

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	C166
Core Size	16-Bit
Speed	20MHz
Connectivity	CANbus, EBI/EMI, SPI, SSC, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	59
Program Memory Size	64KB (64K x 8)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	4.75V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	80-QFP
Supplier Device Package	PG-MQFP-80-7
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/c164ci8emcbkxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Edition 2001-05

Published by Infineon Technologies AG, St.-Martin-Strasse 53, D-81541 München, Germany © Infineon Technologies AG 2001. All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as warranted characteristics.

Terms of delivery and rights to technical change reserved.

We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

Infineon Technologies is an approved CECC manufacturer.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide.

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

Table 2	-			anotions	
Symbol		Input	Function		
	No.	Outp.			
P5		1			it-only port with Schmitt-Trigger charact.
					so serve as analog input channels for the
				erter, or the	ey serve as timer inputs:
P5.0	76		AN0		
P5.1	77		AN1		
P5.2	78		AN2		
P5.3	79		AN3		
P5.4	2		AN4,	T2EUD	GPT1 Timer T2 Ext. Up/Down Ctrl. Inp.
P5.5	3		AN5,	T4EUD	GPT1 Timer T4 Ext. Up/Down Ctrl. Inp.
P5.6	4	1	AN6,	T2IN	GPT1 Timer T2 Input for
					Count/Gate/Reload/Capture
P5.7	5	I	AN7,	T4IN	GPT1 Timer T4 Input for
					Count/Gate/Reload/Capture
P3		IO			ectional I/O port. It is bit-wise put or output via direction bits. For a pin
					the output driver is put into high-
			-	-	ort 3 outputs can be configured as push/
					ivers. The input threshold of Port 3 is
			selectable		-
			The follow	ing Port 3	pins also serve for alternate functions:
P3.4	8	1	T3EUD	GPT1 Ti	mer T3 External Up/Down Control Input
P3.6	9	1	T3IN	GPT1 T	imer T3 Count/Gate Input
P3.8	10	I/O	MRST	SSC Ma	ster-Receive/Slave-Transmit Inp./Outp.
P3.9	11	I/O	MTSR	SSC Ma	ster-Transmit/Slave-Receive Outp./Inp.
P3.10	12	0	TxD0	ASC0 C	lock/Data Output (Async./Sync.)
P3.11	13	I/O	RxD0		ata Input (Async.) or Inp./Outp. (Sync.)
P3.12	14	0	BHE	External	Memory High Byte Enable Signal,
		0	WRH		Memory High Byte Write Strobe
P3.13	15	I/O	SCLK		ster Clock Output / Slave Clock Input.
P3.15	16	0	CLKOUT	-	Clock Output (= CPU Clock),
		0	FOUT	Program	mable Frequency Output

Table 2Pin Definitions and Functions

Table 2	Pi	Pin Definitions and Functions (cont'd)							
Symbol	Pin No.	Input Outp.	Function						
ĒĀ/V _{PP}	28	I	External Access Enable pin. A low level at this pin during and after Reset forces the C164CI to latch the configuration from PORT0 and pin RD, and to begin instruction execution out of external memory. A high level forces the C164CI to latch the configuration from pins RD and ALE, and to begin instruction execution out of the internal program memory. "ROMless" versions must have this pin tied to '0'.						
			Note: This pin also accepts the programming voltage for the OTP derivatives.						
PORT0 P0L.0-7 P0H.0-7	36	IO	PORT0 consists of the two 8-bit bidirectional I/O ports P0L and P0H. It is bit-wise programmable for input or output via direction bits. For a pin configured as input, the output driver						
	42-46		is put into high-impedance state. In case of an external bus configuration, PORT0 serves as the address (A) and address/data (AD) bus in multiplexed bus modes and as the data (D) bus in demultiplexed bus modes.						
			Demultiplexed bus	modes:					
			Data Path Width:	8-bit	16-bit				
			P0L.0 – P0L.7:	D0 – D7	D0 – D7				
			P0H.0 – P0H.7:	I/O	D8 – D15				
			Multiplexed bus mo Data Path Width:	odes: 8-bit	16-bit				
			POL.0 - POL.7:	8-Dil AD0 – AD7					
			P0H.0 – P0H.7:	AB0 – AD7 A8 – A15	AD8 – AD15				

The C164CI also provides an excellent mechanism to identify and to process exceptions or error conditions that arise during run-time, so-called 'Hardware Traps'. Hardware traps cause immediate non-maskable system reaction which is similar to a standard interrupt service (branching to a dedicated vector table location). The occurrence of a hardware trap is additionally signified by an individual bit in the trap flag register (TFR). Except when another higher prioritized trap service is in progress, a hardware trap will interrupt any actual program execution. In turn, hardware trap services can normally not be interrupted by standard or PEC interrupts.

Table 4 shows all of the possible exceptions or error conditions that can arise during runtime:

Exception Condition	Trap Flag	Trap Vector	Vector Location	Trap Number	Trap Priority
Reset Functions: – Hardware Reset – Software Reset – W-dog Timer Overflow	-	RESET RESET RESET	00'0000 _H 00'0000 _H 00'0000 _H	00 _H 00 _H 00 _H	
Class A Hardware Traps: – Non-Maskable Interrupt – Stack Overflow – Stack Underflow	NMI STKOF STKUF	NMITRAP STOTRAP STUTRAP	00'0008 _H 00'0010 _H 00'0018 _H	02 _H 04 _H 06 _H	
Class B Hardware Traps: – Undefined Opcode – Protected Instruction Fault	UNDOPC PRTFLT	BTRAP BTRAP	00'0028 _H 00'0028 _H	0A _H 0A _H	1
 Illegal Word Operand Access 	ILLOPA	BTRAP	00'0028 _H	0A _H	I
 Illegal Instruction Access 	ILLINA	BTRAP	00'0028 _H	0A _H	1
 Illegal External Bus Access 	ILLBUS	BTRAP	00'0028 _H	0A _H	1
Reserved	_	_	[2C _H – 3C _H]	[0B _H – 0F _H]	-
Software Traps – TRAP Instruction	_	_	Any [00'0000 _H 00'01FC _H] in steps of 4 _H	Any [00 _H – 7F _H]	Current CPU Priority

Table 4Hardware Trap Summary

A/D Converter

For analog signal measurement, a 10-bit A/D converter with 8 multiplexed input channels and a sample and hold circuit has been integrated on-chip. It uses the method of successive approximation. The sample time (for loading the capacitors) and the conversion time is programmable and can so be adjusted to the external circuitry.

Overrun error detection/protection is provided for the conversion result register (ADDAT): either an interrupt request will be generated when the result of a previous conversion has not been read from the result register at the time the next conversion is complete, or the next conversion is suspended in such a case until the previous result has been read.

For applications which require less than 8 analog input channels, the remaining channel inputs can be used as digital input port pins.

The A/D converter of the C164CI supports four different conversion modes. In the standard Single Channel conversion mode, the analog level on a specified channel is sampled once and converted to a digital result. In the Single Channel Continuous mode, the analog level on a specified channel is repeatedly sampled and converted without software intervention. In the Auto Scan mode, the analog levels on a prespecified number of channels (standard or extension) are sequentially sampled and converted. In the Auto Scan Continuous mode, the number of prespecified channels is repeatedly sampled and converted. In the Auto Scan Continuous mode, the conversion of a specific channel can be inserted (injected) into a running sequence without disturbing this sequence. This is called Channel Injection Mode.

The Peripheral Event Controller (PEC) may be used to automatically store the conversion results into a table in memory for later evaluation, without requiring the overhead of entering and exiting interrupt routines for each data transfer.

After each reset and also during normal operation the ADC automatically performs calibration cycles. This automatic self-calibration constantly adjusts the converter to changing operating conditions (e.g. temperature) and compensates process variations.

These calibration cycles are part of the conversion cycle, so they do not affect the normal operation of the A/D converter.

In order to decouple analog inputs from digital noise and to avoid input trigger noise those pins used for analog input can be disconnected from the digital IO or input stages under software control. This can be selected for each pin separately via register P5DIDIS (Port 5 Digital Input Disable).

Parallel Ports

The C164CI provides up to 59 I/O lines which are organized into five input/output ports and one input port. All port lines are bit-addressable, and all input/output lines are individually (bit-wise) programmable as inputs or outputs via direction registers. The I/O ports are true bidirectional ports which are switched to high impedance state when configured as inputs. The output drivers of three I/O ports can be configured (pin by pin) for push/pull operation or open-drain operation via control registers. During the internal reset, all port pins are configured as inputs.

The input threshold of Port 3, Port 4, and Port 8 is selectable (TTL or CMOS like), where the special CMOS like input threshold reduces noise sensitivity due to the input hysteresis. The input threshold may be selected individually for each byte of the respective ports.

All port lines have programmable alternate input or output functions associated with them. All port lines that are not used for these alternate functions may be used as general purpose IO lines.

PORT0 and PORT1 may be used as address and data lines when accessing external memory, while Port 4 outputs the additional segment address bits A21/19/17 ... A16 and the optional chip select signals in systems where segmentation is enabled to access more than 64 KBytes of memory.

Ports P1L, P1H, and P8 are associated with the capture inputs or compare outputs of the CAPCOM units and/or serve as external interrupt inputs.

Port 3 includes alternate functions of timers, serial interfaces, the optional bus control signal BHE/WRH, and the system clock output CLKOUT (or the programmable frequency output FOUT).

Port 5 is used for the analog input channels to the A/D converter or timer control signals.

The edge characteristics (transition time) and driver characteristics (output current) of the C164CI's port drivers can be selected via the Port Output Control registers (POCONx).

Power Management

The C164CI provides several means to control the power it consumes either at a given time or averaged over a certain timespan. Three mechanisms can be used (partly in parallel):

• **Power Saving Modes** switch the C164CI into a special operating mode (control via instructions).

Idle Mode stops the CPU while the peripherals can continue to operate.

Sleep Mode and Power Down Mode stop all clock signals and all operation (RTC may optionally continue running). Sleep Mode can be terminated by external interrupt signals.

Clock Generation Management controls the distribution and the frequency of internal and external clock signals (control via register SYSCON2).
 Slow Down Mode lets the C164CI run at a CPU clock frequency of f_{OSC}/1 ... 32 (half for prescaler operation) which drastically reduces the consumed power. The PLL can be optionally disabled while operating in Slow Down Mode.

External circuitry can be controlled via the programmable frequency output FOUT.

• **Peripheral Management** permits temporary disabling of peripheral modules (control via register SYSCON3).

Each peripheral can separately be disabled/enabled. A group control option disables a major part of the peripheral set by setting one single bit.

The on-chip RTC supports intermittend operation of the C164CI by generating cyclic wakeup signals. This offers full performance to quickly react on action requests while the intermittend sleep phases greatly reduce the average power consumption of the system.

Special Function Registers Overview

Table 7 lists all SFRs which are implemented in the C164CI in alphabetical order. **Bit-addressable** SFRs are marked with the letter "**b**" in column "Name". SFRs within the **Extended SFR-Space** (ESFRs) are marked with the letter "**E**" in column "Physical Address". Registers within on-chip X-peripherals are marked with the letter "**X**" in column "Physical Address".

An SFR can be specified via its individual mnemonic name. Depending on the selected addressing mode, an SFR can be accessed via its physical address (using the Data Page Pointers), or via its short 8-bit address (without using the Data Page Pointers).

Name		Physica Address		8-Bit Addr.	Description	Reset Value
ADCIC	b	FF98 _H		CCH	A/D Converter End of Conversion Interrupt Control Register	0000 _H
ADCON	b	FFA0 _H		D0 _H	A/D Converter Control Register	0000 _H
ADDAT		FEA0 _H		50 _H	A/D Converter Result Register	0000 _H
ADDAT2		F0A0 _H	Ε	50 _H	A/D Converter 2 Result Register	0000 _H
ADDRSEL1		FE18 _H		0C _H	Address Select Register 1	0000 _H
ADDRSEL2		FE1A _H		0D _H	Address Select Register 2	0000 _H
ADDRSEL3		FE1C _H		0E _H	Address Select Register 3	0000 _H
ADDRSEL4	•	FE1E _H		0F _H	Address Select Register 4	0000 _H
ADEIC	b	FF9A _H		CD _H	A/D Converter Overrun Error Interrupt Control Register	0000 _H
BUSCON0	b	FF0C _H		86 _H	Bus Configuration Register 0	0000 _H
BUSCON1	b	FF14 _H		8A _H	Bus Configuration Register 1	0000 _H
BUSCON2	b	FF16 _H		8B _H	Bus Configuration Register 2	0000 _H
BUSCON3	b	FF18 _H		8C _H	Bus Configuration Register 3	0000 _H
BUSCON4	b	FF1A _H		8D _H	Bus Configuration Register 4	0000 _H
C1BTR		EF04 _H	Χ		CAN1 Bit Timing Register	UUUU _H
C1CSR		EF00 _H	Χ		CAN1 Control / Status Register	XX01 _H
C1GMS		EF06 _H	Χ		CAN1 Global Mask Short	UFUU _H
C1LARn		EFn4 _H	Χ		CAN Lower Arbitration Register (msg. n)	UUUU _H
C1LGML		EF0A _H	Χ		CAN Lower Global Mask Long	UUUU _H
C1LMLM		EF0E _H	Χ		CAN Lower Mask of Last Message	UUUU _H

Table 7 C164Cl Registers, Ordered by Name

Table 7C164Cl Registers, Ordered by Name (cont'd)							
Name		Physica Address		8-Bit Addr.	Description	Reset Value	
CTCON	b	FF30 _H		98 _H	CAPCOM 6 Compare Timer Ctrl. Reg.	1010 _H	
DP0H	b	F102 _H	Ε	81 _H	P0H Direction Control Register	00 _H	
DP0L	b	F100 _H	Ε	80 _H	P0L Direction Control Register	00 _H	
DP1H	b	F106 _H	Ε	83 _H	P1H Direction Control Register	00 _H	
DP1L	b	F104 _H	Ε	82 _H	P1L Direction Control Register	00 _H	
DP3	b	FFC6 _H		E3 _H	Port 3 Direction Control Register	0000 _H	
DP4	b	FFCA _H		E5 _H	Port 4 Direction Control Register	00 _H	
DP8	b	FFD6 _H		EB _H	Port 8 Direction Control Register	00 _H	
DPP0		FE00 _H		00 _H	CPU Data Page Pointer 0 Reg. (10 bits)	0000 _H	
DPP1		FE02 _H		01 _H	CPU Data Page Pointer 1 Reg. (10 bits)	0001 _H	
DPP2		FE04 _H		02 _H	CPU Data Page Pointer 2 Reg. (10 bits)	0002 _H	
DPP3		FE06 _H		03 _H	CPU Data Page Pointer 3 Reg. (10 bits)	0003 _H	
EXICON	b	F1C0 _H	Ε	E0 _H	External Interrupt Control Register	0000 _H	
EXISEL	b	F1DA _H	Ε	ED _H	External Interrupt Source Select Reg.	0000 _H	
FOCON	b	FFAA _H		D5 _H	Frequency Output Control Register	0000 _H	
IDCHIP		F07C _H	Ε	3E _H	Identifier	XXXX _H	
IDMANUF		F07E _H	Ε	3F _H	Identifier	1820 _H	
IDMEM		F07A _H	Ε	3D _H	Identifier	XXXX _H	
IDPROG		F078 _H	Ε	3C _H	Identifier	XXXX _H	
IDMEM2		F076 _H	Ε	3B _H	Identifier	XXXX _H	
ISNC	b	F1DE _H	Ε	EF _H	Interrupt Subnode Control Register	0000 _H	
MDC	b	FF0E _H		87 _H	CPU Multiply Divide Control Register	0000 _H	
MDH		FE0C _H		06 _H	CPU Multiply Divide Reg. – High Word	0000 _H	
MDL		FE0E _H		07 _H	CPU Multiply Divide Reg. – Low Word	0000 _H	
ODP3	b	F1C6 _H	Ε	E3 _H	Port 3 Open Drain Control Register	0000 _H	
ODP4	b	F1CA _H	Ε	E5 _H	Port 4 Open Drain Control Register	00 _H	
ODP8	b	F1D6 _H	Ε	EB _H	Port 8 Open Drain Control Register	00 _H	
ONES	b	FF1E _H		8F _H	Constant Value 1's Register (read only)	FFFF _H	
OPAD		EDC2 _H	Χ		OTP Progr. Interface Address Register	0000 _H	

......

OPCTRL

EDC0_H X

0007_H

OTP Progr. Interface Control Register

Table 7C164Cl Registers, Ordered by Name (cont'd)

Name Physical Address			8-Bit Addr.	Description	Reset Value	
OPDAT		EDC4 _H	X		OTP Progr. Interface Data Register	0000 _H
P0H	b	FF02 _H		81 _H	Port 0 High Reg. (Upper half of PORT0)	00 _H
P0L	b	FF00 _H		80 _H	Port 0 Low Reg. (Lower half of PORT0)	00 _H
P1H	b	FF06 _H		83 _H	Port 1 High Reg. (Upper half of PORT1)	00 _H
P1L	b	FF04 _H		82 _H	Port 1 Low Reg. (Lower half of PORT1)	00 _H
P3	b	FFC4 _H		E2 _H	Port 3 Register	0000 _H
P4	b	FFC8 _H		E4 _H	Port 4 Register (7 bits)	00 _H
P5	b	FFA2 _H		D1 _H	Port 5 Register (read only)	XXXX _H
P5DIDIS	b	FFA4 _H		D2 _H	Port 5 Digital Input Disable Register	0000 _H
P8	b	FFD4 _H		EA _H	Port 8 Register (8 bits)	00 _H
PECC0		FEC0 _H		60 _H	PEC Channel 0 Control Register	0000 _H
PECC1		FEC2 _H		61 _H	PEC Channel 1 Control Register	0000 _H
PECC2		FEC4 _H		62 _H	PEC Channel 2 Control Register	0000 _H
PECC3		FEC6 _H		63 _H	PEC Channel 3 Control Register	0000 _H
PECC4		FEC8 _H		64 _H	PEC Channel 4 Control Register	0000 _H
PECC5		FECA _H		65 _H	PEC Channel 5 Control Register	0000 _H
PECC6		FECC _H		66 _H	PEC Channel 6 Control Register	0000 _H
PECC7		FECE _H		67 _H	PEC Channel 7 Control Register	0000 _H
PICON	b	F1C4 _H	Ε	E2 _H	Port Input Threshold Control Register	0000 _H
POCON0H		F082 _H	Ε	41 _H	Port P0H Output Control Register	0011 _H
POCON0L		F080 _H	Ε	40 _H	Port P0L Output Control Register	0011 _H
POCON1H		F086 _H	Ε	43 _H	Port P1H Output Control Register	0011 _H
POCON1L		F084 _H	Ε	42 _H	Port P1L Output Control Register	0011 _H
POCON20		F0AA _H	Ε	55 _H	Dedicated Pin Output Control Register	0000 _H
POCON3		F08A _H	Ε	45 _H	Port P3 Output Control Register	2222 _H
POCON4		F08C _H	Ε	46 _H	Port P4 Output Control Register	0010 _H
POCON8		F092 _H	Ε	49 _H	Port P8 Output Control Register	0022 _H
PSW	b	FF10 _H		88 _H	CPU Program Status Word	0000 _H
RP0H	b	F108 _H	Ε	84 _H	System Startup Config. Reg. (Rd. only)	XXH
RSTCON	b	F1E0 _H	m		Reset Control Register	00XX _H

Table 7C164Cl Registers	, Ordered by Name (cont'd)
-------------------------	----------------------------

Name Physical Address		8-Bit Addr.	Description	Reset Value		
T12IC	b	F190 _H	Е	C8 _H	CAPCOM 6 Timer 12 Interrupt Ctrl. Reg.	0000 _H
T12OF		F034 _H	Ε	1A _H	CAPCOM 6 Timer 12 Offset Register	0000 _H
T12P		F030 _H	Ε	18 _H	CAPCOM 6 Timer 12 Period Register	0000 _H
T13IC	b	F198 _H	Ε	CCH	CAPCOM 6 Timer 13 Interrupt Ctrl. Reg.	0000 _H
T13P		F032 _H	Ε	19 _H	CAPCOM 6 Timer 13 Period Register	0000 _H
T14		F0D2 _H	Ε	69 _H	RTC Timer 14 Register	no
T14REL		F0D0 _H	Ε	68 _H	RTC Timer 14 Reload Register	no
T2		FE40 _H		20 _H	GPT1 Timer 2 Register	0000 _H
T2CON	b	FF40 _H		A0 _H	GPT1 Timer 2 Control Register	0000 _H
T2IC	b	FF60 _H		B0 _H	GPT1 Timer 2 Interrupt Control Register	0000 _H
Т3		FE42 _H		21 _H	GPT1 Timer 3 Register	0000 _H
T3CON	b	FF42 _H		A1 _H	GPT1 Timer 3 Control Register	0000 _H
T3IC	b	FF62 _H		B1 _H	GPT1 Timer 3 Interrupt Control Register	0000 _H
Т4		FE44 _H		22 _H	GPT1 Timer 4 Register	0000 _H
T4CON	b	FF44 _H		A2 _H	GPT1 Timer 4 Control Register	0000 _H
T4IC	b	FF64 _H		B2 _H	GPT1 Timer 4 Interrupt Control Register	0000 _H
T7		F050 _H	Ε	28 _H	CAPCOM Timer 7 Register	0000 _H
T78CON	b	FF20 _H		90 _H	CAPCOM Timer 7 and 8 Ctrl. Reg.	0000 _H
T7IC	b	F17A _H	Ε	BD _H	CAPCOM Timer 7 Interrupt Ctrl. Reg.	0000 _H
T7REL		F054 _H	Ε	2A _H	CAPCOM Timer 7 Reload Register	0000 _H
Т8		F052 _H	Ε	29 _H	CAPCOM Timer 8 Register	0000 _H
T8IC	b	F17C _H	Ε	BE _H	CAPCOM Timer 8 Interrupt Ctrl. Reg.	0000 _H
T8REL		F056 _H	Ε	2B _H	CAPCOM Timer 8 Reload Register	0000 _H
TFR	b	FFAC _H		D6 _H	Trap Flag Register	0000 _H
TRCON	b	FF34 _H		9A _H	CAPCOM 6 Trap Enable Ctrl. Reg.	00XX _H
WDT		FEAE _H		57 _H	Watchdog Timer Register (read only)	0000 _H
WDTCON		FFAE _H		D7 _H	Watchdog Timer Control Register	²⁾ 00xx _H
XPOIC	b	F186 _H	Ε	C3 _H	CAN1 Module Interrupt Control Register	0000 _H
XP1IC	b	F18E _H	Ε	C7 _H	Unassigned Interrupt Control Reg.	0000 _H

Absolute Maximum Ratings

Parameter	Symbol	Limit	Values	Unit	Notes
		min.	max.		
Storage temperature	T _{ST}	-65	150	°C	-
Junction temperature	TJ	-40	150	°C	under bias
Voltage on $V_{\rm DD}$ pins with respect to ground ($V_{\rm SS}$)	V _{DD}	-0.5	6.5	V	-
Voltage on any pin with respect to ground (V_{SS})	V _{IN}	-0.5	V _{DD} + 0.5	V	-
Input current on any pin during overload condition	-	-10	10	mA	-
Absolute sum of all input currents during overload condition	_	-	100	mA	-
Power dissipation	P _{DISS}	_	1.5	W	_

Table 8 Absolute Maximum Rating Parameters

Note: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. During absolute maximum rating overload conditions ($V_{IN} > V_{DD}$ or $V_{IN} < V_{SS}$) the voltage on V_{DD} pins with respect to ground (V_{SS}) must not exceed the values defined by the absolute maximum ratings.

Port Output Driver Mode	Maximum Output Current $(I_{OLmax}, -I_{OHmax})^{1}$	Nominal Output Current (<i>I</i> _{OLnom} , - <i>I</i> _{OHnom}) ²⁾		
Strong driver	10 mA	2.5 mA		
Medium driver	4.0 mA	1.0 mA		
Weak driver	0.5 mA	0.1 mA		

Table 10 Current Limits for Port Output Drivers

¹⁾ An output current above II_{OXnom}I may be drawn from up to three pins at the same time. For any group of 16 neighboring port output pins the total output current in each direction (ΣI_{OL} and Σ-I_{OH}) must remain below 50 mA.

²⁾ The current ROM-version of the C164CI (step Ax) is equipped with port drivers, which provide reduced driving capability and reduced control. Please refer to the actual errata sheet for details.

Power Consumption C164CI (ROM)

(Operating Conditions apply)

Parameter	Sym-	Limit	Values	Unit	Test
	bol	min.	max.		Conditions
Power supply current (active) with all peripherals active	I _{DD}	_	1 + 2.5 × f _{CPU}	mA	$\overline{\text{RSTIN}} = V_{\text{IL}}$ $f_{\text{CPU}} \text{ in } [\text{MHz}]^{1)}$
Idle mode supply current with all peripherals active	I _{IDX}	_	1 + 1.1 × f _{CPU}	mA	$\overline{\text{RSTIN}} = V_{\text{IH1}}$ $f_{\text{CPU}} \text{ in [MHz]}^{1)}$
Idle mode supply current with all peripherals deactivated, PLL off, SDD factor = 32	I _{IDO} ²⁾	_	500 + 50 × f _{OSC}	μA	$\overline{\text{RSTIN}} = V_{\text{IH1}}$ $f_{\text{OSC}} \text{ in } [\text{MHz}]^{1)}$
Sleep and Power-down mode supply current with RTC running	I _{PDR} ²⁾	-	200 + 25 × f _{OSC}	μA	$V_{\text{DD}} = V_{\text{DDmax}}$ f_{OSC} in [MHz] ³⁾
Sleep and Power-down mode supply current with RTC disabled	I _{PDO}	_	50	μA	$V_{\rm DD} = V_{\rm DDmax}^{3)}$

¹⁾ The supply current is a function of the operating frequency. This dependency is illustrated in Figure 9. These parameters are tested at V_{DDmax} and maximum CPU clock with all outputs disconnected and all inputs at V_{IL} or V_{IH}.

²⁾ This parameter is determined mainly by the current consumed by the oscillator (see Figure 8). This current, however, is influenced by the external oscillator circuitry (crystal, capacitors). The values given refer to a typical circuitry and may change in case of a not optimized external oscillator circuitry.

³⁾ This parameter is tested including leakage currents. All inputs (including pins configured as inputs) at 0 V to 0.1 V or at V_{DD} - 0.1 V to V_{DD} , V_{REF} = 0 V, all outputs (including pins configured as outputs) disconnected.

Power Consumption C164CI (OTP)

(Operating Conditions apply)

Parameter	Sym-	Lim	it Values	Unit	Test	
	bol	min. max.			Conditions	
Power supply current (active) with all peripherals active	I _{DD}	_	10 + 3.5 × f _{CPU}	mA	$\overline{\text{RSTIN}} = V_{\text{IL}}$ $f_{\text{CPU}} \text{ in } [\text{MHz}]^{1)}$	
Idle mode supply current with all peripherals active	I _{IDX}	-	5 + 1.25 × f _{CPU}	mA	$\overline{\text{RSTIN}} = V_{\text{IH1}}$ $f_{\text{CPU}} \text{ in } [\text{MHz}]^{1)}$	
Idle mode supply current with all peripherals deactivated, PLL off, SDD factor = 32	I _{IDO} ²⁾	_	500 + 50 × f _{OSC}	μA	$\overline{\text{RSTIN}} = V_{\text{IH1}}$ $f_{\text{OSC}} \text{ in } [\text{MHz}]^{1)}$	
Sleep and Power-down mode supply current with RTC running	$I_{\rm PDR}^{2)}$	-	200 + 25 × f _{OSC}	μA	$V_{\text{DD}} = V_{\text{DDmax}}$ f_{OSC} in [MHz] ³⁾	
Sleep and Power-down mode supply current with RTC disabled	I _{PDO}	-	50	μA	$V_{\rm DD} = V_{\rm DDmax}^{3)}$	

¹⁾ The supply current is a function of the operating frequency. This dependency is illustrated in Figure 10. These parameters are tested at V_{DDmax} and maximum CPU clock with all outputs disconnected and all inputs at V_{IL} or V_{IH}.

²⁾ This parameter is determined mainly by the current consumed by the oscillator (see **Figure 8**). This current, however, is influenced by the external oscillator circuitry (crystal, capacitors). The values given refer to a typical circuitry and may change in case of a not optimized external oscillator circuitry.

³⁾ This parameter is tested including leakage currents. All inputs (including pins configured as inputs) at 0 V to 0.1 V or at V_{DD} - 0.1 V to V_{DD} , V_{REF} = 0 V, all outputs (including pins configured as outputs) disconnected.

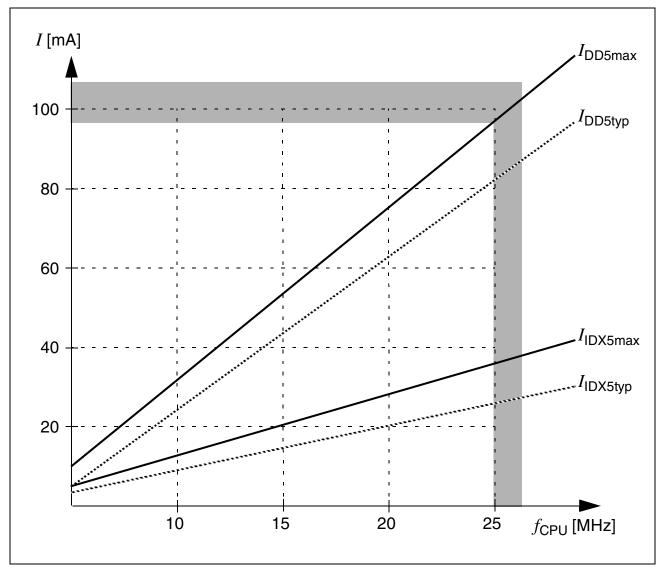


Figure 10 Supply/Idle Current as a Function of Operating Frequency for OTP Derivatives

A/D Converter Characteristics

(Operating Conditions apply)

Table 13	A/D Converter Characteristics
----------	-------------------------------

Parameter	Symbol		Limit	Values	Unit	Test	
			min.	max.		Conditions	
Analog reference supply	VAREF	SR	4.0	V _{DD} + 0.1	V	1)	
Analog reference ground	VAGNE	SR	V _{SS} - 0.1	$V_{\rm SS}$ + 0.2	V	_	
Analog input voltage range	V_{AIN}	SR	V _{AGND}	V _{AREF}	V	2)	
Basic clock frequency	f _{BC}		0.5	6.25	MHz	3)	
Conversion time	t _C	CC	_	40 t _{BC} +	_	4)	
				$t_{\rm S} + 2t_{\rm CPU}$		$t_{CPU} = 1 / f_{CPU}$	
Calibration time after reset	t _{CAL}	CC	-	3328 t _{BC}	-	5)	
Total unadjusted error	TUE	CC	-	±2	LSB	1)	
Internal resistance of reference voltage source	R _{AREF}	SR	-	t _{BC} / 60 - 0.25	kΩ	<i>t</i> _{BC} in [ns] ⁶⁾⁷⁾	
Internal resistance of analog source	R _{ASRC}	;SR	_	t _S / 450 - 0.25	kΩ	t _S in [ns] ⁷⁾⁸⁾	
ADC input capacitance	C_{AIN}	CC	-	33	pF	7)	

¹⁾ TUE is tested at $V_{AREF} = 5.0 \text{ V}$, $V_{AGND} = 0 \text{ V}$, $V_{DD} = 4.9 \text{ V}$. It is guaranteed by design for all other voltages within the defined voltage range.

If the analog reference supply voltage exceeds the power supply voltage by up to 0.2 V

(i.e. $V_{ABEF} = V_{DD} = +0.2 \text{ V}$) the maximum TUE is increased to ±3 LSB. This range is not 100% tested.

The specified TUE is guaranteed only if the absolute sum of input overload currents on Port 5 pins (see I_{OV} specification) does not exceed 10 mA.

During the reset calibration sequence the maximum TUE may be \pm 4 LSB.

- ²⁾ V_{AIN} may exceed V_{AGND} or V_{AREF} up to the absolute maximum ratings. However, the conversion result in these cases will be X000_H or X3FF_H, respectively.
- ³⁾ The limit values for f_{BC} must not be exceeded when selecting the CPU frequency and the ADCTC setting.
- ⁴⁾ This parameter includes the sample time $t_{\rm S}$, the time for determining the digital result and the time to load the result register with the conversion result.

Values for the basic clock t_{BC} depend on programming and can be taken from Table 14.

This parameter depends on the ADC control logic. It is not a real maximum value, but rather a fixum.

- ⁵⁾ During the reset calibration conversions can be executed (with the current accuracy). The time required for these conversions is added to the total reset calibration time.
- ⁶⁾ During the conversion the ADC's capacitance must be repeatedly charged or discharged. The internal resistance of the reference voltage source must allow the capacitance to reach its respective voltage level within each conversion step. The maximum internal resistance results from the programmed conversion timing.
- ⁷⁾ Not 100% tested, guaranteed by design and characterization.

Multiplexed Bus (cont'd)

(Operating Conditions apply)

ALE cycle time = 6 TCL + $2t_A$ + t_C + t_F (120 ns at 25 MHz CPU clock without waitstates)

Parameter	Symbol		Max. CPU Clock = 25 MHz		Variable (1 / 2TCL =	Unit	
			min.	max.	min.	max.	
RD, WR low time (no RW-delay)	<i>t</i> ₁₃	CC	$50 + t_{\rm C}$	-	3TCL - 10 + <i>t</i> _C	-	ns
RD to valid data in (with RW-delay)	<i>t</i> ₁₄	SR	-	$20 + t_{\rm C}$	_	2TCL - 20 + <i>t</i> _C	ns
RD to valid data in (no RW-delay)	t ₁₅	SR	-	$40 + t_{\rm C}$	_	3TCL - 20 + <i>t</i> _C	ns
ALE low to valid data in	<i>t</i> ₁₆	SR	-	$40 + t_{A} + t_{C}$	_	3TCL - 20 + <i>t</i> _A + <i>t</i> _C	ns
Address to valid data in	t ₁₇	SR	_	$50 + 2t_A + t_C$	_	$\begin{array}{c} 4\text{TCL} - 30 \\ + 2t_{\text{A}} + t_{\text{C}} \end{array}$	ns
Data hold after RD rising edge	t ₁₈	SR	0	_	0	_	ns
Data float after RD	t ₁₉	SR	-	26 + $t_{\rm F}$	-	2TCL - 14 + <i>t</i> _F	ns
Data valid to WR	t ₂₂	CC	$20 + t_{\rm C}$	-	2TCL - 20 + <i>t</i> _C	_	ns
Data hold after WR	t ₂₃	CC	26 + <i>t</i> _F	-	2TCL - 14 + <i>t</i> _F	_	ns
ALE rising edge after \overline{RD} , \overline{WR}	t ₂₅	CC	26 + <i>t</i> _F	-	2TCL - 14 + <i>t</i> _F	_	ns
Address hold after \overline{RD} , \overline{WR}	t ₂₇	CC	26 + <i>t</i> _F	-	2TCL - 14 + <i>t</i> _F	_	ns
ALE falling edge to $\overline{\text{CS}}^{1)}$	t ₃₈	CC	-4 - t _A	10 - <i>t</i> _A	-4 - t _A	10 - <i>t</i> _A	ns
\overline{CS} low to Valid Data In ¹⁾	t ₃₉	SR	-	40 + $t_{\rm C}$ + $2t_{\rm A}$	-	$3TCL - 20 + t_C + 2t_A$	ns
$\overline{\text{CS}}$ hold after $\overline{\text{RD}}$, $\overline{\text{WR}}^{1)}$	<i>t</i> ₄₀	CC	$46 + t_{F}$	-	3TCL - 14 + <i>t</i> _F	-	ns
ALE fall. edge to RdCS, WrCS (with RW delay)	<i>t</i> ₄₂	CC	$16 + t_A$	-	TCL - 4 + <i>t</i> _A	-	ns

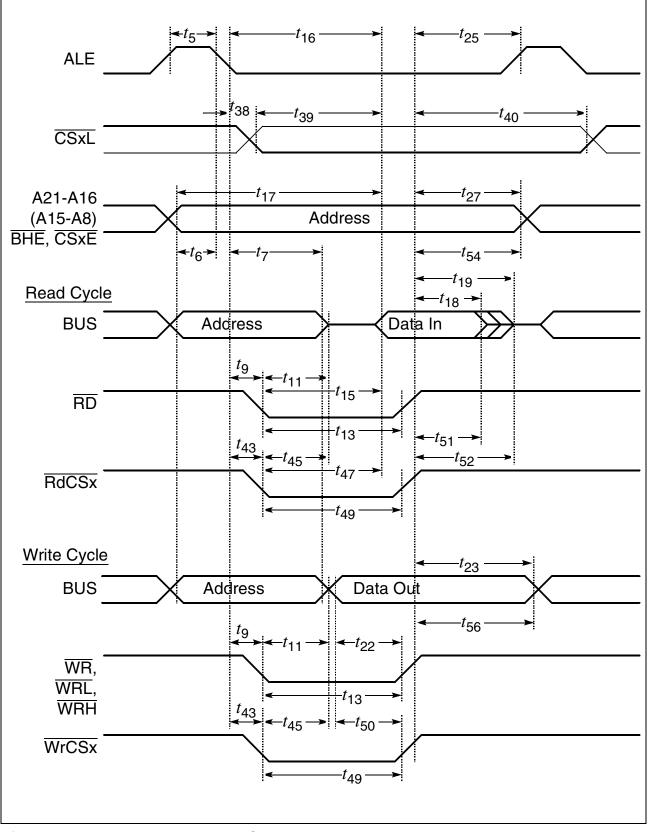


Figure 18 External Memory Cycle: Multiplexed Bus, No Read/Write Delay, Normal ALE

AC Characteristics

Demultiplexed Bus

(Operating Conditions apply)

ALE cycle time = 4 TCL + $2t_A$ + t_C + t_F (80 ns at 25 MHz CPU clock without waitstates)

Parameter		nbol	Max. CPU Clock = 25 MHz		Variable 1 / 2TCL =	Unit	
			min.	max.	min.	max.	
ALE high time	<i>t</i> ₅	CC	$10 + t_{A}$	-	TCL - 10 + <i>t</i> _A	-	ns
Address setup to ALE	<i>t</i> ₆	CC	$4 + t_A$	-	TCL - 16 + <i>t</i> _A	-	ns
ALE falling edge to RD, WR (with RW-delay)	<i>t</i> 8	CC	$10 + t_{A}$	-	TCL - 10 + <i>t</i> _A	-	ns
ALE falling edge to RD, WR (no RW-delay)	t ₉	CC	$-10 + t_{A}$	-	-10 + <i>t</i> _A	-	ns
RD, WR low time (with RW-delay)	<i>t</i> ₁₂	CC	$30 + t_{\rm C}$	-	2TCL - 10 + <i>t</i> _C	-	ns
RD, WR low time (no RW-delay)	t ₁₃	CC	$50 + t_{\rm C}$	-	3TCL - 10 + <i>t</i> _C	-	ns
RD to valid data in (with RW-delay)	<i>t</i> ₁₄	SR	_	$20 + t_{\rm C}$	_	2TCL - 20 + <i>t</i> _C	ns
RD to valid data in (no RW-delay)	t ₁₅	SR	_	$40 + t_{\rm C}$	_	3TCL - 20 + <i>t</i> _C	ns
ALE low to valid data in	<i>t</i> ₁₆	SR	_	$40 + t_A + t_C$	-	3TCL - 20 + <i>t</i> _A + <i>t</i> _C	ns
Address to valid data in	<i>t</i> ₁₇	SR	-	$50 + 2t_A + t_C$	_	$\begin{array}{c} 4\text{TCL} - 30 \\ + 2t_{\text{A}} + t_{\text{C}} \end{array}$	ns
Data hold after RD rising edge	<i>t</i> ₁₈	SR	0	-	0	-	ns
Data float after \overline{RD} rising edge (with RW-delay ¹⁾)	t ₂₀	SR	-	$26 + 2t_A + t_F^{(1)}$	_	2TCL - 14 + $22t_A$ + $t_F^{(1)}$	ns
Data float after RD rising edge (no RW-delay ¹⁾)	<i>t</i> ₂₁	SR	_	$10 + 2t_A + t_F^{(1)}$	-	TCL - 10 + $22t_A$ + $t_F^{(1)}$	ns

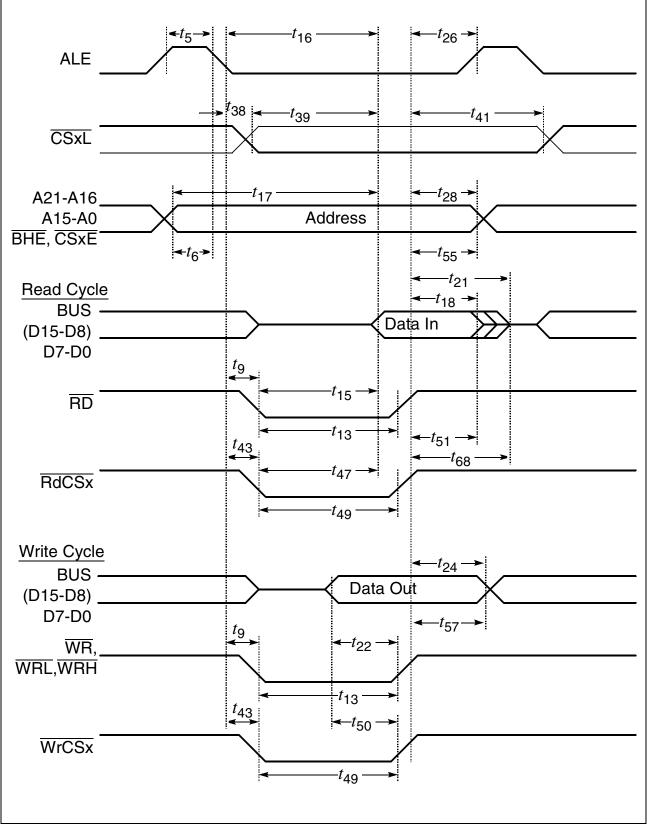


Figure 22 External Memory Cycle: Demultiplexed Bus, No Read/Write Delay, Normal ALE