



#### Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Obsolete                                                                       |
|----------------------------|--------------------------------------------------------------------------------|
| Core Processor             | C166                                                                           |
| Core Size                  | 16-Bit                                                                         |
| Speed                      | 25MHz                                                                          |
| Connectivity               | CANbus, EBI/EMI, SPI, SSC, UART/USART                                          |
| Peripherals                | POR, PWM, WDT                                                                  |
| Number of I/O              | 59                                                                             |
| Program Memory Size        | 64KB (64K × 8)                                                                 |
| Program Memory Type        | ОТР                                                                            |
| EEPROM Size                | -                                                                              |
| RAM Size                   | 4K x 8                                                                         |
| Voltage - Supply (Vcc/Vdd) | 4.75V ~ 5.5V                                                                   |
| Data Converters            | A/D 8x10b                                                                      |
| Oscillator Type            | External                                                                       |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                              |
| Mounting Type              | Surface Mount                                                                  |
| Package / Case             | 80-QFP                                                                         |
| Supplier Device Package    | PG-MQFP-80-7                                                                   |
| Purchase URL               | https://www.e-xfl.com/product-detail/infineon-technologies/c164ci8e25mdbfxqma1 |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

# C164CI/SI C164CL/SL

16-Bit Single-Chip Microcontroller

# Microcontrollers



Never stop thinking.



#### **Ordering Information**

The ordering code for Infineon microcontrollers provides an exact reference to the required product. This ordering code identifies:

- the derivative itself, i.e. its function set, the temperature range, and the supply voltage
- the package and the type of delivery.

For the available ordering codes for the C164CI please refer to the **"Product Catalog Microcontrollers"**, which summarizes all available microcontroller variants.

Note: The ordering codes for Mask-ROM versions are defined for each product after verification of the respective ROM code.

#### Introduction

The C164CI derivatives of the Infineon C166 Family of full featured single-chip CMOS microcontrollers are especially suited for cost sensitive applications. They combine high CPU performance (up to 12.5 million instructions per second) with high peripheral functionality and enhanced IO-capabilities. They also provide clock generation via PLL and various on-chip memory modules such as program ROM or OTP, internal RAM, and extension RAM.



Figure 1 Logic Symbol



| Table 2    | PI         |                | tions and Functions (cont d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------|------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Symbol     | Pin<br>No. | Input<br>Outp. | Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| P4         |            | 10             | Port 4 is a 6-bit bidirectional I/O port. It is bit-wise<br>programmable for input or output via direction bits. For a pin<br>configured as input, the output driver is put into high-<br>impedance state. Port 4 outputs can be configured as push/<br>pull or open drain drivers. The input threshold of Port 4 is<br>selectable (TTL or special).<br>Port 4 can be used to output the segment address lines, the<br>optional chip select lines, and for serial interface lines: <sup>1)</sup> |
| P4.0       | 17         | 0<br>0         | A16 Least Significant Segment Address Line,<br>CS3 Chip Select 3 Output                                                                                                                                                                                                                                                                                                                                                                                                                          |
| P4.1       | 18         | 0<br>0         | A17Segment Address Line,CS2Chip Select 2 Output                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| P4.2       | 19         | 0<br>0         | A18Segment Address Line,CS1Chip Select 1 Output                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| P4.3       | 22         | 0<br>0         | A19Segment Address Line,CS0Chip Select 0 Output                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| P4.5       | 23         | 0<br>I         | A20 Segment Address Line,<br>CAN1_RxD CAN 1 Receive Data Input                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| P4.6       | 24         | 0<br>0         | A21 Most Significant Segment Address Line,<br>CAN1_TxD CAN 1 Transmit Data Output                                                                                                                                                                                                                                                                                                                                                                                                                |
| RD         | 25         | 0              | External Memory Read Strobe. RD is activated for every external instruction or data read access.                                                                                                                                                                                                                                                                                                                                                                                                 |
| WR/<br>WRL | 26         | 0              | External Memory Write Strobe. In WR-mode this pin is<br>activated for every external data write access. In WRL-mode<br>this pin is activated for low byte data write accesses on a<br>16-bit bus, and for every data write access on an 8-bit bus.<br>See WRCFG in register SYSCON for mode selection.                                                                                                                                                                                           |
| ALE        | 27         | 0              | Address Latch Enable Output. Can be used for latching the address into external memory or an address latch in the multiplexed bus modes.                                                                                                                                                                                                                                                                                                                                                         |



#### **Functional Description**

The architecture of the C164CI combines advantages of both RISC and CISC processors and of advanced peripheral subsystems in a very well-balanced way. In addition the on-chip memory blocks allow the design of compact systems with maximum performance.

The following block diagram gives an overview of the different on-chip components and of the advanced, high bandwidth internal bus structure of the C164CI.

Note: All time specifications refer to a CPU clock of 25 MHz (see definition in the AC Characteristics section).



Figure 3 Block Diagram

The program memory, the internal RAM (IRAM) and the set of generic peripherals are connected to the CPU via separate buses. A fourth bus, the XBUS, connects external resources as well as additional on-chip resoures, the X-Peripherals (see Figure 3).

The XBUS resources (XRAM, CAN) of the C164CI can be enabled or disabled during initialization by setting the general X-Peripheral enable bit XPEN (SYSCON.2). Modules that are disabled consume neither address space nor port pins.



#### External Bus Controller

All of the external memory accesses are performed by a particular on-chip External Bus Controller (EBC). It can be programmed either to Single Chip Mode when no external memory is required, or to one of four different external memory access modes, which are as follows:

- 16-/18-/20-/22-bit Addresses, 16-bit Data, Demultiplexed
- 16-/18-/20-/22-bit Addresses, 16-bit Data, Multiplexed
- 16-/18-/20-/22-bit Addresses, 8-bit Data, Multiplexed
- 16-/18-/20-/22-bit Addresses, 8-bit Data, Demultiplexed

In the demultiplexed bus modes, addresses are output on PORT1 and data is input/ output on PORT0 or P0L, respectively. In the multiplexed bus modes both addresses and data use PORT0 for input/output.

Important timing characteristics of the external bus interface (Memory Cycle Time, Memory Tri-State Time, Length of ALE and Read Write Delay) have been made programmable to allow the user the adaption of a wide range of different types of memories and external peripherals.

In addition, up to 4 independent address windows may be defined (via register pairs ADDRSELx / BUSCONx) which control the access to different resources with different bus characteristics. These address windows are arranged hierarchically where BUSCON4 overrides BUSCON3 and BUSCON2 overrides BUSCON1. All accesses to locations not covered by these 4 address windows are controlled by BUSCON0.

Up to 4 external  $\overline{CS}$  signals (3 windows plus default) can be generated in order to save external glue logic. The C164Cl offers the possibility to switch the  $\overline{CS}$  outputs to an unlatched mode. In this mode the internal filter logic is switched off and the  $\overline{CS}$  signals are directly generated from the address. The unlatched  $\overline{CS}$  mode is enabled by setting CSCFG (SYSCON.6).

For applications which require less than 4 MBytes of external memory space, this address space can be restricted to 1 MByte, 256 KByte, or to 64 KByte. In this case Port 4 outputs four, two, or no address lines at all. It outputs all 6 address lines, if an address space of 4 MBytes is used.

Note: When the on-chip CAN Module is used with the interface lines assigned to Port 4, the CAN lines override the segment address lines and the segment address output on Port 4 is therefore limited to 4 bits i.e. address lines A19 ... A16.



#### **Central Processing Unit (CPU)**

The main core of the CPU consists of a 4-stage instruction pipeline, a 16-bit arithmetic and logic unit (ALU) and dedicated SFRs. Additional hardware has been spent for a separate multiply and divide unit, a bit-mask generator and a barrel shifter.

Based on these hardware provisions, most of the C164CI's instructions can be executed in just one machine cycle which requires 2 CPU clocks (4 TCL). For example, shift and rotate instructions are always processed during one machine cycle independent of the number of bits to be shifted. All multiple-cycle instructions have been optimized so that they can be executed very fast as well: branches in 2 cycles, a  $16 \times 16$  bit multiplication in 5 cycles and a 32-/16-bit division in 10 cycles. Another pipeline optimization, the so-called 'Jump Cache', reduces the execution time of repeatedly performed jumps in a loop from 2 cycles to 1 cycle.



Figure 4

**CPU Block Diagram** 



### The Capture/Compare Unit CAPCOM6

The CAPCOM6 unit supports generation and control of timing sequences on up to three 16-bit capture/compare channels plus one 10-bit compare channel.

In compare mode the CAPCOM6 unit provides two output signals per channel which have inverted polarity and non-overlapping pulse transitions. The compare channel can generate a single PWM output signal and is further used to modulate the capture/ compare output signals.

In capture mode the contents of compare timer 12 is stored in the capture registers upon a signal transition at pins CCx.

Compare timers T12 (16-bit) and T13 (10-bit) are free running timers which are clocked by the prescaled CPU clock.



#### Figure 5 CAPCOM6 Block Diagram

For motor control applications both subunits may generate versatile multichannel PWM signals which are basically either controlled by compare timer 12 or by a typical hall sensor pattern at the interrupt inputs (block commutation).

Note: Multichannel signal generation is provided only in devices with a full CAPCOM6.



#### A/D Converter

For analog signal measurement, a 10-bit A/D converter with 8 multiplexed input channels and a sample and hold circuit has been integrated on-chip. It uses the method of successive approximation. The sample time (for loading the capacitors) and the conversion time is programmable and can so be adjusted to the external circuitry.

Overrun error detection/protection is provided for the conversion result register (ADDAT): either an interrupt request will be generated when the result of a previous conversion has not been read from the result register at the time the next conversion is complete, or the next conversion is suspended in such a case until the previous result has been read.

For applications which require less than 8 analog input channels, the remaining channel inputs can be used as digital input port pins.

The A/D converter of the C164CI supports four different conversion modes. In the standard Single Channel conversion mode, the analog level on a specified channel is sampled once and converted to a digital result. In the Single Channel Continuous mode, the analog level on a specified channel is repeatedly sampled and converted without software intervention. In the Auto Scan mode, the analog levels on a prespecified number of channels (standard or extension) are sequentially sampled and converted. In the Auto Scan Continuous mode, the number of prespecified channels is repeatedly sampled and converted. In the Auto Scan Continuous mode, the conversion of a specific channel can be inserted (injected) into a running sequence without disturbing this sequence. This is called Channel Injection Mode.

The Peripheral Event Controller (PEC) may be used to automatically store the conversion results into a table in memory for later evaluation, without requiring the overhead of entering and exiting interrupt routines for each data transfer.

After each reset and also during normal operation the ADC automatically performs calibration cycles. This automatic self-calibration constantly adjusts the converter to changing operating conditions (e.g. temperature) and compensates process variations.

These calibration cycles are part of the conversion cycle, so they do not affect the normal operation of the A/D converter.

In order to decouple analog inputs from digital noise and to avoid input trigger noise those pins used for analog input can be disconnected from the digital IO or input stages under software control. This can be selected for each pin separately via register P5DIDIS (Port 5 Digital Input Disable).



#### **Oscillator Watchdog**

The Oscillator Watchdog (OWD) monitors the clock signal generated by the on-chip oscillator (either with a crystal or via external clock drive). For this operation the PLL provides a clock signal which is used to supervise transitions on the oscillator clock. This PLL clock is independent from the XTAL1 clock. When the expected oscillator clock transitions are missing the OWD activates the PLL Unlock/OWD interrupt node and supplies the CPU with the PLL clock signal. Under these circumstances the PLL will oscillate with its basic frequency.

In direct drive mode the PLL base frequency is used directly ( $f_{CPU} = 2 \dots 5 \text{ MHz}$ ). In prescaler mode the PLL base frequency is divided by 2 ( $f_{CPU} = 1 \dots 2.5 \text{ MHz}$ ).

Note: The CPU clock source is only switched back to the oscillator clock after a hardware reset.

**The oscillator watchdog can be disabled** by setting bit OWDDIS in register SYSCON. In this case (OWDDIS = '1') the PLL remains idle and provides no clock signal, while the CPU clock signal is derived directly from the oscillator clock or via prescaler or SDD. Also no interrupt request will be generated in case of a missing oscillator clock.

Note: At the end of a reset bit OWDDIS reflects the inverted level of pin RD at that time. Thus the oscillator watchdog may also be disabled via hardware by (externally) pulling the RD line low upon a reset, similar to the standard reset configuration via PORT0.



#### **Instruction Set Summary**

 Table 6 lists the instructions of the C164CI in a condensed way.

The various addressing modes that can be used with a specific instruction, the operation of the instructions, parameters for conditional execution of instructions, and the opcodes for each instruction can be found in the "C166 Family Instruction Set Manual".

This document also provides a detailled description of each instruction.

| Mnemonic           | Description                                                                                          | Bytes |
|--------------------|------------------------------------------------------------------------------------------------------|-------|
| ADD(B)             | Add word (byte) operands                                                                             | 2/4   |
| ADDC(B)            | Add word (byte) operands with Carry                                                                  | 2/4   |
| SUB(B)             | Subtract word (byte) operands                                                                        | 2/4   |
| SUBC(B)            | Subtract word (byte) operands with Carry                                                             | 2/4   |
| MUL(U)             | (Un)Signed multiply direct GPR by direct GPR (16-16-bit)                                             | 2     |
| DIV(U)             | (Un)Signed divide register MDL by direct GPR (16-/16-bit)                                            | 2     |
| DIVL(U)            | (Un)Signed long divide reg. MD by direct GPR (32-/16-bit)                                            | 2     |
| CPL(B)             | Complement direct word (byte) GPR                                                                    | 2     |
| NEG(B)             | Negate direct word (byte) GPR                                                                        | 2     |
| AND(B)             | Bitwise AND, (word/byte operands)                                                                    | 2/4   |
| OR(B)              | Bitwise OR, (word/byte operands)                                                                     | 2/4   |
| XOR(B)             | Bitwise XOR, (word/byte operands)                                                                    | 2/4   |
| BCLR               | Clear direct bit                                                                                     | 2     |
| BSET               | Set direct bit                                                                                       | 2     |
| BMOV(N)            | Move (negated) direct bit to direct bit                                                              | 4     |
| BAND, BOR,<br>BXOR | AND/OR/XOR direct bit with direct bit                                                                | 4     |
| BCMP               | Compare direct bit to direct bit                                                                     | 4     |
| BFLDH/L            | Bitwise modify masked high/low byte of bit-addressable direct word memory with immediate data        | 4     |
| CMP(B)             | Compare word (byte) operands                                                                         | 2/4   |
| CMPD1/2            | Compare word data to GPR and decrement GPR by 1/2                                                    | 2/4   |
| CMPI1/2            | Compare word data to GPR and increment GPR by 1/2                                                    | 2/4   |
| PRIOR              | Determine number of shift cycles to normalize direct<br>word GPR and store result in direct word GPR | 2     |
| SHL / SHR          | Shift left/right direct word GPR                                                                     | 2     |
| ROL / ROR          | Rotate left/right direct word GPR                                                                    | 2     |
| ASHR               | Arithmetic (sign bit) shift right direct word GPR                                                    | 2     |

#### Table 6 Instruction Set Summary



## Table 7C164Cl Registers, Ordered by Name (cont'd)

| Name    |   | Physical<br>Address |   | Physical<br>Address |                                                                    | 8-Bit<br>Addr.    | Description | Reset<br>Value |
|---------|---|---------------------|---|---------------------|--------------------------------------------------------------------|-------------------|-------------|----------------|
| CC26IC  | b | F174 <sub>H</sub>   | Ε | BA <sub>H</sub>     | CAPCOM Reg. 26 Interrupt Ctrl. Reg.                                | 0000 <sub>H</sub> |             |                |
| CC27    |   | FE76 <sub>H</sub>   |   | 3B <sub>H</sub>     | CAPCOM Register 27                                                 | 0000 <sub>H</sub> |             |                |
| CC27IC  | b | F176 <sub>H</sub>   | Ε | BB <sub>H</sub>     | CAPCOM Reg. 27 Interrupt Ctrl. Reg.                                | 0000 <sub>H</sub> |             |                |
| CC28    |   | FE78 <sub>H</sub>   |   | 3C <sub>H</sub>     | CAPCOM Register 28                                                 | 0000 <sub>H</sub> |             |                |
| CC28IC  | b | F178 <sub>H</sub>   | Ε | BC <sub>H</sub>     | CAPCOM Reg. 28 Interrupt Ctrl. Reg.                                | 0000 <sub>H</sub> |             |                |
| CC29    |   | FE7A <sub>H</sub>   |   | 3D <sub>H</sub>     | CAPCOM Register 29                                                 | 0000 <sub>H</sub> |             |                |
| CC29IC  | b | F184 <sub>H</sub>   | Ε | C2 <sub>H</sub>     | CAPCOM Reg. 29 Interrupt Ctrl. Reg.                                | 0000 <sub>H</sub> |             |                |
| CC30    |   | FE7C <sub>H</sub>   |   | 3E <sub>H</sub>     | CAPCOM Register 30                                                 | 0000 <sub>H</sub> |             |                |
| CC30IC  | b | F18C <sub>H</sub>   | Ε | C6 <sub>H</sub>     | CAPCOM Reg. 30 Interrupt Ctrl. Reg.                                | 0000 <sub>H</sub> |             |                |
| CC31    |   | FE7E <sub>H</sub>   |   | 3F <sub>H</sub>     | CAPCOM Register 31                                                 | 0000 <sub>H</sub> |             |                |
| CC31IC  | b | F194 <sub>H</sub>   | Ε | CA <sub>H</sub>     | CAPCOM Reg. 31 Interrupt Ctrl. Reg.                                | 0000 <sub>H</sub> |             |                |
| CC60    |   | FE30 <sub>H</sub>   |   | 18 <sub>H</sub>     | CAPCOM 6 Register 0                                                | 0000 <sub>H</sub> |             |                |
| CC61    |   | FE32 <sub>H</sub>   |   | 19 <sub>H</sub>     | CAPCOM 6 Register 1                                                | 0000 <sub>H</sub> |             |                |
| CC62    |   | FE34 <sub>H</sub>   |   | 1A <sub>H</sub>     | CAPCOM 6 Register 2                                                | 0000 <sub>H</sub> |             |                |
| CC6EIC  | b | F188 <sub>H</sub>   | Ε | C4 <sub>H</sub>     | CAPCOM 6 Emergency Interrrupt<br>Control Register                  | 0000 <sub>H</sub> |             |                |
| CC6CIC  | b | F17E <sub>H</sub>   | Ε | BF <sub>H</sub>     | CAPCOM 6 Interrupt Control Register                                | 0000 <sub>H</sub> |             |                |
| CC6MCON | b | FF32 <sub>H</sub>   |   | 99 <sub>H</sub>     | CAPCOM 6 Mode Control Register                                     | 00FF <sub>H</sub> |             |                |
| CC6MIC  | b | FF36 <sub>H</sub>   |   | 9B <sub>H</sub>     | CAPCOM 6 Mode Interrupt Ctrl. Reg.                                 | 0000 <sub>H</sub> |             |                |
| CC6MSEL |   | F036 <sub>H</sub>   | Ε | 1B <sub>H</sub>     | CAPCOM 6 Mode Select Register                                      | 0000 <sub>H</sub> |             |                |
| CC8IC   | b | FF88 <sub>H</sub>   |   | C4 <sub>H</sub>     | External Interrupt 0 Control Register                              | 0000 <sub>H</sub> |             |                |
| CC9IC   | b | FF8A <sub>H</sub>   |   | C5 <sub>H</sub>     | External Interrupt 1 Control Register                              | 0000 <sub>H</sub> |             |                |
| CCM4    | b | FF22 <sub>H</sub>   |   | 91 <sub>H</sub>     | CAPCOM Mode Control Register 4                                     | 0000 <sub>H</sub> |             |                |
| CCM5    | b | FF24 <sub>H</sub>   |   | 92 <sub>H</sub>     | CAPCOM Mode Control Register 5                                     | 0000 <sub>H</sub> |             |                |
| CCM6    | b | FF26 <sub>H</sub>   |   | 93 <sub>H</sub>     | CAPCOM Mode Control Register 6                                     | 0000 <sub>H</sub> |             |                |
| CCM7    | b | FF28 <sub>H</sub>   |   | 94 <sub>H</sub>     | CAPCOM Mode Control Register 7                                     | 0000 <sub>H</sub> |             |                |
| CMP13   |   | FE36 <sub>H</sub>   |   | 1B <sub>H</sub>     | CAPCOM 6 Timer 13 Compare Reg.                                     | 0000 <sub>H</sub> |             |                |
| СР      |   | FE10 <sub>H</sub>   |   | 08 <sub>H</sub>     | CPU Context Pointer Register                                       | FC00 <sub>H</sub> |             |                |
| CSP     |   | FE08 <sub>H</sub>   |   | 04 <sub>H</sub>     | CPU Code Segment Pointer Register (8 bits, not directly writeable) | 0000 <sub>H</sub> |             |                |



| Table 7 C164CI Registers | , Ordered by Name (cont'd) |
|--------------------------|----------------------------|
|--------------------------|----------------------------|

| Name   |   | Physica<br>Address  | 1<br>5 | 8-Bit<br>Addr.                        | Description                             | Reset<br>Value                  |                                         |                   |                                         |                   |
|--------|---|---------------------|--------|---------------------------------------|-----------------------------------------|---------------------------------|-----------------------------------------|-------------------|-----------------------------------------|-------------------|
| T12IC  | b | F190 <sub>H</sub>   | Ε      | C8 <sub>H</sub>                       | CAPCOM 6 Timer 12 Interrupt Ctrl. Reg.  | 0000 <sub>H</sub>               |                                         |                   |                                         |                   |
| T120F  |   | F034 <sub>H</sub> E |        | 1A <sub>H</sub>                       | CAPCOM 6 Timer 12 Offset Register       | 0000 <sub>H</sub>               |                                         |                   |                                         |                   |
| T12P   |   | F030 <sub>H</sub>   | Ε      | 18 <sub>H</sub>                       | CAPCOM 6 Timer 12 Period Register       | 0000 <sub>H</sub>               |                                         |                   |                                         |                   |
| T13IC  | b | F198 <sub>H</sub>   | Ε      | CCH                                   | CAPCOM 6 Timer 13 Interrupt Ctrl. Reg.  | 0000 <sub>H</sub>               |                                         |                   |                                         |                   |
| T13P   |   | F032 <sub>H</sub>   | Ε      | 19 <sub>H</sub>                       | CAPCOM 6 Timer 13 Period Register       | 0000 <sub>H</sub>               |                                         |                   |                                         |                   |
| T14    |   | F0D2 <sub>H</sub>   | Ε      | 69 <sub>H</sub>                       | RTC Timer 14 Register                   | no                              |                                         |                   |                                         |                   |
| T14REL |   | F0D0 <sub>H</sub>   | Ε      | 68 <sub>H</sub>                       | RTC Timer 14 Reload Register            | no                              |                                         |                   |                                         |                   |
| T2     |   | FE40 <sub>H</sub>   |        | 20 <sub>H</sub>                       | GPT1 Timer 2 Register                   | 0000 <sub>H</sub>               |                                         |                   |                                         |                   |
| T2CON  | b | FF40 <sub>H</sub>   |        | A0 <sub>H</sub>                       | GPT1 Timer 2 Control Register           | 0000 <sub>H</sub>               |                                         |                   |                                         |                   |
| T2IC   | b | FF60 <sub>H</sub>   |        | B0 <sub>H</sub>                       | GPT1 Timer 2 Interrupt Control Register | 0000 <sub>H</sub>               |                                         |                   |                                         |                   |
| Т3     |   | FE42 <sub>H</sub>   |        | 21 <sub>H</sub>                       | GPT1 Timer 3 Register                   | 0000 <sub>H</sub>               |                                         |                   |                                         |                   |
| T3CON  | b | FF42 <sub>H</sub>   |        | A1 <sub>H</sub>                       | GPT1 Timer 3 Control Register           | 0000 <sub>H</sub>               |                                         |                   |                                         |                   |
| T3IC   | b | FF62 <sub>H</sub>   |        | b FF62 <sub>H</sub>                   |                                         | FF62 <sub>H</sub>               |                                         | B1 <sub>H</sub>   | GPT1 Timer 3 Interrupt Control Register | 0000 <sub>H</sub> |
| T4     |   | FE44 <sub>H</sub>   |        | 22 <sub>H</sub>                       | GPT1 Timer 4 Register                   | 0000 <sub>H</sub>               |                                         |                   |                                         |                   |
| T4CON  | b | FF44 <sub>H</sub>   |        | A2 <sub>H</sub>                       | GPT1 Timer 4 Control Register           | 0000 <sub>H</sub>               |                                         |                   |                                         |                   |
| T4IC   | b | FF64 <sub>H</sub>   |        | FF64 <sub>H</sub> B2 <sub>H</sub> GPT |                                         | B2 <sub>H</sub>                 | GPT1 Timer 4 Interrupt Control Register | 0000 <sub>H</sub> |                                         |                   |
| T7     |   | F050 <sub>H</sub>   | Ε      | 28 <sub>H</sub>                       | CAPCOM Timer 7 Register                 | 0000 <sub>H</sub>               |                                         |                   |                                         |                   |
| T78CON | b | FF20 <sub>H</sub>   |        | 90 <sub>H</sub>                       | CAPCOM Timer 7 and 8 Ctrl. Reg.         | 0000 <sub>H</sub>               |                                         |                   |                                         |                   |
| T7IC   | b | F17A <sub>H</sub>   | Ε      | BD <sub>H</sub>                       | CAPCOM Timer 7 Interrupt Ctrl. Reg.     | 0000 <sub>H</sub>               |                                         |                   |                                         |                   |
| T7REL  |   | F054 <sub>H</sub>   | Ε      | 2A <sub>H</sub>                       | CAPCOM Timer 7 Reload Register          | 0000 <sub>H</sub>               |                                         |                   |                                         |                   |
| Т8     |   | F052 <sub>H</sub>   | Ε      | 29 <sub>H</sub>                       | CAPCOM Timer 8 Register                 | 0000 <sub>H</sub>               |                                         |                   |                                         |                   |
| T8IC   | b | F17C <sub>H</sub>   | Ε      | BE <sub>H</sub>                       | CAPCOM Timer 8 Interrupt Ctrl. Reg.     | 0000 <sub>H</sub>               |                                         |                   |                                         |                   |
| T8REL  |   | F056 <sub>H</sub>   | Ε      | 2B <sub>H</sub>                       | CAPCOM Timer 8 Reload Register          | 0000 <sub>H</sub>               |                                         |                   |                                         |                   |
| TFR    | b | FFAC <sub>H</sub>   |        | D6 <sub>H</sub>                       | Trap Flag Register                      | 0000 <sub>H</sub>               |                                         |                   |                                         |                   |
| TRCON  | b | FF34 <sub>H</sub>   |        | 9A <sub>H</sub>                       | CAPCOM 6 Trap Enable Ctrl. Reg.         | 00XX <sub>H</sub>               |                                         |                   |                                         |                   |
| WDT    |   | FEAE <sub>H</sub>   |        | 57 <sub>H</sub>                       | Watchdog Timer Register (read only)     | 0000 <sub>H</sub>               |                                         |                   |                                         |                   |
| WDTCON |   | FFAE <sub>H</sub>   |        | D7 <sub>H</sub>                       | Watchdog Timer Control Register         | <sup>2)</sup> 00xx <sub>H</sub> |                                         |                   |                                         |                   |
| XP0IC  | b | F186 <sub>H</sub>   | Ε      | C3 <sub>H</sub>                       | CAN1 Module Interrupt Control Register  | 0000 <sub>H</sub>               |                                         |                   |                                         |                   |
| XP1IC  | b | F18E <sub>H</sub>   | Ε      | C7 <sub>H</sub>                       | Unassigned Interrupt Control Reg.       | 0000 <sub>H</sub>               |                                         |                   |                                         |                   |



#### **Operating Conditions**

The following operating conditions must not be exceeded in order to ensure correct operation of the C164CI. All parameters specified in the following sections refer to these operating conditions, unless otherwise noticed.

| Parameter                         | Symbol            | Limit             | Values | Unit | Notes                                              |
|-----------------------------------|-------------------|-------------------|--------|------|----------------------------------------------------|
|                                   |                   | min.              | max.   |      |                                                    |
| Digital supply voltage            | V <sub>DD</sub>   | 4.75              | 5.5    | V    | Active mode,<br>$f_{CPUmax} = 25 \text{ MHz}$      |
|                                   |                   | 2.5 <sup>1)</sup> | 5.5    | V    | PowerDown mode                                     |
| Digital ground voltage            | V <sub>SS</sub>   | (                 | )      | V    | Reference voltage                                  |
| Overload current                  | I <sub>OV</sub>   | _                 | ±5     | mA   | Per pin <sup>2)3)</sup>                            |
| Absolute sum of overload currents | $\Sigma  I_{OV} $ | -                 | 50     | mA   | 3)                                                 |
| External Load<br>Capacitance      | CL                | -                 | 100    | pF   | Pin drivers in <b>default</b> mode <sup>4)5)</sup> |
| Ambient temperature               | T <sub>A</sub>    | 0                 | 70     | °C   | SAB-C164CI                                         |
|                                   |                   | -40               | 85     | °C   | SAF-C164CI                                         |
|                                   |                   | -40               | 125    | °C   | SAK-C164CI                                         |

#### Table 9 Operating Condition Parameters

<sup>1)</sup> Output voltages and output currents will be reduced when  $V_{\text{DD}}$  leaves the range defined for active mode.

- <sup>2)</sup> Overload conditions occur if the standard operatings conditions are exceeded, i.e. the voltage on any pin exceeds the specified range (i.e. V<sub>OV</sub> > V<sub>DD</sub> + 0.5 V or V<sub>OV</sub> < V<sub>SS</sub> 0.5 V). The absolute sum of input overload currents on all pins may not exceed **50 mA**. The supply voltage must remain within the specified limits. Proper operation is not guaranteed if overload conditions occur on functional pins line XTAL1, RD, WR, etc.
- <sup>3)</sup> Not 100% tested, guaranteed by design and characterization.
- <sup>4)</sup> The timing is valid for pin drivers operating in default current mode (selected after reset). Reducing the output current may lead to increased delays or reduced driving capability (*C*<sub>L</sub>).
- <sup>5)</sup> The current ROM-version of the C164CI is equipped with port drivers, which provide reduced driving capability and reduced control. Please refer to the actual errata sheet for details.



| Port Output Driver<br>Mode | Maximum Output Current<br>(I <sub>OLmax</sub> , -I <sub>OHmax</sub> ) <sup>1)</sup> | Nominal Output Current $(I_{OLnom}, -I_{OHnom})^2)$ |
|----------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------|
| Strong driver              | 10 mA                                                                               | 2.5 mA                                              |
| Medium driver              | 4.0 mA                                                                              | 1.0 mA                                              |
| Weak driver                | 0.5 mA                                                                              | 0.1 mA                                              |

#### Table 10 Current Limits for Port Output Drivers

<sup>1)</sup> An output current above II<sub>OXnom</sub>I may be drawn from up to three pins at the same time. For any group of 16 neighboring port output pins the total output current in each direction (ΣI<sub>OL</sub> and Σ-I<sub>OH</sub>) must remain below 50 mA.

<sup>2)</sup> The current ROM-version of the C164CI (step Ax) is equipped with port drivers, which provide reduced driving capability and reduced control. Please refer to the actual errata sheet for details.

#### Power Consumption C164CI (ROM)

(Operating Conditions apply)

| Parameter                                                                                 | Sym-                           | Limit | Values                         | Unit | Test<br>Conditions                                                                       |  |
|-------------------------------------------------------------------------------------------|--------------------------------|-------|--------------------------------|------|------------------------------------------------------------------------------------------|--|
|                                                                                           | bol                            | min.  | max.                           |      |                                                                                          |  |
| Power supply current (active) with all peripherals active                                 | I <sub>DD</sub>                | _     | 1 +<br>2.5 × f <sub>CPU</sub>  | mA   | $\overline{\text{RSTIN}} = V_{\text{IL}}$ $f_{\text{CPU}} \text{ in } [\text{MHz}]^{1)}$ |  |
| Idle mode supply current<br>with all peripherals active                                   | I <sub>IDX</sub>               | _     | 1 +<br>1.1 × f <sub>CPU</sub>  | mA   | $\overline{\text{RSTIN}} = V_{\text{IH1}}$ $f_{\text{CPU}} \text{ in [MHz]}^{1)}$        |  |
| Idle mode supply current<br>with all peripherals deactivated,<br>PLL off, SDD factor = 32 | I <sub>IDO</sub> <sup>2)</sup> | _     | 500 +<br>50 × f <sub>OSC</sub> | μA   | $\overline{\text{RSTIN}} = V_{\text{IH1}}$<br>$f_{\text{OSC}}$ in [MHz] <sup>1)</sup>    |  |
| Sleep and Power-down mode supply current with RTC running                                 | I <sub>PDR</sub> <sup>2)</sup> | _     | 200 +<br>25 × f <sub>OSC</sub> | μA   | $V_{\text{DD}} = V_{\text{DDmax}}$<br>$f_{\text{OSC}}$ in [MHz] <sup>3)</sup>            |  |
| Sleep and Power-down mode supply current with RTC disabled                                | I <sub>PDO</sub>               | _     | 50                             | μA   | $V_{\rm DD} = V_{\rm DDmax}^{3)}$                                                        |  |

<sup>1)</sup> The supply current is a function of the operating frequency. This dependency is illustrated in Figure 9. These parameters are tested at V<sub>DDmax</sub> and maximum CPU clock with all outputs disconnected and all inputs at V<sub>IL</sub> or V<sub>IH</sub>.

<sup>2)</sup> This parameter is determined mainly by the current consumed by the oscillator (see Figure 8). This current, however, is influenced by the external oscillator circuitry (crystal, capacitors). The values given refer to a typical circuitry and may change in case of a not optimized external oscillator circuitry.

<sup>3)</sup> This parameter is tested including leakage currents. All inputs (including pins configured as inputs) at 0 V to 0.1 V or at  $V_{DD}$  - 0.1 V to  $V_{DD}$ ,  $V_{REF}$  = 0 V, all outputs (including pins configured as outputs) disconnected.





Figure 9 Supply/Idle Current as a Function of Operating Frequency for ROM Derivatives



# Multiplexed Bus (cont'd)

(Operating Conditions apply)

ALE cycle time = 6 TCL +  $2t_A$  +  $t_C$  +  $t_F$  (120 ns at 25 MHz CPU clock without waitstates)

| Parameter                                                                              |                        | nbol | Max. CPU Clock<br>= 25 MHz |                                             | Variable (<br>1 / 2TCL = 1           | Unit                                                           |    |
|----------------------------------------------------------------------------------------|------------------------|------|----------------------------|---------------------------------------------|--------------------------------------|----------------------------------------------------------------|----|
|                                                                                        |                        |      | min.                       | max.                                        | min.                                 | max.                                                           |    |
| RD, WR low time<br>(no RW-delay)                                                       | t <sub>13</sub>        | CC   | $50 + t_{\rm C}$           | -                                           | 3TCL - 10<br>+ <i>t</i> <sub>C</sub> | _                                                              | ns |
| RD to valid data in (with RW-delay)                                                    | t <sub>14</sub>        | SR   | _                          | $20 + t_{\rm C}$                            | _                                    | 2TCL - 20<br>+ <i>t</i> <sub>C</sub>                           | ns |
| RD to valid data in (no RW-delay)                                                      | t <sub>15</sub>        | SR   | _                          | $40 + t_{\rm C}$                            | _                                    | 3TCL - 20<br>+ <i>t</i> <sub>C</sub>                           | ns |
| ALE low to valid data in                                                               | <sup>t</sup> 16        | SR   | _                          | $40 + t_{A} + t_{C}$                        | _                                    | 3TCL - 20<br>+ <i>t</i> <sub>A</sub> + <i>t</i> <sub>C</sub>   | ns |
| Address to valid data in                                                               | t <sub>17</sub>        | SR   | _                          | $50 + 2t_A + t_C$                           | -                                    | $4TCL - 30 + 2t_A + t_C$                                       | ns |
| Data hold after RD rising edge                                                         | t <sub>18</sub>        | SR   | 0                          | -                                           | 0                                    | _                                                              | ns |
| Data float after RD                                                                    | t <sub>19</sub>        | SR   | _                          | 26 + $t_{\rm F}$                            | _                                    | 2TCL - 14<br>+ <i>t</i> <sub>F</sub>                           | ns |
| Data valid to $\overline{WR}$                                                          | t <sub>22</sub>        | CC   | $20 + t_{\rm C}$           | -                                           | 2TCL - 20<br>+ <i>t</i> <sub>C</sub> | _                                                              | ns |
| Data hold after WR                                                                     | t <sub>23</sub>        | CC   | 26 + <i>t</i> <sub>F</sub> | -                                           | 2TCL - 14<br>+ <i>t</i> <sub>F</sub> | _                                                              | ns |
| $\frac{\text{ALE rising edge after }\overline{\text{RD}},}{\text{WR}}$                 | t <sub>25</sub>        | CC   | 26 + <i>t</i> <sub>F</sub> | -                                           | 2TCL - 14<br>+ <i>t</i> <sub>F</sub> | _                                                              | ns |
| Address hold after $\overline{RD}$ , WR                                                | t <sub>27</sub>        | CC   | 26 + <i>t</i> <sub>F</sub> | -                                           | 2TCL - 14<br>+ <i>t</i> <sub>F</sub> | _                                                              | ns |
| ALE falling edge to $\overline{\text{CS}}^{1)}$                                        | t <sub>38</sub>        | CC   | -4 - t <sub>A</sub>        | 10 - <i>t</i> <sub>A</sub>                  | -4 - t <sub>A</sub>                  | 10 - <i>t</i> <sub>A</sub>                                     | ns |
| CS low to Valid Data In <sup>1)</sup>                                                  | t <sub>39</sub>        | SR   | _                          | 40<br>+ t <sub>C</sub><br>+ 2t <sub>A</sub> | -                                    | 3TCL - 20<br>+ <i>t</i> <sub>C</sub> + 2 <i>t</i> <sub>A</sub> | ns |
| $\overline{\text{CS}}$ hold after $\overline{\text{RD}}$ , $\overline{\text{WR}}^{1)}$ | <i>t</i> <sub>40</sub> | CC   | $46 + t_{F}$               | -                                           | 3TCL - 14<br>+ <i>t</i> <sub>F</sub> | _                                                              | ns |
| ALE fall. edge to RdCS,<br>WrCS (with RW delay)                                        | t <sub>42</sub>        | CC   | $16 + t_{A}$               | _                                           | TCL - 4<br>+ <i>t</i> <sub>A</sub>   | _                                                              | ns |





#### Figure 20 External Memory Cycle: Demultiplexed Bus, With Read/Write Delay, Normal ALE





#### Figure 21 External Memory Cycle: Demultiplexed Bus, With Read/Write Delay, Extended ALE





#### Figure 23 External Memory Cycle: Demultiplexed Bus, No Read/Write Delay, Extended ALE



#### **Package Outlines**



Sorts of Packing Package outlines for tubes, trays etc. are contained in our Data Book "Package Information". SMD = Surface Mounted Device