

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	C166
Core Size	16-Bit
Speed	25MHz
Connectivity	CANbus, EBI/EMI, SPI, SSC, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	59
Program Memory Size	64KB (64K x 8)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	4.75V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	80-QFP
Supplier Device Package	PG-MQFP-80-7
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/c164ci8e25mdbkxqma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

16-Bit Single-Chip Microcontroller C166 Family

C164CI

C164CI/SI, C164CL/SL

- High Performance 16-bit CPU with 4-Stage Pipeline
 - 80 ns Instruction Cycle Time at 25 MHz CPU Clock
 - 400 ns Multiplication (16×16 bit), 800 ns Division (32 / 16 bit)
 - Enhanced Boolean Bit Manipulation Facilities
 - Additional Instructions to Support HLL and Operating Systems
 - Register-Based Design with Multiple Variable Register Banks
 - Single-Cycle Context Switching Support
 - 16 MBytes Total Linear Address Space for Code and Data
 - 1024 Bytes On-Chip Special Function Register Area
- 16-Priority-Level Interrupt System with 32 Sources, Sample-Rate down to 40 ns
- 8-Channel Interrupt-Driven Single-Cycle Data Transfer Facilities via Peripheral Event Controller (PEC)
- Clock Generation via on-chip PLL (factors 1:1.5/2/2.5/3/4/5), via prescaler or via direct clock input
- On-Chip Memory Modules
 - 2 KBytes On-Chip Internal RAM (IRAM)
 - 2 KBytes On-Chip Extension RAM (XRAM)
 - up to 64 KBytes On-Chip Program Mask ROM or OTP Memory
- On-Chip Peripheral Modules
 - 8-Channel 10-bit A/D Converter with Programmable Conversion Time down to 7.8 μs
 - 8-Channel General Purpose Capture/Compare Unit (CAPCOM2)
 - Capture/Compare Unit for flexible PWM Signal Generation (CAPCOM6) (3/6 Capture/Compare Channels and 1 Compare Channel)
 - Multi-Functional General Purpose Timer Unit with 3 Timers
 - Two Serial Channels (Synchronous/Asynchronous and High-Speed-Synchronous)
 - On-Chip CAN Interface (Rev. 2.0B active) with 15 Message Objects (Full CAN/Basic CAN)
 - On-Chip Real Time Clock
- Up to 4 MBytes External Address Space for Code and Data
 - Programmable External Bus Characteristics for Different Address Ranges
 - Multiplexed or Demultiplexed External Address/Data Buses with 8-Bit or 16-Bit Data Bus Width
 - Four Optional Programmable Chip-Select Signals
- Idle, Sleep, and Power Down Modes with Flexible Power Management
- Programmable Watchdog Timer and Oscillator Watchdog
- Up to 59 General Purpose I/O Lines, partly with Selectable Input Thresholds and Hysteresis

- Supported by a Large Range of Development Tools like C-Compilers, Macro-Assembler Packages, Emulators, Evaluation Boards, HLL-Debuggers, Simulators, Logic Analyzer Disassemblers, Programming Boards
- On-Chip Bootstrap Loader
- 80-Pin MQFP Package, 0.65 mm pitch

This document describes several derivatives of the C164 group. **Table 1** enumerates these derivatives and summarizes the differences. As this document refers to all of these derivatives, some descriptions may not apply to a specific product.

Derivative ¹⁾	Program Memory	CAPCOM6	CAN Interf.	Operating Frequency
SAK-C164CI-8R[25]M SAF-C164CI-8R[25]M	64 KByte ROM	Full function	CAN1	20 MHz, [25 MHz]
SAK-C164SI-8R[25]M SAF-C164SI-8R[25]M	64 KByte ROM	Full function		20 MHz, [25 MHz]
SAK-C164CL-8R[25]M SAF-C164CL-8R[25]M	64 KByte ROM	Reduced fct.	CAN1	20 MHz, [25 MHz]
SAK-C164SL-8R[25]M SAF-C164SL-8R[25]M	64 KByte ROM	Reduced fct.		20 MHz, [25 MHz]
SAK-C164CL-6R[25]M SAF-C164CL-6R[25]M	48 KByte ROM	Reduced fct.	CAN1	20 MHz, [25 MHz]
SAK-C164SL-6R[25]M SAF-C164SL-6R[25]M	48 KByte ROM	Reduced fct.		20 MHz, [25 MHz]
SAK-C164CI-L[25]M SAF-C164CI-L[25]M		Full function	CAN1	20 MHz, [25 MHz]
SAK-C164CI-8EM SAF-C164CI-8EM	64 KByte OTP	Full function	CAN1	20 MHz

Table 1 C164CI Derivative Synopsis

¹⁾ This Data Sheet is valid for ROM(less) devices starting with and including design step AB, and for OTP devices starting with and including design step DA.

For simplicity all versions are referred to by the term C164CI throughout this document.

Memory Organization

The memory space of the C164CI is configured in a Von Neumann architecture which means that code memory, data memory, registers and I/O ports are organized within the same linear address space which includes 16 MBytes. The entire memory space can be accessed bytewise or wordwise. Particular portions of the on-chip memory have additionally been made directly bitaddressable.

The C164Cl incorporates 64 KBytes of on-chip OTP memory or 64/48 KBytes of on-chip mask-programmable ROM (not in the ROM-less derivative, of course) for code or constant data. The lower 32 KBytes of the on-chip ROM/OTP can be mapped either to segment 0 or segment 1.

The OTP memory can be programmed by the CPU itself (in system, e.g. during booting) or directly via an external interface (e.g. before assembly). The programming time is approx. 100 μ s per word. An external programming voltage $V_{\text{PP}} = 11.5$ V must be supplied for this purpose (via pin $\overline{\text{EA}}/V_{\text{PP}}$).

2 KBytes of on-chip Internal RAM (IRAM) are provided as a storage for user defined variables, for the system stack, general purpose register banks and even for code. A register bank can consist of up to 16 wordwide (R0 to R15) and/or bytewide (RL0, RH0, ..., RL7, RH7) so-called General Purpose Registers (GPRs).

1024 bytes (2×512 bytes) of the address space are reserved for the Special Function Register areas (SFR space and ESFR space). SFRs are wordwide registers which are used for controlling and monitoring functions of the different on-chip units. Unused SFR addresses are reserved for future members of the C166 Family.

2 KBytes of on-chip Extension RAM (XRAM) are provided to store user data, user stacks, or code. The XRAM is accessed like external memory and therefore cannot be used for the system stack or for register banks and is not bitaddressable. The XRAM permits 16-bit accesses with maximum speed.

In order to meet the needs of designs where more memory is required than is provided on chip, up to 4 MBytes of external RAM and/or ROM can be connected to the microcontroller.

Central Processing Unit (CPU)

The main core of the CPU consists of a 4-stage instruction pipeline, a 16-bit arithmetic and logic unit (ALU) and dedicated SFRs. Additional hardware has been spent for a separate multiply and divide unit, a bit-mask generator and a barrel shifter.

Based on these hardware provisions, most of the C164CI's instructions can be executed in just one machine cycle which requires 2 CPU clocks (4 TCL). For example, shift and rotate instructions are always processed during one machine cycle independent of the number of bits to be shifted. All multiple-cycle instructions have been optimized so that they can be executed very fast as well: branches in 2 cycles, a 16×16 bit multiplication in 5 cycles and a 32-/16-bit division in 10 cycles. Another pipeline optimization, the so-called 'Jump Cache', reduces the execution time of repeatedly performed jumps in a loop from 2 cycles to 1 cycle.

Figure 4

CPU Block Diagram

A/D Converter

For analog signal measurement, a 10-bit A/D converter with 8 multiplexed input channels and a sample and hold circuit has been integrated on-chip. It uses the method of successive approximation. The sample time (for loading the capacitors) and the conversion time is programmable and can so be adjusted to the external circuitry.

Overrun error detection/protection is provided for the conversion result register (ADDAT): either an interrupt request will be generated when the result of a previous conversion has not been read from the result register at the time the next conversion is complete, or the next conversion is suspended in such a case until the previous result has been read.

For applications which require less than 8 analog input channels, the remaining channel inputs can be used as digital input port pins.

The A/D converter of the C164CI supports four different conversion modes. In the standard Single Channel conversion mode, the analog level on a specified channel is sampled once and converted to a digital result. In the Single Channel Continuous mode, the analog level on a specified channel is repeatedly sampled and converted without software intervention. In the Auto Scan mode, the analog levels on a prespecified number of channels (standard or extension) are sequentially sampled and converted. In the Auto Scan Continuous mode, the number of prespecified channels is repeatedly sampled and converted. In the Auto Scan Continuous mode, the conversion of a specific channel can be inserted (injected) into a running sequence without disturbing this sequence. This is called Channel Injection Mode.

The Peripheral Event Controller (PEC) may be used to automatically store the conversion results into a table in memory for later evaluation, without requiring the overhead of entering and exiting interrupt routines for each data transfer.

After each reset and also during normal operation the ADC automatically performs calibration cycles. This automatic self-calibration constantly adjusts the converter to changing operating conditions (e.g. temperature) and compensates process variations.

These calibration cycles are part of the conversion cycle, so they do not affect the normal operation of the A/D converter.

In order to decouple analog inputs from digital noise and to avoid input trigger noise those pins used for analog input can be disconnected from the digital IO or input stages under software control. This can be selected for each pin separately via register P5DIDIS (Port 5 Digital Input Disable).

CAN-Module

The integrated CAN-Module handles the completely autonomous transmission and reception of CAN frames in accordance with the CAN specification V2.0 part B (active), i.e. the on-chip CAN-Modules can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers.

The module provides Full CAN functionality on up to 15 message objects. Message object 15 may be configured for Basic CAN functionality. Both modes provide separate masks for acceptance filtering which allows to accept a number of identifiers in Full CAN mode and also allows to disregard a number of identifiers in Basic CAN mode. All message objects can be updated independent from the other objects and are equipped for the maximum message length of 8 bytes.

The bit timing is derived from the XCLK and is programmable up to a data rate of 1 Mbit/ s. Each CAN-Module uses two pins of Port 4 or Port 8 to interface to an external bus transceiver. The interface pins are assigned via software.

Note: When the CAN interface is assigned to Port 4, the respective segment address lines on Port 4 cannot be used. This will limit the external address space.

Watchdog Timer

The Watchdog Timer represents one of the fail-safe mechanisms which have been implemented to prevent the controller from malfunctioning for longer periods of time.

The Watchdog Timer is always enabled after a reset of the chip, and can only be disabled in the time interval until the EINIT (end of initialization) instruction has been executed. Thus, the chip's start-up procedure is always monitored. The software has to be designed to service the Watchdog Timer before it overflows. If, due to hardware or software related failures, the software fails to do so, the Watchdog Timer overflows and generates an internal hardware reset and pulls the RSTOUT pin low in order to allow external hardware components to be reset.

The Watchdog Timer is a 16-bit timer, clocked with the system clock divided by 2/4/128/256. The high byte of the Watchdog Timer register can be set to a prespecified reload value (stored in WDTREL) in order to allow further variation of the monitored time interval. Each time it is serviced by the application software, the high byte of the Watchdog Timer is reloaded. Thus, time intervals between 20 μ s and 336 ms can be monitored (@ 25 MHz).

The default Watchdog Timer interval after reset is 5.24 ms (@ 25 MHz).

Oscillator Watchdog

The Oscillator Watchdog (OWD) monitors the clock signal generated by the on-chip oscillator (either with a crystal or via external clock drive). For this operation the PLL provides a clock signal which is used to supervise transitions on the oscillator clock. This PLL clock is independent from the XTAL1 clock. When the expected oscillator clock transitions are missing the OWD activates the PLL Unlock/OWD interrupt node and supplies the CPU with the PLL clock signal. Under these circumstances the PLL will oscillate with its basic frequency.

In direct drive mode the PLL base frequency is used directly ($f_{CPU} = 2 \dots 5 \text{ MHz}$). In prescaler mode the PLL base frequency is divided by 2 ($f_{CPU} = 1 \dots 2.5 \text{ MHz}$).

Note: The CPU clock source is only switched back to the oscillator clock after a hardware reset.

The oscillator watchdog can be disabled by setting bit OWDDIS in register SYSCON. In this case (OWDDIS = '1') the PLL remains idle and provides no clock signal, while the CPU clock signal is derived directly from the oscillator clock or via prescaler or SDD. Also no interrupt request will be generated in case of a missing oscillator clock.

Note: At the end of a reset bit OWDDIS reflects the inverted level of pin RD at that time. Thus the oscillator watchdog may also be disabled via hardware by (externally) pulling the RD line low upon a reset, similar to the standard reset configuration via PORT0.

Power Management

The C164CI provides several means to control the power it consumes either at a given time or averaged over a certain timespan. Three mechanisms can be used (partly in parallel):

• **Power Saving Modes** switch the C164CI into a special operating mode (control via instructions).

Idle Mode stops the CPU while the peripherals can continue to operate.

Sleep Mode and Power Down Mode stop all clock signals and all operation (RTC may optionally continue running). Sleep Mode can be terminated by external interrupt signals.

Clock Generation Management controls the distribution and the frequency of internal and external clock signals (control via register SYSCON2).
 Slow Down Mode lets the C164CI run at a CPU clock frequency of f_{OSC}/1 ... 32 (half for prescaler operation) which drastically reduces the consumed power. The PLL can be optionally disabled while operating in Slow Down Mode.

External circuitry can be controlled via the programmable frequency output FOUT.

• **Peripheral Management** permits temporary disabling of peripheral modules (control via register SYSCON3).

Each peripheral can separately be disabled/enabled. A group control option disables a major part of the peripheral set by setting one single bit.

The on-chip RTC supports intermittend operation of the C164CI by generating cyclic wakeup signals. This offers full performance to quickly react on action requests while the intermittend sleep phases greatly reduce the average power consumption of the system.

Instruction Set Summary

 Table 6 lists the instructions of the C164CI in a condensed way.

The various addressing modes that can be used with a specific instruction, the operation of the instructions, parameters for conditional execution of instructions, and the opcodes for each instruction can be found in the "C166 Family Instruction Set Manual".

This document also provides a detailled description of each instruction.

Mnemonic	Description	Bytes
ADD(B)	Add word (byte) operands	2/4
ADDC(B)	Add word (byte) operands with Carry	2/4
SUB(B)	Subtract word (byte) operands	2/4
SUBC(B)	Subtract word (byte) operands with Carry	2/4
MUL(U)	(Un)Signed multiply direct GPR by direct GPR (16-16-bit)	2
DIV(U)	(Un)Signed divide register MDL by direct GPR (16-/16-bit)	2
DIVL(U)	(Un)Signed long divide reg. MD by direct GPR (32-/16-bit)	2
CPL(B)	Complement direct word (byte) GPR	2
NEG(B)	Negate direct word (byte) GPR	2
AND(B)	Bitwise AND, (word/byte operands)	2/4
OR(B)	Bitwise OR, (word/byte operands)	2/4
XOR(B)	Bitwise XOR, (word/byte operands)	2/4
BCLR	Clear direct bit	2
BSET	Set direct bit	2
BMOV(N)	Move (negated) direct bit to direct bit	4
BAND, BOR, BXOR	AND/OR/XOR direct bit with direct bit	4
BCMP	Compare direct bit to direct bit	4
BFLDH/L	Bitwise modify masked high/low byte of bit-addressable direct word memory with immediate data	4
CMP(B)	Compare word (byte) operands	2/4
CMPD1/2	Compare word data to GPR and decrement GPR by 1/2	2/4
CMPI1/2	Compare word data to GPR and increment GPR by 1/2	2/4
PRIOR	Determine number of shift cycles to normalize direct word GPR and store result in direct word GPR	2
SHL / SHR	Shift left/right direct word GPR	2
ROL / ROR	Rotate left/right direct word GPR	2
ASHR	Arithmetic (sign bit) shift right direct word GPR	2

Table 6 Instruction Set Summary

Table 7C164Cl Registers, Ordered by Name (cont'd)

Name Physical Address		8-Bit Addr.	Description	Reset Value		
C1MCFGn		EFn6 _H	X		CAN Message Configuration Register (msg. n)	UU _H
C1MCRn		EFn0 _H	Χ		CAN Message Control Register (msg. n)	UUUU _H
C1PCIR		EF02 _H	Χ		CAN1 Port Control / Interrupt Register	XXXX _H
C1UARn		EFn2 _H	Χ		CAN Upper Arbitration Register (msg. n)	UUUU _H
C1UGML		EF08 _H	Χ		CAN Upper Global Mask Long	UUUU _H
C1UMLM		EF0C _H	Χ		CAN Upper Mask of Last Message	UUUU _H
CC10IC	b	FF8C _H		C6 _H	External Interrupt 2 Control Register	0000 _H
CC11IC	b	FF8E _H		C7 _H	External Interrupt 3 Control Register	0000 _H
CC16		FE60 _H		30 _H	CAPCOM Register 16	0000 _H
CC16IC	b	F160 _H	Ε	B0 _H	CAPCOM Reg. 16 Interrupt Ctrl. Reg.	0000 _H
CC17		FE62 _H		31 _H	CAPCOM Register 17	0000 _H
CC17IC	b	F162 _H		B1 _H	CAPCOM Reg. 17 Interrupt Ctrl. Reg.	0000 _H
CC18		FE64 _H		32 _H	CAPCOM Register 18	0000 _H
CC18IC	b	F164 _H	Ε	B2 _H	CAPCOM Reg. 18 Interrupt Ctrl. Reg.	0000 _H
CC19		FE66 _H		33 _H	CAPCOM Register 19	0000 _H
CC19IC	b	F166 _H	Ε	B3 _H	CAPCOM Reg. 19 Interrupt Ctrl. Reg.	0000 _H
CC20		FE68 _H		34 _H	CAPCOM Register 20	0000 _H
CC20IC	b	F168 _H	Ε	B4 _H	CAPCOM Reg. 20 Interrupt Ctrl. Reg.	0000 _H
CC21		FE6A _H		35 _H	CAPCOM Register 21	0000 _H
CC21IC	b	F16A _H	Ε	B5 _H	CAPCOM Reg. 21 Interrupt Ctrl. Reg.	0000 _H
CC22		FE6C _H		36 _H	CAPCOM Register 22	0000 _H
CC22IC	b	F16C _H	Ε	B6 _H	CAPCOM Reg. 22 Interrupt Ctrl. Reg.	0000 _H
CC23		FE6E _H		37 _H	CAPCOM Register 23	0000 _H
CC23IC	b	F16E _H	Ε	B7 _H	CAPCOM Reg. 23 Interrupt Ctrl. Reg.	0000 _H
CC24		FE70 _H		38 _H	CAPCOM Register 24	0000 _H
CC24IC	b	F170 _H	Ε	B8 _H	CAPCOM Reg. 24 Interrupt Ctrl. Reg.	0000 _H
CC25		FE72 _H		39 _H	CAPCOM Register 25	0000 _H
CC25IC	b	F172 _H	Ε	B9 _H	CAPCOM Reg. 25 Interrupt Ctrl. Reg.	0000 _H
CC26		FE74 _H		3A _H	CAPCOM Register 26	0000 _H

Table 7C164Cl Registers, Ordered by Name (cont'd)									
Name		Physica Address		8-Bit Addr.	Description	Reset Value			
CTCON	b	FF30 _H		98 _H	CAPCOM 6 Compare Timer Ctrl. Reg.	1010 _H			
DP0H	b	F102 _H	Ε	81 _H	P0H Direction Control Register	00 _H			
DP0L	b	F100 _H	Ε	80 _H	P0L Direction Control Register	00 _H			
DP1H	b	F106 _H	Ε	83 _H	P1H Direction Control Register	00 _H			
DP1L	b	F104 _H	Ε	82 _H	P1L Direction Control Register	00 _H			
DP3	b	FFC6 _H		E3 _H	Port 3 Direction Control Register	0000 _H			
DP4	b	FFCA _H		E5 _H	Port 4 Direction Control Register	00 _H			
DP8	b	FFD6 _H		EB _H	Port 8 Direction Control Register	00 _H			
DPP0		FE00 _H		00 _H	CPU Data Page Pointer 0 Reg. (10 bits)	0000 _H			
DPP1		FE02 _H		01 _H	CPU Data Page Pointer 1 Reg. (10 bits)	0001 _H			
DPP2		FE04 _H		02 _H	CPU Data Page Pointer 2 Reg. (10 bits)	0002 _H			
DPP3		FE06 _H		03 _H	CPU Data Page Pointer 3 Reg. (10 bits)	0003 _H			
EXICON	b	F1C0 _H	Ε	E0 _H	External Interrupt Control Register	0000 _H			
EXISEL	b	F1DA _H	Ε	ED _H	External Interrupt Source Select Reg.	0000 _H			
FOCON	b	FFAA _H		D5 _H	Frequency Output Control Register	0000 _H			
IDCHIP		F07C _H	Ε	3E _H	Identifier	XXXX _H			
IDMANUF		F07E _H	Ε	3F _H	Identifier	1820 _H			
IDMEM		F07A _H	Ε	3D _H	Identifier	XXXX _H			
IDPROG		F078 _H	Ε	3C _H	Identifier	XXXX _H			
IDMEM2		F076 _H	Ε	3B _H	Identifier	XXXX _H			
ISNC	b	F1DE _H	Ε	EF _H	Interrupt Subnode Control Register	0000 _H			
MDC	b	FF0E _H		87 _H	CPU Multiply Divide Control Register	0000 _H			
MDH		FE0C _H		06 _H	CPU Multiply Divide Reg. – High Word	0000 _H			
MDL		FE0E _H		07 _H	CPU Multiply Divide Reg. – Low Word	0000 _H			
ODP3	b	F1C6 _H	Ε	E3 _H	Port 3 Open Drain Control Register	0000 _H			
ODP4	b	F1CA _H	Ε	E5 _H	Port 4 Open Drain Control Register	00 _H			
ODP8	b	F1D6 _H	Ε	EB _H	Port 8 Open Drain Control Register	00 _H			
ONES	b	FF1E _H		8F _H	Constant Value 1's Register (read only)	FFFF _H			
OPAD		EDC2 _H	Χ		OTP Progr. Interface Address Register	0000 _H			

......

OPCTRL

EDC0_H X

0007_H

OTP Progr. Interface Control Register

Table 7C164Cl Registers	, Ordered by Name (cont'd)
-------------------------	----------------------------

Name Physical Address				8-Bit Addr.	Description	Reset Value
T12IC	b	F190 _H	Ε	C8 _H	CAPCOM 6 Timer 12 Interrupt Ctrl. Reg.	0000 _H
T12OF		F034 _H E		1A _H	CAPCOM 6 Timer 12 Offset Register	0000 _H
T12P		F030 _H	Ε	18 _H	CAPCOM 6 Timer 12 Period Register	0000 _H
T13IC	b	F198 _H	Ε	CCH	CAPCOM 6 Timer 13 Interrupt Ctrl. Reg.	0000 _H
T13P		F032 _H	Ε	19 _H	CAPCOM 6 Timer 13 Period Register	0000 _H
T14		F0D2 _H	Ε	69 _H	RTC Timer 14 Register	no
T14REL		F0D0 _H	Ε	68 _H	RTC Timer 14 Reload Register	no
T2		FE40 _H		20 _H	GPT1 Timer 2 Register	0000 _H
T2CON	b	FF40 _H		A0 _H	GPT1 Timer 2 Control Register	0000 _H
T2IC	b	FF60 _H		B0 _H	GPT1 Timer 2 Interrupt Control Register	0000 _H
Т3		FE42 _H		21 _H	GPT1 Timer 3 Register	0000 _H
T3CON	b	FF42 _H		A1 _H	GPT1 Timer 3 Control Register	0000 _H
T3IC	b	FF62 _H		B1 _H	GPT1 Timer 3 Interrupt Control Register	0000 _H
T4		FE44 _H		22 _H	GPT1 Timer 4 Register	0000 _H
T4CON	b	FF44 _H		A2 _H	GPT1 Timer 4 Control Register	0000 _H
T4IC	b	FF64 _H	F64 _H B2 _H GPT1 Timer 4 Interrupt Control Register		GPT1 Timer 4 Interrupt Control Register	0000 _H
T7		F050 _H	Ε	28 _H	CAPCOM Timer 7 Register	0000 _H
T78CON	b	FF20 _H		90 _H	CAPCOM Timer 7 and 8 Ctrl. Reg.	0000 _H
T7IC	b	F17A _H	Ε	BD _H	CAPCOM Timer 7 Interrupt Ctrl. Reg.	0000 _H
T7REL		F054 _H	Ε	2A _H	CAPCOM Timer 7 Reload Register	0000 _H
Т8		F052 _H	Ε	29 _H	CAPCOM Timer 8 Register	0000 _H
T8IC	b	F17C _H	Ε	BE _H	CAPCOM Timer 8 Interrupt Ctrl. Reg.	0000 _H
T8REL		F056 _H	Ε	2B _H	CAPCOM Timer 8 Reload Register	0000 _H
TFR	b	FFAC _H		D6 _H	Trap Flag Register	0000 _H
TRCON	b	FF34 _H		9A _H	CAPCOM 6 Trap Enable Ctrl. Reg.	00XX _H
WDT		FEAE _H		57 _H	Watchdog Timer Register (read only)	0000 _H
WDTCON		FFAE _H		D7 _H	Watchdog Timer Control Register	²⁾ 00xx _H
XPOIC	b	F186 _H	Ε	C3 _H	CAN1 Module Interrupt Control Register	0000 _H
XP1IC	b	F18E _H	Ε	C7 _H	Unassigned Interrupt Control Reg.	0000 _H

Parameter Interpretation

The parameters listed in the following partly represent the characteristics of the C164Cl and partly its demands on the system. To aid in interpreting the parameters right, when evaluating them for a design, they are marked in column "Symbol":

CC (Controller Characteristics):

The logic of the C164CI will provide signals with the respective characteristics.

SR (System Requirement):

The external system must provide signals with the respective characteristics to the C164CI.

DC Characteristics

(Operating Conditions apply)¹⁾

Parameter	Sym	bol	Limit	Values	Unit	Test Conditions
			min.	max.		
Input low voltage (TTL, all except XTAL1)	V _{IL}	SR	-0.5	0.2 V _{DD} - 0.1	V	-
Input low voltage XTAL1	V_{IL2}	SR	-0.5	0.3 V _{DD}	V	-
Input low voltage (Special Threshold)	V _{ILS}	SR	-0.5	2.0	V	_
Input high voltage (TTL, all except RSTIN, XTAL1)	V _{IH}	SR	0.2 V _{DD} + 0.9	V _{DD} + 0.5	V	_
Input high voltage RSTIN (when operated as input)	V _{IH1}	SR	0.6 V _{DD}	V _{DD} + 0.5	V	-
Input high voltage XTAL1	V _{IH2}	SR	0.7 V _{DD}	V _{DD} + 0.5	V	-
Input high voltage (Special Threshold)	V _{IHS}	SR	0.8 V _{DD} - 0.2	V _{DD} + 0.5	V	-
Input Hysteresis (Special Threshold)	HYS		400	_	mV	Series resistance = 0Ω
Output low voltage ²⁾	V_{OL}	CC	-	1.0	V	$I_{OL} \leq I_{OLmax}^{3)}$
			_	0.45	V	$I_{OL} \le I_{OLnom}^{3)4)}$
Output high voltage ⁵⁾	V _{OH}	CC	V _{DD} - 1.0	_	V	$I_{OH} \ge I_{OHmax}^{3)}$
			V _{DD} - 0.45	_	V	$I_{OH} \ge I_{OHnom}^{3)4)$
Input leakage current (Port 5)	I _{OZ1}	CC	_	±200	nA	$0 V < V_{IN} < V_{DD}$

Power Consumption C164CI (OTP)

(Operating Conditions apply)

Parameter	Sym-	Lim	it Values	Unit	Test
	bol	min.	max.		Conditions
Power supply current (active) with all peripherals active	I _{DD}	-	10 + 3.5 × f _{CPU}	mA	$\overline{\text{RSTIN}} = V_{\text{IL}}$ $f_{\text{CPU}} \text{ in } [\text{MHz}]^{1)}$
Idle mode supply current with all peripherals active	I _{IDX}	-	5 + 1.25 × f _{CPU}	mA	$\overline{\text{RSTIN}} = V_{\text{IH1}}$ $f_{\text{CPU}} \text{ in } [\text{MHz}]^{1)}$
Idle mode supply current with all peripherals deactivated, PLL off, SDD factor = 32	I _{IDO} ²⁾	_	500 + 50 × f _{OSC}	μA	$\overline{\text{RSTIN}} = V_{\text{IH1}}$ $f_{\text{OSC}} \text{ in } [\text{MHz}]^{1)}$
Sleep and Power-down mode supply current with RTC running	$I_{\rm PDR}^{2)}$	_	200 + 25 × f _{OSC}	μA	$V_{\text{DD}} = V_{\text{DDmax}}$ f_{OSC} in [MHz] ³⁾
Sleep and Power-down mode supply current with RTC disabled	I _{PDO}	-	50	μA	$V_{\rm DD} = V_{\rm DDmax}^{3)}$

¹⁾ The supply current is a function of the operating frequency. This dependency is illustrated in Figure 10. These parameters are tested at V_{DDmax} and maximum CPU clock with all outputs disconnected and all inputs at V_{IL} or V_{IH}.

²⁾ This parameter is determined mainly by the current consumed by the oscillator (see **Figure 8**). This current, however, is influenced by the external oscillator circuitry (crystal, capacitors). The values given refer to a typical circuitry and may change in case of a not optimized external oscillator circuitry.

³⁾ This parameter is tested including leakage currents. All inputs (including pins configured as inputs) at 0 V to 0.1 V or at V_{DD} - 0.1 V to V_{DD} , V_{REF} = 0 V, all outputs (including pins configured as outputs) disconnected.

Figure 10 Supply/Idle Current as a Function of Operating Frequency for OTP Derivatives

AC Characteristics External Clock Drive XTAL1

(Operating Conditions apply)

Parameter	Symbol			t Drive :1		Prescaler 2:1		PLL 1:N	
			min.	max.	min.	max.	min.	max.	
Oscillator period	t _{OSC}	SR	40	_	20	_	60 ¹⁾	500 ¹⁾	ns
High time ²⁾	t ₁	SR	20 ³⁾	_	6	_	10	_	ns
Low time ²⁾	<i>t</i> ₂	SR	20 ³⁾	_	6	_	10	-	ns
Rise time ²⁾	t ₃	SR	_	8	_	5	-	10	ns
Fall time ²⁾	<i>t</i> ₄	SR	-	8	-	5	-	10	ns

Table 12 External Clock Drive Characteristics

 The minimum and maximum oscillator periods for PLL operation depend on the selected CPU clock generation mode. Please see respective table above.

²⁾ The clock input signal must reach the defined levels V_{IL2} and V_{IH2} .

³⁾ The minimum high and low time refers to a duty cycle of 50%. The maximum operating freqency (f_{CPU}) in direct drive mode depends on the duty cycle of the clock input signal.

Figure 13 External Clock Drive XTAL1

Note: If the on-chip oscillator is used together with a crystal, the oscillator frequency is limited to a range of 4 MHz to 16 MHz.

It is strongly recommended to measure the oscillation allowance (or margin) in the final target system (layout) to determine the optimum parameters for the oscillator operation. Please refer to the limits specified by the crystal supplier.

When driven by an external clock signal it will accept the specified frequency range. Operation at lower input frequencies is possible but is guaranteed by design only (not 100% tested).

Multiplexed Bus (cont'd)

(Operating Conditions apply)

ALE cycle time = 6 TCL + $2t_A$ + t_C + t_F (120 ns at 25 MHz CPU clock without waitstates)

Parameter		nbol		PU Clock MHz	Variable (1 / 2TCL =	Unit	
			min.	max.	min.	max.	
RD, WR low time (no RW-delay)	<i>t</i> ₁₃	CC	$50 + t_{\rm C}$	-	3TCL - 10 + <i>t</i> _C	-	ns
RD to valid data in (with RW-delay)	<i>t</i> ₁₄	SR	-	$20 + t_{\rm C}$	_	2TCL - 20 + <i>t</i> _C	ns
RD to valid data in (no RW-delay)	t ₁₅	SR	_	$40 + t_{\rm C}$	_	3TCL - 20 + <i>t</i> _C	ns
ALE low to valid data in	<i>t</i> ₁₆	SR	_	$40 + t_{A} + t_{C}$	_	3TCL - 20 + <i>t</i> _A + <i>t</i> _C	ns
Address to valid data in	t ₁₇	SR	-	$50 + 2t_A + t_C$	-	$4TCL - 30 + 2t_A + t_C$	ns
Data hold after RD rising edge	t ₁₈	SR	0	_	0	-	ns
Data float after RD	t ₁₉	SR	_	26 + $t_{\rm F}$	-	2TCL - 14 + <i>t</i> _F	ns
Data valid to WR	t ₂₂	CC	$20 + t_{\rm C}$	-	2TCL - 20 + <i>t</i> _C	-	ns
Data hold after WR	t ₂₃	CC	26 + <i>t</i> _F	-	2TCL - 14 + <i>t</i> _F	-	ns
ALE rising edge after \overline{RD} , \overline{WR}	t ₂₅	CC	26 + <i>t</i> _F	-	2TCL - 14 + <i>t</i> _F	-	ns
Address hold after \overline{RD} , \overline{WR}	t ₂₇	CC	26 + <i>t</i> _F	-	2TCL - 14 + <i>t</i> _F	-	ns
ALE falling edge to $\overline{\text{CS}}^{1)}$	t ₃₈	CC	-4 - t _A	10 - <i>t</i> _A	-4 - t _A	10 - <i>t</i> _A	ns
\overline{CS} low to Valid Data In ¹⁾	t ₃₉	SR	-	40 + t_{C} + $2t_{A}$	-	$3TCL - 20 + t_C + 2t_A$	ns
$\overline{\text{CS}}$ hold after $\overline{\text{RD}}$, $\overline{\text{WR}}^{1)}$	<i>t</i> ₄₀	CC	46 + <i>t</i> _F	-	3TCL - 14 + <i>t</i> _F	-	ns
ALE fall. edge to RdCS, WrCS (with RW delay)	<i>t</i> ₄₂	CC	$16 + t_A$	_	TCL - 4 + <i>t</i> _A	-	ns

Figure 16 External Memory Cycle: Multiplexed Bus, With Read/Write Delay, Normal ALE

Demultiplexed Bus (cont'd)

(Operating Conditions apply)

ALE cycle time = 4 TCL + $2t_A$ + t_C + t_F (80 ns at 25 MHz CPU clock without waitstates)

Parameter		nbol		PU Clock MHz	Variable 1 / 2TCL =	Unit	
			min.	max.	min.	max.	
Data valid to \overline{WR}	t ₂₂	CC	$20 + t_{\rm C}$	-	2TCL - 20 + <i>t</i> _C	-	ns
Data hold after WR	t ₂₄	CC	10 + <i>t</i> _F	-	TCL - 10 + <i>t</i> _F	-	ns
$\frac{\text{ALE rising edge after }\overline{\text{RD}},}{\overline{\text{WR}}}$	t ₂₆	CC	$-10 + t_{F}$	-	-10 + <i>t</i> _F	-	ns
Address hold after $\overline{WR}^{2)}$	t ₂₈	CC	$0 + t_{F}$	-	$0 + t_{F}$	_	ns
ALE falling edge to $\overline{\text{CS}}^{3)}$	t ₃₈	CC	-4 - t _A	10 - <i>t</i> _A	-4 - t _A	10 - <i>t</i> _A	ns
$\overline{\text{CS}}$ low to Valid Data In ³⁾	t ₃₉	SR	-	$40 + t_{\rm C} + 2t_{\rm A}$	-	3TCL - 20 + <i>t</i> _C + 2 <i>t</i> _A	ns
$\overline{\text{CS}}$ hold after $\overline{\text{RD}}$, $\overline{\text{WR}}^{3)}$	<i>t</i> ₄₁	CC	$6 + t_{F}$	-	TCL - 14 + <i>t</i> _F	-	ns
$\frac{\text{ALE falling edge to }\overline{\text{RdCS}},}{\text{WrCS}}$ (with RW-delay)	t ₄₂	CC	$16 + t_A$	-	TCL - 4 + <i>t</i> _A	-	ns
ALE falling edge to RdCS, WrCS (no RW-delay)	t ₄₃	CC	$-4 + t_{A}$	-	-4 + t _A	-	ns
RdCS to Valid Data In (with RW-delay)	t ₄₆	SR	_	16 + <i>t</i> _C	-	2TCL - 24 + <i>t</i> _C	ns
RdCS to Valid Data In (no RW-delay)	t ₄₇	SR	-	$36 + t_{\rm C}$	-	3TCL - 24 + <i>t</i> _C	ns
RdCS, WrCS Low Time (with RW-delay)	t ₄₈	CC	$30 + t_{\rm C}$	-	2TCL - 10 + <i>t</i> _C	-	ns
RdCS, WrCS Low Time (no RW-delay)	t ₄₉	CC	$50 + t_{\rm C}$	-	3TCL - 10 + <i>t</i> _C	-	ns
Data valid to \overline{WrCS}	t ₅₀	CC	$26 + t_{\rm C}$	-	2TCL - 14 + <i>t</i> _C	-	ns
Data hold after RdCS	<i>t</i> ₅₁	SR	0	-	0	-	ns
Data float after RdCS (with RW-delay) ¹⁾	t ₅₃	SR	-	20 + <i>t</i> _F	-	$2\text{TCL} - 20 + 2t_{\text{A}} + t_{\text{F}}^{1)}$	ns

Package Outlines

Sorts of Packing Package outlines for tubes, trays etc. are contained in our Data Book "Package Information". SMD = Surface Mounted Device