

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	64 x 8
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2.2V ~ 5.5V
Data Converters	A/D 5x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf872t-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-2:	PIC16F872 PINOUT DESCRIPTION

Pin Name	Pin#	I/O/P Type	Buffer Type	Description
OSC1/CLKI OSC1 CLKI	9	I	ST/CMOS	Oscillator crystal or external clock input. Oscillator crystal input or external clock source input. ST buffer when configured in RC mode. Otherwise CMOS. External clock source input. Always associated with pin function OSC1 (see OSC2/CLKO pin).
OSC2/CLKO OSC2 CLKO	10	0		Oscillator crystal or clock output. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. In RC mode, OSC2 pin outputs CLKO, which has 1/4 the frequency of OSC1 and denotes the instruction cycle rate.
MCLR/Vpp MCLR Vpp	1	I/P	ST	Master Clear (input) or programming voltage (output). Master Clear (Reset) input. This pin is an active low RESET to the device. Programming voltage input.
RA0/AN0 RA0 AN0	2	I/O	TTL	PORTA is a bi-directional I/O port. Digital I/O. Analog input 0.
RA1/AN1 RA1 AN1	3	I/O	TTL	Digital I/O. Analog input 1.
RA2/AN2/VREF- RA2 AN2 VREF-	4	I/O	TTL	Digital I/O. Analog input 2. Negative analog reference voltage.
RA3/AN3/VREF+ RA3 AN3 VREF+	5	I/O	TTL	Digital I/O. Analog input 3. Positive analog reference voltage.
RA4/T0CKI RA4 T0CKI	6	I/O	ST	Digital I/O; open drain when configured as output. Timer0 clock input.
RA5/SS/AN4 RA5 SS AN4	7	I/O	TTL	Digital I/O. Slave Select for the Synchronous Serial Port. Analog input 4.
Legend: I = input = Not i	ised	O = outpu	ut 1 input	I/O = input/output P = power ST = Schmitt Trigger input

— = Not used ITL = TTL input ST = Schmitt Trigger input
Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.
2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.

TABLE 2-1:	SPECIAL FUNCTION REGISTER SUMMARY	(CONTINUED)	ļ
------------	-----------------------------------	-------------	---

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Details on page:
Bank 2	Bank 2										
100h ⁽²⁾	INDF	Addressin (not a phy	ig this locations is the second se	on uses cont r)	tents of FSR	to address	data memo	ry		0000 0000	21, 93
101h	TMR0	Timer0 M	odule Regist	er						xxxx xxxx	35, 93
102h ⁽²⁾	PCL	Program (Counter (PC) Least Sign	ificant Byte					0000 0000	20, 93
103h ⁽²⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	12, 93
104h ⁽²⁾	FSR	Indirect D	ata Memory	Address Po	binter					xxxx xxxx	21, 93
105h	—	Unimplem	nented							—	—
106h	PORTB	PORTB D	ata Latch w	hen written:	PORTB pins	s when read				xxxx xxxx	31, 93
107h	—	Unimplem	nented							—	—
108h		Unimplem	nented							—	—
109h		Unimplem	nented							—	—
10Ah ^(1,2)	PCLATH	—	—	—	Write Buffe	r for the upp	er 5 bits of t	the Program	n Counter	0 0000	20, 93
10Bh ⁽²⁾	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	14, 93
10Ch	EEDATA	EEPROM	Data Regis	ter Low Byte	9					xxxx xxxx	23, 94
10Dh	EEADR	EEPROM	Address Re	egister Low I	Byte					xxxx xxxx	23, 94
10Eh	EEDATH	_		EEPROM [Data Registe	er High Byte				XXXX XXXX	23, 94
10Fh	EEADRH	—	_	—	EEPROM /	Address Reg	gister High E	Byte		xxxx xxxx	23, 94
Bank 3											
180h ⁽²⁾	INDF	Addressin (not a phy	g this locations is this location is the second s	on uses cont r)	tents of FSR	to address	data memo	ry		0000 0000	21, 93
181h	OPTION_REG	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	13, 94
182h ⁽²⁾	PCL	Program (Counter (PC) Least Sig	nificant Byte			•		0000 0000	20, 93
183h ⁽²⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	12, 93
184h ⁽²⁾	FSR	Indirect D	ata Memory	Address Po	binter	•				xxxx xxxx	21, 93
185h	—	Unimplem	nented							—	—
186h	TRISB	PORTB D	ata Direction	n Register						1111 1111	31, 94
187h		Unimplem	Unimplemented								—
188h		Unimplem	Unimplemented							—	_
189h	—	Unimplem	Unimplemented							—	—
18Ah ^(1,2)	PCLATH	— — Write Buffer for the upper 5 bits of the Program Counter					0 0000	20, 93			
18Bh ⁽²⁾	INTCON	GIE PEIE TMROIE INTE RBIE TMROIF INTF RBIF					0000 000x	14, 93			
18Ch	EECON1	EEPGD	EEPGD — — WRERR WREN WR RD x x000								24, 94
18Dh	EECON2	EEPROM	Control Reg	gister2 (not a	a physical re	gister)					23, 94
18Eh		Reserved	; maintain cl	ear						0000 0000	—
18Fh	_	Reserved	eserved; maintain clear 0000 0000 -								

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'.

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose contents are transferred to the upper byte of the program counter.

2: These registers can be addressed from any bank.

3: These bits are reserved; always maintain these bits clear.

3.4 Reading the FLASH Program Memory

Reading FLASH Program memory is much like that of EEPROM Data memory, only two NOP instructions must be inserted after the RD bit is set. These two instruction cycles that the NOP instructions execute will be used by the microcontroller to read the data out of program memory and insert the value into the EEDATH:EEDATA registers. Data will be available following the second NOP instruction. EEDATH and EEDATA will hold their value until another read operation is initiated, or until they are written by firmware.

The steps to reading the FLASH Program Memory are:

- 1. Write the address to EEADRH:EEADR. Make sure that the address is not larger than the memory size of the device.
- 2. Set the EEPGD bit to point to FLASH Program memory.
- 3. Set the RD bit to start the read operation.
- 4. Execute two NOP instructions to allow the microcontroller to read out of program memory.
- 5. Read the data from the EEDATH:EEDATA registers.

	BSF	STATUS, RP1	i
	BCF	STATUS, RPO	;Bank 2
	MOVF	ADDRL, W	;Write the
	MOVWF	EEADR	;address bytes
	MOVF	ADDRH,W	;for the desired
	MOVWF	EEADRH	;address to read
	BSF	STATUS, RPO	;Bank 3
	BSF	EECON1, EEPGD	;Point to Program memory
g g	BSF	EECON1, RD	;Start read operation
quire	NOP		;Required two NOPs
Red	NOP		;
	BCF	STATUS, RPO	;Bank 2
	MOVF	EEDATA, W	;DATAL = EEDATA
	MOVWF	DATAL	;
	MOVF	EEDATH,W	;DATAH = EEDATH
	MOVWF	DATAH	;

EXAMPLE 3-3: FLASH PROGRAM READ

3.5 Writing to the FLASH Program Memory

Writing to FLASH Program memory is unique in that the microcontroller does not execute instructions while programming is taking place. The oscillator continues to run and all peripherals continue to operate and queue interrupts, if enabled. Once the write operation completes (specification #D133), the processor begins executing code from where it left off. The other important difference when writing to FLASH Program memory is that the WRT configuration bit, when clear, prevents any writes to program memory (see Table 3-1).

Just like EEPROM Data memory, there are many steps in writing to the FLASH Program memory. Both address and data values must be written to the SFRs. The EEPGD bit must be set and the WREN bit must be set to enable writes. The WREN bit should be kept clear at all times, except when writing to the FLASH Program memory. The WR bit can only be set if the WREN bit was set in a previous operation, i.e., they both cannot be set in the same operation. The WREN bit should then be cleared by firmware after the write. Clearing the WREN bit before the write actually completes will not terminate the write in progress.

Writes to program memory must also be prefaced with a special sequence of instructions that prevent inadvertent write operations. This is a sequence of five instructions that must be executed without interruption for each byte written. These instructions must then be followed by two NOP instructions to allow the microcontroller to setup for the write operation. Once the write is complete, the execution of instructions starts with the instruction after the second NOP.

Name	Bit#	Buffer	Function
RB0/INT	bit0	TTL/ST ⁽¹⁾	Input/output pin or external interrupt input. Internal software programmable weak pull-up.
RB1	bit1	TTL	Input/output pin. Internal software programmable weak pull-up.
RB2	bit2	TTL	Input/output pin. Internal software programmable weak pull-up.
RB3/PGM	bit3	TTL	Input/output pin or programming pin in LVP mode. Internal software programmable weak pull-up.
RB4	bit4	TTL	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up.
RB5	bit5	TTL	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up.
RB6/PGC	bit6	TTL/ST ⁽²⁾	Input/output pin (with interrupt-on-change) or In-Circuit Debugger pin. Internal software programmable weak pull-up. Serial programming clock.
RB7/PGD	bit7	TTL/ST ⁽²⁾	Input/output pin (with interrupt-on-change) or In-Circuit Debugger pin. Internal software programmable weak pull-up. Serial programming data.

TABLE 4-3: PORTB FUNCTIONS

Legend: TTL = TTL input, ST = Schmitt Trigger input

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.

TABLE 4-4: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
06h, 106h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	XXXX XXXX	uuuu uuuu
86h, 186h	TRISB	PORTB	PORTB Data Direction Register					1111 1111	1111 1111		
81h, 181h	OPTION_REG	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111

Legend: \mathbf{x} = unknown, \mathbf{u} = unchanged. Shaded cells are not used by PORTB.

8.2 Compare Mode

In Compare mode, the 16-bit CCPR1 register value is constantly compared against the TMR1 register pair value. When a match occurs, the RC2/CCP1 pin is:

- Driven high
- Driven low
- · Remains unchanged

The action on the pin is based on the value of control bits, CCP1M3:CCP1M0 (CCP1CON<3:0>). At the same time, interrupt flag bit CCP1IF is set.

FIGURE 8-2: COMPARE MODE OPERATION BLOCK DIAGRAM

8.2.1 CCP PIN CONFIGURATION

The user must configure the RC2/CCP1 pin as an output by clearing the TRISC<2> bit.

Note:	Clearing the CCP1CON register will force
	the RC2/CCP1 compare output latch to the
	default low level. This is not the PORTC
	I/O data latch.

8.2.2 TIMER1 MODE SELECTION

Timer1 must be running in Timer mode or Synchronized Counter mode if the CCP module is using the compare feature. In Asynchronous Counter mode, the compare operation may not work.

8.2.3 SOFTWARE INTERRUPT MODE

When Generate Software Interrupt mode is chosen, the CCP1 pin is not affected. The CCPIF bit is set, causing a CCP interrupt (if enabled).

8.2.4 SPECIAL EVENT TRIGGER

In this mode, an internal hardware trigger is generated, which may be used to initiate an action.

The special event trigger output of CCP1 resets the TMR1 register pair and starts an A/D conversion (if the A/D module is enabled). This allows the CCPR1 register to effectively be a 16-bit programmable period register for Timer1.

Note: The special event trigger from the CCP module will not set interrupt flag bit TMR1IF (PIR1<0>).

TABLE 8-2: REGISTERS ASSOCIATED WITH CAPTURE, COMPARE, AND TIMER1

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
0Bh,8Bh, 10Bh, 18Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	(1)	ADIF	(1)	(1)	SSPIF	CCP1IF	TMR2IF	TMR1IF	r0rr 0000	0000 0000
8Ch	PIE1	(1)	ADIE	(1)	(1)	SSPIE	CCP1IE	TMR2IE	TMR1IE	r0rr 0000	0000 0000
87h	TRISC	PORTC	Data Di	irection Reg	ister					1111 1111	1111 1111
0Eh	TMR1L	Holding	Registe	r for the Lea	ast Significa	nt Byte of th	ne 16-bit Tl	MR1 Regis	ster	XXXX XXXX	uuuu uuuu
0Fh	TMR1H	Holding	Registe	r for the Mo	st Significar	nt Byte of the	e 16-bit TN	/IR1 Regis	ter	XXXX XXXX	uuuu uuuu
10h	T1CON	_	-	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00 0000	uu uuuu
15h	CCPR1L	Capture	e/Compa	re/PWM Re	gister1 (LSI	3)				XXXX XXXX	uuuu uuuu
16h	CCPR1H	Capture	e/Compa	re/PWM Re	gister1 (MS	B)				XXXX XXXX	uuuu uuuu
17h	CCP1CON		_	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000

Note 1: These bits are reserved; always maintain clear.

9.2.10 I²C MASTER MODE REPEATED START CONDITION TIMING

A Repeated START condition occurs when the RSEN bit (SSPCON2<1>) is programmed high and the I²C module is in the IDLE state. When the RSEN bit is set, the SCL pin is asserted low. When the SCL pin is sampled low, the baud rate generator is loaded with the contents of SSPADD<6:0> and begins counting. The SDA pin is released (brought high) for one baud rate generator count (TBRG). When the baud rate generator times out if SDA is sampled high, the SCL pin will be de-asserted (brought high). When SCL is sampled high, the baud rate generator is reloaded with the contents of SSPADD<6:0> and begins counting. SDA and SCL must be sampled high for one TBRG. This action is then followed by assertion of the SDA pin (SDA is low) for one TBRG, while SCL is high. Following this, the RSEN bit in the SSPCON2 register will be automatically cleared and the baud rate generator will not be reloaded, leaving the SDA pin held low. As soon as a START condition is detected on the SDA and SCL pins, the S bit (SSPSTAT<3>) will be set. The SSPIF bit will not be set until the baud rate generator has timed out.

- Note 1: If RSEN is programmed while any other event is in progress, it will not take effect.
 - 2: A bus collision during the Repeated START condition occurs if:
 - SDA is sampled low when SCL goes from low to high.
 - SCL goes low before SDA is asserted low. This may indicate that another master is attempting to transmit a data "1".

Immediately following the SSPIF bit getting set, the user may write the SSPBUF with the 7-bit address in 7-bit mode, or the default first address in 10-bit mode. After the first eight bits are transmitted and an ACK is received, the user may then transmit an additional eight bits of address (10-bit mode), or eight bits of data (7-bit mode).

9.2.10.1 WCOL Status Flag

If the user writes the SSPBUF when a Repeated START sequence is in progress, then WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

Note: Because queueing of events is not allowed, writing of the lower 5 bits of SSPCON2 is disabled until the Repeated START condition is complete.

FIGURE 9-13: REPEAT START CONDITION WAVEFORM

10.1 A/D Acquisition Requirements

For the A/D converter to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The analog input model is shown in Figure 10-2. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD), Figure 10-2. The maximum recommended impedance for analog sources is 10 k Ω . As the impedance is decreased, the acquisition time may be

EQUATION 10-1: ACQUISITION TIME

decreased. After the analog input channel is selected (changed), this acquisition must be done before the conversion can be started.

Equation 10-1 may be used to calculate the minimum acquisition time. This equation assumes that 1/2 LSb error is used (1024 steps for the A/D). The 1/2 LSb error is the maximum error allowed for the A/D to meet its specified resolution.

To calculate the minimum acquisition time, TACQ, see the PICmicro[™] Mid-Range Reference Manual (DS33023).

TACQ	= Amplifier Settling Time + Hold Capacitor Charging Time + Temperature Coefficient
	= TAMP + TC + TCOFF
	= $2 \mu s + TC + [(Temperature -25^{\circ}C)(0.05 \mu s/^{\circ}C)]$
TC	= CHOLD (RIC + RSS + RS) In(1/2047) - 120 pF (1 k Ω + 7 k Ω + 10 k Ω) In(0.0004885)
	$= 16.47 \mu s$
TACQ	= $2 \mu s + 16.47 \mu s + [(50^{\circ}C - 25^{\circ}C)(0.05 \mu s/^{\circ}C)]$
	$= 19.72 \mu s$

Note 1: The reference voltage (VREF) has no effect on the equation, since it cancels itself out.

- 2: The charge holding capacitor (CHOLD) is not discharged after each conversion.
- **3:** The maximum recommended impedance for analog sources is $10 \text{ k}\Omega$. This is required to meet the pin leakage specification.

FIGURE 10-2: ANALOG INPUT MODEL

POR	BOR	то	PD	
0	x	1	1	Power-on Reset
0	x	0	x	Illegal, TO is set on POR
0	x	x	0	Illegal, PD is set on POR
1	0	1	1	Brown-out Reset
1	1	0	1	WDT Reset
1	1	0	0	WDT Wake-up
1	1	u	u	MCLR Reset during normal operation
1	1	1	0	MCLR Reset during SLEEP or interrupt wake-up from SLEEP

TABLE 11-4: STATUS BITS AND THEIR SIGNIFICANCE

TABLE 11-5: RESET CONDITION FOR SPECIAL REGISTERS

Condition	Program Counter	STATUS Register	PCON Register
Power-on Reset	000h	0001 1xxx	0x
MCLR Reset during normal operation	000h	000u uuuu	uu
MCLR Reset during SLEEP	000h	0001 Ouuu	uu
WDT Reset	000h	0000 luuu	uu
WDT Wake-up	PC + 1	uuu0 0uuu	uu
Brown-out Reset	000h	0001 luuu	u0
Interrupt wake-up from SLEEP	PC + 1 ⁽¹⁾	uuul Ouuu	uu

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0'

Note 1: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

TABLE 11-6: INITIALIZATION CONDITIONS FOR ALL REGISTERS

Register	Power-on Reset, Brown-out Reset	MCLR Resets WDT Reset	Wake-up via WDT or Interrupt
W	xxxx xxxx	uuuu uuuu	uuuu uuuu
INDF	N/A	N/A	N/A
TMR0	XXXX XXXX	սսսս սսսս	uuuu uuuu
PCL	0000h	0000h	PC + 1 ⁽²⁾
STATUS	0001 1xxx	000q quuu (3)	uuuq quuu (3)
FSR	XXXX XXXX	uuuu uuuu	uuuu uuuu
PORTA	0x 0000	0u 0000	uu uuuu
PORTB	XXXX XXXX	uuuu uuuu	uuuu uuuu
PORTC	XXXX XXXX	uuuu uuuu	uuuu uuuu
PCLATH	0 0000	0 0000	u uuuu
INTCON	0000 000x	0000 000u	uuuu uuuu (1)
PIR1	r0rr 0000	r0rr 0000	rurr uuuu(1)
PIR2	-r-0 0r	-r-0 0r	-r-u ur (1)

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition, r = reserved, maintain clear

Note 1: One or more bits in INTCON, PIR1 and/or PIR2 will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

3: See Table 11-5 for RESET value for specific condition.

FIGURE 11-7: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2

11.13 Power-down Mode (SLEEP)

Power-down mode is entered by executing a SLEEP instruction.

If enabled, the Watchdog Timer will be cleared but keeps running, the PD bit (STATUS<3>) is cleared, the TO (STATUS<4>) bit is set, and the oscillator driver is turned off. The I/O ports maintain the status they had before the SLEEP instruction was executed (driving high, low, or hi-impedance).

For lowest current consumption in this mode, place all I/O pins at either VDD or Vss, ensure no external circuitry is drawing current from the I/O pin, power-down the A/D and disable external clocks. Pull all I/O pins that are hi-impedance inputs, high or low externally, to avoid switching currents caused by floating inputs. The TOCKI input should also be at VDD or Vss for lowest current consumption. The contribution from on-chip pull-ups on PORTB should also be considered.

The $\overline{\text{MCLR}}$ pin must be at a logic high level (VIHMC).

11.13.1 WAKE-UP FROM SLEEP

The device can wake-up from SLEEP through one of the following events:

- 1. External RESET input on MCLR pin.
- 2. Watchdog Timer wake-up (if WDT was enabled).
- 3. Interrupt from INT pin, RB port change or Peripheral Interrupt.

External MCLR Reset will cause a device RESET. All other events are considered a continuation of program execution and cause a "wake-up". The TO and PD bits in the STATUS register can be used to determine the cause of device RESET. The PD bit, which is set on power-up, is cleared when SLEEP is invoked. The TO bit is cleared if a WDT time-out occurred and caused wake-up.

The following peripheral interrupts can wake the device from SLEEP:

- 1. PSP read or write.
- 2. TMR1 interrupt. Timer1 must be operating as an asynchronous counter.
- 3. CCP Capture mode interrupt.
- 4. Special event trigger (Timer1 in Asynchronous mode using an external clock).
- 5. SSP (START/STOP) bit detect interrupt.
- 6. SSP transmit or receive in Slave mode (SPI/I²C).
- 7. USART RX or TX (Synchronous Slave mode).
- 8. A/D conversion (when A/D clock source is RC).
- 9. EEPROM write operation completion.

Other peripherals cannot generate interrupts, since during SLEEP, no on-chip clocks are present.

When the SLEEP instruction is being executed, the next instruction (PC + 1) is pre-fetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be set (enabled). Wake-up is regardless of the state of the GIE bit. If the GIE bit is clear (disabled), the device continues execution at the instruction after the SLEEP instruction. If the GIE bit is set (enabled), the device executes the instruction after the SLEEP instruction after the sLEEP instruction of the interrupt address (0004h). In cases where the execution of the instruction following SLEEP is not desirable, the user should have a NOP after the SLEEP instruction.

11.13.2 WAKE-UP USING INTERRUPTS

When global interrupts are disabled (GIE cleared) and any interrupt source has both its interrupt enable bit and interrupt flag bit set, one of the following will occur:

- If the interrupt occurs before the execution of a SLEEP instruction, the SLEEP instruction will complete as a NOP. Therefore, the WDT and WDT postscaler will not be cleared, the TO bit will not be set and PD bits will not be cleared.
- If the interrupt occurs during or after the execution of a SLEEP instruction, the device will immediately wake-up from SLEEP. The SLEEP instruction will be completely executed before the wake-up. Therefore, the WDT and WDT postscaler will be cleared, the TO bit will be set and the PD bit will be cleared.

Even if the flag bits were checked before executing a SLEEP instruction, it may be possible for flag bits to become set before the SLEEP instruction completes. To determine whether a SLEEP instruction executed, test the PD bit. If the PD bit is set, the SLEEP instruction was executed as a NOP.

To ensure that the WDT is cleared, a CLRWDT instruction should be executed before a SLEEP instruction.

11.17 In-Circuit Serial Programming

PIC16F872 microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data and three other lines for power, ground, and the programming voltage. This allows customers to manufacture boards with unprogrammed devices, and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

When using ICSP, the part must be supplied 4.5V to 5.5V if a bulk erase will be executed. This includes reprogramming of the code protect, both from an onstate to off-state. For all other cases of ICSP, the part may be programmed at the normal operating voltages. This means calibration values, unique user IDs or user code can be reprogrammed or added.

For complete details of serial programming, please refer to the EEPROM Memory Programming Specification for the PIC16F87X (DS39025).

11.18 Low Voltage ICSP Programming

The LVP bit of the configuration word enables low voltage ICSP programming. This mode allows the microcontroller to be programmed via ICSP, using a VDD source in the operating voltage range. This only means that VPP does not have to be brought to VIHH, but can instead be left at the normal operating voltage. In this mode, the RB3/PGM pin is dedicated to the programming function and ceases to be a general purpose I/O pin. During programming, VDD is applied to the MCLR pin. To enter Programming mode, VDD must be applied to the RB3/PGM pin, provided the LVP bit is set. The LVP bit defaults to on ('1') from the factory.

- Note 1: The High Voltage Programming mode is always available, regardless of the state of the LVP bit, by applying VIHH to the MCLR pin.
 - 2: While in low voltage ICSP mode, the RB3 pin can no longer be used as a general purpose I/O pin.
 - 3: When using low voltage ICSP programming (LVP) and the pull-ups on PORTB are enabled, bit 3 in the TRISB register must be cleared to disable the pull-up on RB3 and ensure the proper operation of the device.

If Low Voltage Programming mode is not used, the LVP bit can be programmed to a '0' and RB3/PGM becomes a digital I/O pin. However, the LVP bit may only be programmed when programming is entered with VIHH on MCLR. The LVP bit can only be charged when using high voltage on MCLR.

It should be noted that once the LVP bit is programmed to 0, only the High Voltage Programming mode is available and only High Voltage Programming mode can be used to program the device.

When using low voltage ICSP, the part must be supplied 4.5V to 5.5V if a bulk erase will be executed. This includes reprogramming of the code protect bits from an on-state to off-state. For all other cases of low voltage ICSP, the part may be programmed at the normal operating voltage. This means calibration values, unique user IDs, or user code can be reprogrammed or added.

PIC16F872

MOVF	Move f
Syntax:	[label] MOVF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \ [0,1] \end{array}$
Operation:	(f) \rightarrow (destination)
Status Affected:	Z
Description:	The contents of register f are moved to a destination dependant upon the status of d. If $d = 0$, destination is W register. If $d = 1$, the destination is file register f itself. d = 1 is useful to test a file register, since status flag Z is affected.

NOP	No Operation
Syntax:	[label] NOP
Operands:	None
Operation:	No operation
Status Affected:	None
Description:	No operation.

MOVLW	Move Literal to W	
Syntax:	[<i>label</i>] MOVLW k	
Operands:	$0 \le k \le 255$	
Operation:	$k \rightarrow (W)$	
Status Affected:	None	
Description:	The eight-bit literal 'k' is loaded into W register. The don't cares will assemble as 0's.	

RETFIE	Return from Interrupt
Syntax:	[label] RETFIE
Operands:	None
Operation:	$TOS \rightarrow PC$, 1 $\rightarrow GIE$
Status Affected:	None

MOVWF	Move W to f
Syntax:	[label] MOVWF f
Operands:	$0 \le f \le 127$
Operation:	$(W) \to (f)$
Status Affected:	None
Description:	Move data from W register to register 'f'.

RETLW	Return with Literal in W	
Syntax:	[<i>label</i>] RETLW k	
Operands:	$0 \le k \le 255$	
Operation:	$k \rightarrow (W);$ TOS $\rightarrow PC$	
Status Affected:	None	
Description:	The W register is loaded with the eight-bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a two-cycle instruction.	

RLF	Rotate Left f through Carry
Syntax:	[<i>label</i>] RLF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \left[0,1\right] \end{array}$
Operation:	See description below
Status Affected:	С
Description:	The contents of register 'f' are rotated one bit to the left through the Carry Flag. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is stored back in register 'f'.

SLEEP

Syntax:	[label] SLEEP
Operands:	None
Operation:	$\begin{array}{l} 00h \rightarrow WDT, \\ 0 \rightarrow \underline{W}DT \text{ prescaler}, \\ 1 \rightarrow \overline{TO}, \\ 0 \rightarrow \overline{PD} \end{array}$
Status Affected:	TO, PD
Description:	The power-down status bit, \overline{PD} is cleared. Time-out status bit, \overline{TO} is set. Watchdog Timer and its prescaler are cleared. The processor is put into SLEEP mode with the oscillator stopped.

RETURN	Return from Subroutine	
Syntax:	[label] RETURN	
Operands:	None	
Operation:	$TOS\toPC$	
Status Affected:	None	
Description:	Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded into the program counter. This is a two-cycle instruction.	

RRF	Rotate Right f through Carry
Syntax:	[<i>label</i>] RRF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \left[0,1\right] \end{array}$
Operation:	See description below
Status Affected:	С
Description:	The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'.
	C Register f

SUBLW	Subtract W from Literal
Syntax:	[<i>label</i>] SUBLW k
Operands:	$0 \le k \le 255$
Operation:	$k \text{ - } (W) \to (W)$
Status Affected:	C, DC, Z
Description:	The W register is subtracted (2's complement method) from the eight-bit literal 'k'. The result is placed in the W register.

SUBWF	Subtract W from f
Syntax:	[<i>label</i>] SUBWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \left[0,1\right] \end{array}$
Operation:	(f) - (W) \rightarrow (destination)
Status Affected:	C, DC, Z
Description:	Subtract (2's complement method) W register from register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.

13.13 PICDEM 3 Low Cost PIC16CXXX Demonstration Board

The PICDEM 3 demonstration board is a simple demonstration board that supports the PIC16C923 and PIC16C924 in the PLCC package. It will also support future 44-pin PLCC microcontrollers with an LCD Module. All the necessary hardware and software is included to run the basic demonstration programs. The user can program the sample microcontrollers provided with the PICDEM 3 demonstration board on a PRO MATE II device programmer, or a PICSTART Plus development programmer with an adapter socket, and easily test firmware. The MPLAB ICE in-circuit emulator may also be used with the PICDEM 3 demonstration board to test firmware. A prototype area has been provided to the user for adding hardware and connecting it to the microcontroller socket(s). Some of the features include a RS-232 interface, push button switches, a potentiometer for simulated analog input, a thermistor and separate headers for connection to an external LCD module and a keypad. Also provided on the PICDEM 3 demonstration board is a LCD panel, with 4 commons and 12 segments, that is capable of displaying time, temperature and day of the week. The PICDEM 3 demonstration board provides an additional RS-232 interface and Windows software for showing the demultiplexed LCD signals on a PC. A simple serial interface allows the user to construct a hardware demultiplexer for the LCD signals.

13.14 PICDEM 17 Demonstration Board

The PICDEM 17 demonstration board is an evaluation board that demonstrates the capabilities of several Microchip microcontrollers, including PIC17C752, PIC17C756A, PIC17C762 and PIC17C766. All necessary hardware is included to run basic demo programs, which are supplied on a 3.5-inch disk. A programmed sample is included and the user may erase it and program it with the other sample programs using the PRO MATE II device programmer, or the PICSTART Plus development programmer, and easily debug and test the sample code. In addition, the PICDEM 17 demonstration board supports downloading of programs to and executing out of external FLASH memory on board. The PICDEM 17 demonstration board is also usable with the MPLAB ICE in-circuit emulator, or the PICMASTER emulator and all of the sample programs can be run and modified using either emulator. Additionally, a generous prototype area is available for user hardware.

13.15 KEELOQ Evaluation and Programming Tools

KEELOQ evaluation and programming tools support Microchip's HCS Secure Data Products. The HCS evaluation kit includes a LCD display to show changing codes, a decoder to decode transmissions and a programming interface to program test transmitters.

14.2 DC Characteristics: PIC16F872 (Commercial, Industrial) PIC16LF872 (Commercial, Industrial) (Continued)

DC CH4	RISTICS	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $0^{\circ}C \le TA \le +70^{\circ}C$ for commercialOperating voltage VDD range as described in DC specification(Section 14.1)						
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions	
D080	Vol	Output Low Voltage I/O ports	-	-	0.6	v	IOL = 8.5 mA, VDD = 4.5V, -40°C to +85°C	
D083		OSC2/CLKOUT (RC osc config)	-	-	0.6	V	IOL = 1.6 mA, VDD = 4.5V, -40°C to +85°C	
D090	Vон	Output High Voltage I/O ports ⁽³⁾	Vdd - 0.7	-	-	v	IOH = -3.0 mA, VDD = 4.5V, -40°C to +85°C	
D092		OSC2/CLKOUT (RC osc config)	Vdd - 0.7	-	-	V	IOH = -1.3 mA, VDD = 4.5V, -40°С to +85°С	
D150*	Vod	Open Drain High Voltage	-	-	8.5	V	RA4 pin	
D100	Cosc2	Capacitive Loading Specs on Output Pins OSC2 pin	-	-	15	pF	In XT, HS and LP modes when external clock is used to drive OSC1	
D101 D102	Сю Св	All I/O pins and OSC2 (RC mode) SCL, SDA (I ² C mode)	-	-	50 400	pF pF		
		Data EEPROM Memory						
D120	ED	Endurance	100K	-	-	E/W	25°C at 5V	
D121	Vdrw	VDD for read/write	VMIN	-	5.5	V	Using EECON to read/write VMIN = min. operating voltage	
D122	TDEW	Erase/write cycle time	-	4	8	ms		
		Program FLASH Memory						
D130	Ep	Endurance	1000	-	-	E/W	25°C at 5V	
D131	Vpr	VDD for read	VMIN	-	5.5	V	Vmin = min operating voltage	
D132A		VDD for erase/write	VMIN	-	5.5	V	Using EECON to read/write, VMIN = min. operating voltage	
D133	TPEW	Erase/Write cycle time	-	4	8	ms		

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16F872 be driven with external clock in RC mode.

The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.
 Negative surrent is defined as surrent expressed by the pin.

3: Negative current is defined as current sourced by the pin.

14.4 DC Characteristics: PIC16F872 (Extended)

DC CH4	ARACTE	RISTICS	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$ Operating voltage VDD range as described in DC specification (Section 14.1)					
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions	
-	VIL	Input Low Voltage						
		I/O ports:						
D030		with TTL buffer	Vss	-	0.15VDD	V	For entire VDD range	
D030A			Vss	-	0.8V	V	$4.5V \le VDD \le 5.5V$	
D031		with Schmitt Trigger buffer	Vss	-	0.2Vdd	V		
D032		MCLR, OSC1 (in RC mode)	Vss	-	0.2Vdd	V		
D033		OSC1 (in XT, HS and LP modes)	Vss	-	0.3Vdd	V	(Note1)	
		Ports RC3 and RC4:						
D034		with Schmitt Trigger buffer	Vss	-	0.3Vdd	V	For entire VDD range	
D034A		with SMBus	-0.5	-	0.6	V	for VDD = 4.5 to 5.5V	
	Vih	Input High Voltage						
		I/O ports:		-				
D040		with TTL buffer	2.0	-	Vdd	V	$4.5V \le VDD \le 5.5V$	
D040A			0.25VDD + 0.8V	-	VDD	V	For entire VDD range	
D041		with Schmitt Trigger buffer	0.8VDD	-	Vdd	V	For entire VDD range	
D042		MCLR	0.8VDD	-	Vdd	V		
D042A		OSC1 (XT, HS and LP modes)	0.7Vdd	-	Vdd	V	(Note1)	
D043		OSC1 (in RC mode)	0.9VDD	-	Vdd	V		
		Ports RC3 and RC4:						
D044		with Schmitt Trigger buffer	0.7Vdd	-	Vdd	V	For entire VDD range	
D044A		with SMBus	1.4	-	5.5	V	for VDD = 4.5 to 5.5V	
D070A	IPURB	PORTB Weak Pull-up Current	50	300	500	μA	VDD = 5V, VPIN = VSS,	
	lı∟	Input Leakage Current ^(2, 3)						
D060		I/O ports	-	-	±1	μA	$Vss \leq VPIN \leq VDD$, Pin at hi-impedance	
D061		MCLR, RA4/T0CKI	-	-	±5	μA	$Vss \leq VPIN \leq VDD$	
D063		OSC1	-	-	±5	μA	Vss \leq VPIN \leq VDD, XT, HS and LP osc configuration	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16F872 be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

TABLE 14-2: CLKOUT AND I/O TIMING REQUIREMENTS

Param No.	Symbol	Character	istic	Min	Тур†	Мах	Units	Conditions
10*	TosH2ckL	OSC1↑ to CLKOUT↓		—	75	200	ns	(Note 1)
11*	TosH2ckH	OSC1 [↑] to CLKOUT [↑]	—	75	200	ns	(Note 1)	
12*	TckR	CLKOUT rise time	—	35	100	ns	(Note 1)	
13*	TckF	CLKOUT fall time		—	35	100	ns	(Note 1)
14*	TckL2ioV	CLKOUT \downarrow to Port out valid		—	_	0.5TCY + 20	ns	(Note 1)
15*	TioV2ckH	Port in valid before CLKOUT↑		Tosc + 200	_	—	ns	(Note 1)
16*	TckH2iol	Port in hold after CLKOUT↑	Port in hold after CLKOUT↑			_	ns	(Note 1)
17*	TosH2ioV	OSC1↑ (Q1 cycle) to Port out valid	_	100	255	ns		
18*	TosH2iol	OSC1 [↑] (Q2 cycle) to Port	Standard (F)	100		—	ns	
		input invalid (I/O in hold time)	Extended (LF)	200	—	—	ns	
19*	TioV2osH	Port input valid to OSC1 [↑] (I/O	in setup time)	0	_	—	ns	
20*	TIOR	Port output rise time	Standard (F)	—	10	40	ns	
			Extended (LF)	—	—	145	ns	
21*	TIOF	Port output fall time	Standard (F)	—	10	40	ns	
			Extended (LF)	—		145	ns	
22††*	TINP	INT pin high or low time		TCY	_	—	ns	
23††*	TRBP	RB7:RB4 change INT high or	low time	TCY	_	—	ns	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

these parameters are asynchronous events not related to any internal clock edges.

Note 1: Measurements are taken in RC mode, where CLKOUT output is 4 x Tosc.

TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS **FIGURE 14-8:**

TABLE 14-4:	TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS

Param No.	Symbol		Min	Тур†	Max	Units	Conditions		
40*	Tt0H	T0CKI High Pulse	Width	No Prescaler	0.5TCY + 20	—	-	ns	Must also meet
		, ,		With Prescaler	10		—	ns	parameter 42
41*	Tt0L	T0CKI Low Pulse	Width	No Prescaler	0.5TCY + 20			ns	Must also meet
				With Prescaler	10	Ι	—	ns	parameter 42
42*	Tt0P	T0CKI Period		No Prescaler	TCY + 40			ns	
				With Prescaler	Greater of: 20 or <u>Tcy + 40</u> N		-	ns	N = prescale value (2, 4,, 256)
45*	Tt1H	T1CKI High Time	Synchronous, Pr	escaler = 1	0.5TCY + 20	—	_	ns	Must also meet
			Synchronous,	Standard(F)	15	—		ns	parameter 47
			Prescaler = 2,4,8	Extended(LF)	25	—	_	ns	
			Asynchronous	Standard(F)	30	—	—	ns	
				Extended(LF)	50		—	ns	
46*	Tt1L	T1CKI Low Time	Synchronous, Pr	escaler = 1	0.5TCY + 20			ns	Must also meet
			Synchronous,	Standard(F)	15	_		ns	parameter 47
			Prescaler = 2,4,8	Extended(LF)	25	—	_	ns	
			Asynchronous	Standard(F)	30	—	—	ns	
				Extended(LF)	50	—	—	ns	
47*	Tt1P	T1CKI Input Period	Synchronous	Standard(F)	Greater of: 30 OR <u>Tcy + 40</u> N	_		ns	N = prescale value (1, 2, 4, 8)
				Extended(LF)	Greater of: 50 OR <u>TCY + 40</u> N				N = prescale value (1, 2, 4, 8)
			Asynchronous	Standard(F)	60	—	_	ns	
				Extended(LF)	100	—	_	ns	
	Ft1	Timer1 Oscillator I (oscillator enabled	nput Frequency R by setting bit T1C	DC	—	200	kHz		
48	TCKEZtmr1	Delay from Extern	al Clock Edge to T	imer Increment	2Tosc	—	7Tosc	—	

* These parameters are characterized but not tested.
 † Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

TABLE 14-5: CAPTURE/COMPARE/PWM REQUIREMENTS

Param No.	Sym	(Min	Тур†	Max	Units	Conditions		
50*	TccL	CCP1 Input Low Time	No Prescaler		0.5TCY + 20	—	—	ns	
			Standard(F)		10	_		ns	
			With rescale	Extended(LF)	20	_		ns	
51*	ТссН	CCP1 Input High Time	No Prescaler		0.5TCY + 20	—		ns	
			With Prescaler	Standard(F)	10	_		ns	
			With rescale	Extended(LF)	20	_		ns	
52*	TccP	CCP1 Input Period			<u>3Tcy + 40</u> N	—	—	ns	N = prescale value (1,4 or 16)
53*	TccR	CCP1 Output Rise Time		Standard(F)	—	10	25	ns	
				Extended(LF)	—	25	50	ns	
54*	TccF	CCP1 Output Fall Time		Standard(F)	_	10	25	ns	
				Extended(LF)	—	25	45	ns	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

28-Lead Plastic Small Outline (SO) - Wide, 300 mil Body (SOIC)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES*		N	6				
Dimension	Limits	MIN	NOM	MAX	MIN	NOM	MAX			
Number of Pins	n		28			28				
Pitch	р		.050			1.27				
Overall Height	Α	.093	.099	.104	2.36	2.50	2.64			
Molded Package Thickness	A2	.088	.091	.094	2.24	2.31	2.39			
Standoff §	A1	.004	.008	.012	0.10	0.20	0.30			
Overall Width	E	.394	.407	.420	10.01	10.34	10.67			
Molded Package Width	E1	.288	.295	.299	7.32	7.49	7.59			
Overall Length	D	.695	.704	.712	17.65	17.87	18.08			
Chamfer Distance	h	.010	.020	.029	0.25	0.50	0.74			
Foot Length	L	.016	.033	.050	0.41	0.84	1.27			
Foot Angle Top	¢	0	4	8	0	4	8			
Lead Thickness	С	.009	.011	.013	0.23	0.28	0.33			
Lead Width	В	.014	.017	.020	0.36	0.42	0.51			
Mold Draft Angle Top	α	0	12	15	0	12	15			
Mold Draft Angle Bottom	β	0	12	15	0	12	15			

* Controlling Parameter

§ Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-013

Drawing No. C04-052