follows: the PWRT delay starts (if enabled) when a POR Reset occurs. Then, OST starts counting 1024 oscillator cycles when PWRT ends (LP, XT, HS). When the OST ends, the device comes out of RESET.

If MCLR is kept low long enough, the time-outs will expire. Bringing MCLR high will begin execution immediately. This is useful for testing purposes or to synchronize more than one PIC16F872 device operating in parallel.

Table 11-5 shows the RESET conditions for the STATUS, PCON and PC registers, while Table 11-6 shows the RESET conditions for all the registers.

11.9 Power Control/Status Register (PCON)

The Power Control/Status Register, PCON, has two bits.

Bit 0 is the Brown-out Reset Status bit (BOR). Bit BOR is unknown on a Power-on Reset. It must then be set by the user and checked on subsequent RESETS to see if bit BOR cleared, indicating a BOR occurred. When the Brown-out Reset is disabled, the state of the BOR bit is unpredictable and is, therefore, not valid at any time.

Bit 1 is the Power-on Reset Status bit (\overline{POR}) . It is cleared on a Power-on Reset and unaffected otherwise. The user must set this bit following a Power-on Reset.

Oscillator Configuration	Power	-up	Provin out	Wake-up from	
	PWRTE = 0	PWRTE = 1	Brown-out	SLEEP	
XT, HS, LP	72 ms + 1024Tosc	1024Tosc	72 ms + 1024Tosc	1024Tosc	
RC	72 ms	_	72 ms	_	

TABLE 11-3: TIME-OUT IN VARIOUS SITUATIONS

POR	BOR	то	PD	
0	x	1	1	Power-on Reset
0	x	0	x	Illegal, TO is set on POR
0	x	x	0	Illegal, PD is set on POR
1	0	1	1	Brown-out Reset
1	1	0	1	WDT Reset
1	1	0	0	WDT Wake-up
1	1	u	u	MCLR Reset during normal operation
1	1	1	0	MCLR Reset during SLEEP or interrupt wake-up from SLEEP

TABLE 11-4: STATUS BITS AND THEIR SIGNIFICANCE

TABLE 11-5: RESET CONDITION FOR SPECIAL REGISTERS

Condition	Program Counter	STATUS Register	PCON Register
Power-on Reset	000h	0001 1xxx	0x
MCLR Reset during normal operation	000h	000u uuuu	uu
MCLR Reset during SLEEP	000h	0001 Ouuu	uu
WDT Reset	000h	0000 luuu	uu
WDT Wake-up	PC + 1	uuu0 0uuu	uu
Brown-out Reset	000h	0001 luuu	u0
Interrupt wake-up from SLEEP	PC + 1 ⁽¹⁾	uuul Ouuu	uu

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0'

Note 1: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

TABLE 11-6: INITIALIZATION CONDITIONS FOR ALL REGISTERS

Register	Power-on Reset, Brown-out Reset	MCLR Resets WDT Reset	Wake-up via WDT or Interrupt
W	xxxx xxxx	uuuu uuuu	uuuu uuuu
INDF	N/A	N/A	N/A
TMR0	XXXX XXXX	սսսս սսսս	uuuu uuuu
PCL	0000h	0000h	PC + 1 ⁽²⁾
STATUS	0001 1xxx	000q quuu (3)	uuuq quuu (3)
FSR	XXXX XXXX	uuuu uuuu	uuuu uuuu
PORTA	0x 0000	0u 0000	uu uuuu
PORTB	XXXX XXXX	uuuu uuuu	uuuu uuuu
PORTC	XXXX XXXX	uuuu uuuu	uuuu uuuu
PCLATH	0 0000	0 0000	u uuuu
INTCON	0000 000x	0000 000u	uuuu uuuu (1)
PIR1	r0rr 0000	r0rr 0000	rurr uuuu(1)
PIR2	-r-0 0r	-r-0 0r	-r-u ur (1)

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition, r = reserved, maintain clear

Note 1: One or more bits in INTCON, PIR1 and/or PIR2 will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

3: See Table 11-5 for RESET value for specific condition.

12.0 INSTRUCTION SET SUMMARY

The PIC16 instruction set is highly orthogonal and is comprised of three basic categories:

- Byte-oriented operations
- Bit-oriented operations
- Literal and control operations

Each PIC16 instruction is a 14-bit word divided into an **opcode** which specifies the instruction type, and one or more **operands** which further specify the operation of the instruction. The formats for each of the categories is presented in Figure 12-1, while the various opcode fields are summarized in Table 12-1.

Table 13-2 lists the instructions recognized by the MPASM[™] Assembler. A complete description of each instruction is also available in the PICmicro[™] Mid-Range Reference Manual (DS33023).

For **byte-oriented** instructions, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator specifies which file register is to be used by the instruction.

The destination designator specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the W register. If 'd' is one, the result is placed in the file register specified in the instruction.

For **bit-oriented** instructions, 'b' represents a bit field designator, which selects the bit affected by the operation, while 'f' represents the address of the file in which the bit is located.

For **literal and control** operations, 'k' represents an eight- or eleven-bit constant or literal value

One instruction cycle consists of four oscillator periods; for an oscillator frequency of 4 MHz, this gives a normal instruction execution time of 1 μ s. All instructions are executed within a single instruction cycle, unless a conditional test is true or the program counter is changed as a result of an instruction. When this occurs, the execution takes two instruction cycles with the second cycle executed as a NOP.

Note:	To maintain upward compatibility with
	future PIC16F872 products, do not use the
	OPTION and TRIS instructions.

All instruction examples use the format '0xhh' to represent a hexadecimal number, where 'h' signifies a hexadecimal digit.

12.1 READ-MODIFY-WRITE OPERATIONS

Any instruction that specifies a file register as part of the instruction performs a Read-Modify-Write (R-M-W) operation. The register is read, the data is modified, and the result is stored according to either the instruction or the destination designator 'd'. A read operation is performed on a register even if the instruction writes to that register. For example, a "CLRF PORTB" instruction will read PORTB, clear all the data bits, then write the result back to PORTB. This example would have the unintended result that the condition that sets the RBIF flag would be cleared.

TABLE 12-1: OPCODE FIELD DESCRIPTIONS

Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
x	Don't care location (= 0 or 1). The assembler will generate code with $x = 0$. It is the recommended form of use for compatibility with all Microchip software tools.
d	Destination select; $d = 0$: store result in W, d = 1: store result in file register f. Default is d = 1.
PC	Program Counter
TO	Time-out bit
PD	Power-down bit

FIGURE 12-1: GENERAL FORMAT FOR INSTRUCTIONS

PIC16F872 (Extended)			Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le Ta \le +125^{\circ}C$				
Param No.	Symbol	Characteristic/ Device	Min	Typ†	Max	Units	Conditions
	Vdd	Supply Voltage					
D001			4.0	—	5.5	V	LP, XT, RC osc configuration
D001A			4.5		5.5	V	HS osc configuration
D001A			VBOR		5.5	V	BOR enabled, FMAX = 14 MHz ⁽⁷⁾
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾	—	1.5		V	
D003	VPOR	VDD Start Voltage to ensure internal Power-on Reset signal	—	Vss	_	V	See section on Power-on Reset for details
D004	SVDD	VDD Rise Rate to ensure internal Power-on Reset signal	0.05	_		V/ms	See section on Power-on Reset for details
D005	VBOR	Brown-out Reset Voltage	3.7	4.0	4.35	V	BODEN bit in configuration word enabled
	IDD	Supply Current ^(2,5)					
D010			—	1.6	4	mA	RC osc configurations Fosc = 4 MHz, VDD = $5.5V$
D013			_	7	15	mA	HS osc configuration, Fosc = 20 MHz, VDD = 5.5V
D015	ΔIBOR	Brown-out Reset Current ⁽⁶⁾	—	85	200	μA	BOR enabled, VDD = 5.0V
	IPD	Power-down Current ^(3,5)					
D020A				10.5	60	μA	VDD = 4.0V, WDT enabled
D021B				1.5	30	μA	VDD = 4.0V, WDT disabled
D023	Δ IBOR	Brown-out Reset Current ⁽⁶⁾	—	85	200	μA	BOR enabled, VDD = 5.0V

14.3 DC Characteristics: PIC16F872 (Extended)

† Data in "Typ" column is at 5V, 25°C, unless otherwise stated. These parameters are for design guidance only, and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

- 2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature also have an impact on the current consumption.
 - The test conditions for all IDD measurements in active operation mode are:
 - OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD \overline{MCLR} = VDD; WDT enabled/disabled as specified.
- **3:** The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.
- 4: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kOhm.
- **5:** Timer1 oscillator (when enabled) adds approximately 20 μA to the specification. This value is from characterization and is for design guidance only. This is not tested.
- 6: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.
- 7: When BOR is enabled, the device will operate correctly until the VBOR voltage trip point is reached.

TABLE 14-2: CLKOUT AND I/O TIMING REQUIREMENTS

Param No.	Symbol	Characteristic		Min	Тур†	Мах	Units	Conditions
10*	TosH2ckL	OSC1↑ to CLKOUT↓		—	75	200	ns	(Note 1)
11*	TosH2ckH	OSC1 [↑] to CLKOUT [↑]		—	75	200	ns	(Note 1)
12*	TckR	CLKOUT rise time		—	35	100	ns	(Note 1)
13*	TckF	CLKOUT fall time		—	35	100	ns	(Note 1)
14*	TckL2ioV	CLKOUT \downarrow to Port out valid		—	_	0.5TCY + 20	ns	(Note 1)
15*	TioV2ckH	Port in valid before CLKOUT↑		Tosc + 200	_	—	ns	(Note 1)
16*	TckH2iol	Port in hold after CLKOUT↑		0	_	_	ns	(Note 1)
17*	TosH2ioV	OSC1↑ (Q1 cycle) to Port out valid		_	100	255	ns	
18*	TosH2iol	OSC1 [↑] (Q2 cycle) to Port	Standard (F)	100		—	ns	
		input invalid (I/O in hold time)	Extended (LF)	200	—	—	ns	
19*	TioV2osH	Port input valid to OSC1 [↑] (I/O	in setup time)	0	_	—	ns	
20*	TIOR	Port output rise time	Standard (F)	—	10	40	ns	
			Extended (LF)	—	—	145	ns	
21*	TIOF	Port output fall time	Standard (F)	—	10	40	ns	
			Extended (LF)	—		145	ns	
22††*	TINP	INT pin high or low time		TCY	_	—	ns	
23††*	TRBP	RB7:RB4 change INT high or	low time	TCY	—	—	ns	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

these parameters are asynchronous events not related to any internal clock edges.

Note 1: Measurements are taken in RC mode, where CLKOUT output is 4 x Tosc.

TABLE 14-8: I²C BUS DATA REQUIREMENTS

Param No.	Sym	Characteristic		Min	Max	Units	Conditions
100	Тнідн	Clock High Time	100 kHz mode	4.0	_	μs	Device must operate at a mini- mum of 1.5 MHz
			400 kHz mode	0.6	_	μs	Device must operate at a mini- mum of 10 MHz
			SSP Module	1.5TCY	—		
101	TLOW	Clock Low Time	100 kHz mode	4.7	_	μs	Device must operate at a mini- mum of 1.5 MHz
			400 kHz mode	1.3	—	μs	Device must operate at a mini- mum of 10 MHz
			SSP Module	1.5TCY	_		
102	TR	SDA and SCL Rise	100 kHz mode	—	1000	ns	
		Time	400 kHz mode	20 + 0.1CB	300	ns	CB is specified to be from 10 to 400 pF
103	TF	SDA and SCL Fall	100 kHz mode	—	300	ns	
		Time	400 kHz mode	20 + 0.1CB	300	ns	CB is specified to be from 10 to 400 pF
90	TSU:STA	START Condition	100 kHz mode	4.7	—	μs	Only relevant for Repeated
		Setup Time	400 kHz mode	0.6	_	μs	START condition
91	THD:STA	START Condition Hold	100 kHz mode	4.0	—	μs	After this period, the first clock
		Time	400 kHz mode	0.6	_	μs	pulse is generated
106	THD:DAT	Data Input Hold Time	100 kHz mode	0	—	ns	
			400 kHz mode	0	0.9	μs	
107	TSU:DAT	Data Input Setup Time	100 kHz mode	250	—	ns	(Note 2)
			400 kHz mode	100		ns	
92	TSU:STO	STOP Condition	100 kHz mode	4.7		μs	_
		Setup Time	400 kHz mode	0.6		μs	
109	ΤΑΑ	Output Valid From	100 kHz mode	—	3500	ns	(Note 1)
		Clock	400 kHz mode	—	—	ns	
110	TBUF	Bus Free Time	100 kHz mode	4.7	—	μs	Time the bus must be free before
			400 kHz mode	1.3	—	μs	a new transmission can start
	Св	Bus Capacitive Loading	Bus Capacitive Loading		400	pF	

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of START or STOP conditions.

2: A fast mode (400 kHz) I²C bus device can be used in a standard mode (100 kHz) I²C bus system, but the requirement that TSU:DAT ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line:

TR max.+ TSU:DAT = 1000 + 250 = 1250 ns (according to the standard mode I²C bus specification) before the SCL line is released.

TABLE 14-10: A/D CONVERSION REQUIREMENTS

Param No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
130	TAD	A/D Clock Period	Standard(F)	1.6	_	—	μs	Tosc based, VREF \geq 3.0V
			Extended(LF)	3.0	_	—	μs	Tosc based, VREF $\ge 2.0V$
			Standard(F)	2.0	4.0	6.0	μs	A/D RC mode
			Extended(LF)	3.0	6.0	9.0	μs	A/D RC mode
131	TCNV	Conversion Time (not (Note 1)	including S/H time)		_	12	TAD	
132	TACQ	Acquisition Time		(Note 2)	40	_	μs	
				10*			μs	The minimum time is the amplifier settling time. This may be used if the "new" input volt- age has not changed by more than 1 LSb (i.e., 20.0 mV @ 5.12V) from the last sampled voltage (as stated on CHOLD).
134	TGO	Q4 to A/D Clock Start		_	Tosc/2 §	_	_	If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the SLEEP instruction to be executed.

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

§ This specification ensured by design.

Note 1: ADRES register may be read on the following TCY cycle.

2: See Section 10.1 for min. conditions.

NOTES:

16.0 PACKAGING INFORMATION

16.1 Package Marking Information

28-Lead SPDIP

Example

28-Lead SOIC

Example

28-Lead SSOP

Example

	PIC16LF872
	-I/SS@3
\bigcirc	0010017

Legend	: XXX Y YY WW NNN @3 *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator (e3) can be found on the outer packaging for this package.
Note:	In the eve be carried characters	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available s for customer-specific information.

APPENDIX A: REVISION HISTORY

Version	Date	Revision Description
A	11/99	This is a new data sheet (Pre- liminary). However, these devices are similar to the PIC16C72A devices found in the PIC16C62B/72A Data Sheet (DS35008).
В	12/01	Final version of data sheet. Includes DC and AC charac- teristics graphs and updated electrical specifications.
С	9/06	Packaging diagrams updated.

APPENDIX B: CONVERSION CONSIDERATIONS

Considerations for converting from previous versions of devices to the ones listed in this data sheet are listed in Table B-1.

TABLE B-1:	CONVERSION
	CONSIDERATIONS

Characteristic	PIC16C72A	PIC16F872
Pins	28	28
Timers	3	3
Interrupts	7	10
Communication	Basic SSP (SPI, I ² C Slave)	SSP (SPI, I ² C Master/Slave)
Frequency	20 MHz	20 MHz
A/D	8-bit, 5 channels	10-bit 5 channels
ССР	1	1
Program Memory	2K EPROM	2K FLASH
RAM	128 bytes	128 bytes
EEPROM Data	None	64 bytes
Other	_	In-Circuit Debugger, Low Voltage Programming