

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	C166
Core Size	16-Bit
Speed	20MHz
Connectivity	CANbus, EBI/EMI, SPI, SSC, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	59
Program Memory Size	64KB (64K x 8)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	4.75V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-QFP
Supplier Device Package	PG-MQFP-80-7
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/c164ci8emdbfxqma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Edition 2001-05

Published by Infineon Technologies AG, St.-Martin-Strasse 53, D-81541 München, Germany © Infineon Technologies AG 2001. All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as warranted characteristics.

Terms of delivery and rights to technical change reserved.

We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

Infineon Technologies is an approved CECC manufacturer.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide.

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

16-Bit Single-Chip Microcontroller C166 Family

C164CI

C164CI/SI, C164CL/SL

- High Performance 16-bit CPU with 4-Stage Pipeline
 - 80 ns Instruction Cycle Time at 25 MHz CPU Clock
 - 400 ns Multiplication (16×16 bit), 800 ns Division (32 / 16 bit)
 - Enhanced Boolean Bit Manipulation Facilities
 - Additional Instructions to Support HLL and Operating Systems
 - Register-Based Design with Multiple Variable Register Banks
 - Single-Cycle Context Switching Support
 - 16 MBytes Total Linear Address Space for Code and Data
 - 1024 Bytes On-Chip Special Function Register Area
- 16-Priority-Level Interrupt System with 32 Sources, Sample-Rate down to 40 ns
- 8-Channel Interrupt-Driven Single-Cycle Data Transfer Facilities via Peripheral Event Controller (PEC)
- Clock Generation via on-chip PLL (factors 1:1.5/2/2.5/3/4/5), via prescaler or via direct clock input
- On-Chip Memory Modules
 - 2 KBytes On-Chip Internal RAM (IRAM)
 - 2 KBytes On-Chip Extension RAM (XRAM)
 - up to 64 KBytes On-Chip Program Mask ROM or OTP Memory
- On-Chip Peripheral Modules
 - 8-Channel 10-bit A/D Converter with Programmable Conversion Time down to 7.8 μs
 - 8-Channel General Purpose Capture/Compare Unit (CAPCOM2)
 - Capture/Compare Unit for flexible PWM Signal Generation (CAPCOM6) (3/6 Capture/Compare Channels and 1 Compare Channel)
 - Multi-Functional General Purpose Timer Unit with 3 Timers
 - Two Serial Channels (Synchronous/Asynchronous and High-Speed-Synchronous)
 - On-Chip CAN Interface (Rev. 2.0B active) with 15 Message Objects (Full CAN/Basic CAN)
 - On-Chip Real Time Clock
- Up to 4 MBytes External Address Space for Code and Data
 - Programmable External Bus Characteristics for Different Address Ranges
 - Multiplexed or Demultiplexed External Address/Data Buses with 8-Bit or 16-Bit Data Bus Width
 - Four Optional Programmable Chip-Select Signals
- Idle, Sleep, and Power Down Modes with Flexible Power Management
- Programmable Watchdog Timer and Oscillator Watchdog
- Up to 59 General Purpose I/O Lines, partly with Selectable Input Thresholds and Hysteresis

Table 2	-			anotions					
Symbol		Input	Function						
	No.	Outp.							
P5		I		Port 5 is an 8-bit input-only port with Schmitt-Trigger charact.					
					so serve as analog input channels for the				
				erter, or the	ey serve as timer inputs:				
P5.0	76		AN0						
P5.1	77		AN1						
P5.2	78		AN2						
P5.3	79		AN3						
P5.4	2		AN4,	T2EUD	GPT1 Timer T2 Ext. Up/Down Ctrl. Inp.				
P5.5	3		AN5,	T4EUD	GPT1 Timer T4 Ext. Up/Down Ctrl. Inp.				
P5.6	4		AN6,	T2IN	GPT1 Timer T2 Input for				
	_				Count/Gate/Reload/Capture				
P5.7	5	1	AN7,	T4IN	GPT1 Timer T4 Input for				
					Count/Gate/Reload/Capture				
P3		IO	Port 3 is a 9-bit bidirectional I/O port. It is bit-wise programmable for input or output via direction bits. For a pin						
					the output driver is put into high-				
			-	-	ort 3 outputs can be configured as push/				
					ivers. The input threshold of Port 3 is				
			selectable		-				
			The follow	ing Port 3	pins also serve for alternate functions:				
P3.4	8	1	T3EUD	GPT1 T	mer T3 External Up/Down Control Input				
P3.6	9	1	T3IN	GPT1 T	imer T3 Count/Gate Input				
P3.8	10	I/O	MRST	SSC Ma	ster-Receive/Slave-Transmit Inp./Outp.				
P3.9	11	I/O	MTSR	SSC Ma	ster-Transmit/Slave-Receive Outp./Inp.				
P3.10	12	0	TxD0		lock/Data Output (Async./Sync.)				
P3.11	13	I/O	RxD0		ata Input (Async.) or Inp./Outp. (Sync.)				
P3.12	14	0	BHE		Memory High Byte Enable Signal,				
		0	WRH	External Memory High Byte Write Strobe					
P3.13	15	I/O	SCLK	SSC Master Clock Output / Slave Clock Input.					
P3.15	16	0	CLKOUT						
		0	FOUT	Program	mable Frequency Output				

Table 2Pin Definitions and Functions

Table 2	Piı	n Definit	ions and Functions (cont'd)
Symbol	Pin No.	Input Outp.	Function
P8		10	Port 8 is a 4-bit bidirectional I/O port. It is bit-wise programmable for input or output via direction bits. For a pin configured as input, the output driver is put into high- impedance state. Port 8 outputs can be configured as push/ pull or open drain drivers. The input threshold of Port 8 is selectable (TTL or special). Port 8 pins provide inputs/ outputs for CAPCOM2 and serial interface lines. ¹⁾
P8.0	72	I/O I	CC16IO CAPCOM2: CC16 Capture Inp./Compare Outp., CAN1_RxD CAN 1 Receive Data Input
P8.1	73	I/O O	CC17IO CAPCOM2: CC17 Capture Inp./Compare Outp., CAN1_TxD CAN 1 Transmit Data Output
P8.2	74	I/O I	CC18IO CAPCOM2: CC18 Capture Inp./Compare Outp., CAN1_RxD CAN 1 Receive Data Input
P8.3	75	I/O O	CC19IO CAPCOM2: CC19 Capture Inp./Compare Outp., CAN1_TxD CAN 1 Transmit Data Output
V _{AREF}	1	-	Reference voltage for the A/D converter.
V _{AGND}	80	-	Reference ground for the A/D converter.
V _{DD}	7, 21, 40, 53, 61	-	Digital Supply Voltage: +5 V during normal operation and idle mode. ≥2.5 V during power down mode.
V _{SS}	6, 20, 41, 56, 60	_	Digital Ground.

¹⁾ The CAN interface lines are assigned to ports P4 and P8 under software control. Within the CAN module several assignments can be selected.

Note: The following behavioural differences must be observed when the bidirectional reset is active:

- Bit BDRSTEN in register SYSCON cannot be changed after EINIT and is cleared automatically after a reset.
- The reset indication flags always indicate a long hardware reset.
- The PORT0 configuration is treated as if it were a hardware reset. In particular, the bootstrap loader may be activated when P0L.4 is low.
- Pin RSTIN may only be connected to external reset devices with an open drain output driver.
- A short hardware reset is extended to the duration of the internal reset sequence.

Central Processing Unit (CPU)

The main core of the CPU consists of a 4-stage instruction pipeline, a 16-bit arithmetic and logic unit (ALU) and dedicated SFRs. Additional hardware has been spent for a separate multiply and divide unit, a bit-mask generator and a barrel shifter.

Based on these hardware provisions, most of the C164CI's instructions can be executed in just one machine cycle which requires 2 CPU clocks (4 TCL). For example, shift and rotate instructions are always processed during one machine cycle independent of the number of bits to be shifted. All multiple-cycle instructions have been optimized so that they can be executed very fast as well: branches in 2 cycles, a 16×16 bit multiplication in 5 cycles and a 32-/16-bit division in 10 cycles. Another pipeline optimization, the so-called 'Jump Cache', reduces the execution time of repeatedly performed jumps in a loop from 2 cycles to 1 cycle.

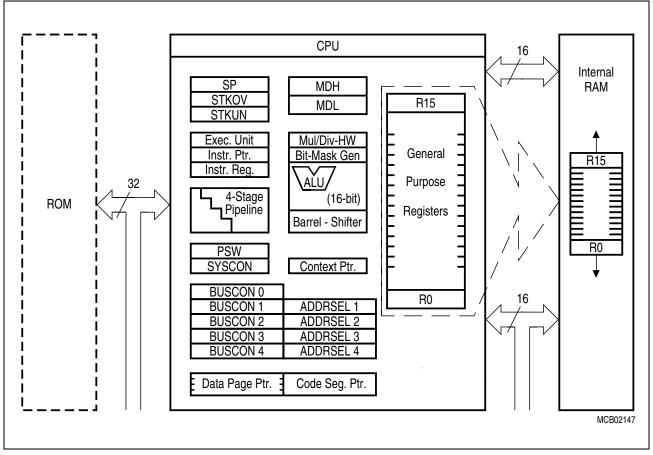
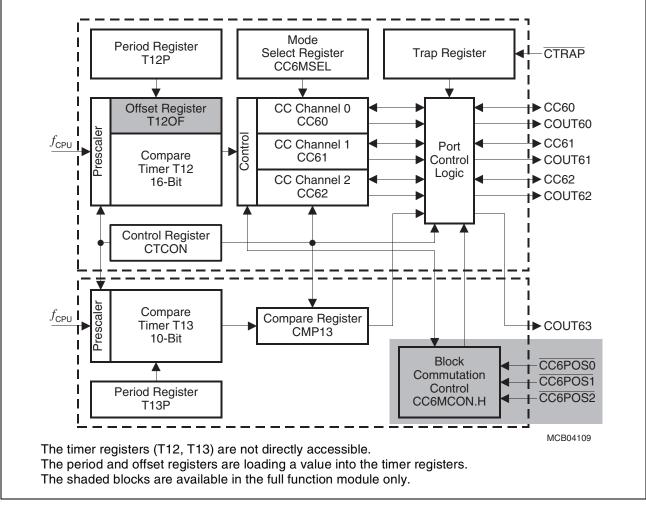


Figure 4

CPU Block Diagram

Table 3C164Cl Interrupt Nodes (cont'd)

Source of Interrupt or PEC Service Request	Request Flag	Enable Flag	Interrupt Vector	Vector Location	Trap Number
CAPCOM 6 Timer 12	T12IR	T12IE	T12INT	00'0134 _H	4D _H
CAPCOM 6 Timer 13	T13IR	T13IE	T13INT	00'0138 _H	4E _H
CAPCOM 6 Emergency	CC6EIR	CC6EIE	CC6EINT	00'013C _H	4F _H


The Capture/Compare Unit CAPCOM6

The CAPCOM6 unit supports generation and control of timing sequences on up to three 16-bit capture/compare channels plus one 10-bit compare channel.

In compare mode the CAPCOM6 unit provides two output signals per channel which have inverted polarity and non-overlapping pulse transitions. The compare channel can generate a single PWM output signal and is further used to modulate the capture/ compare output signals.

In capture mode the contents of compare timer 12 is stored in the capture registers upon a signal transition at pins CCx.

Compare timers T12 (16-bit) and T13 (10-bit) are free running timers which are clocked by the prescaled CPU clock.

Figure 5 CAPCOM6 Block Diagram

For motor control applications both subunits may generate versatile multichannel PWM signals which are basically either controlled by compare timer 12 or by a typical hall sensor pattern at the interrupt inputs (block commutation).

Note: Multichannel signal generation is provided only in devices with a full CAPCOM6.

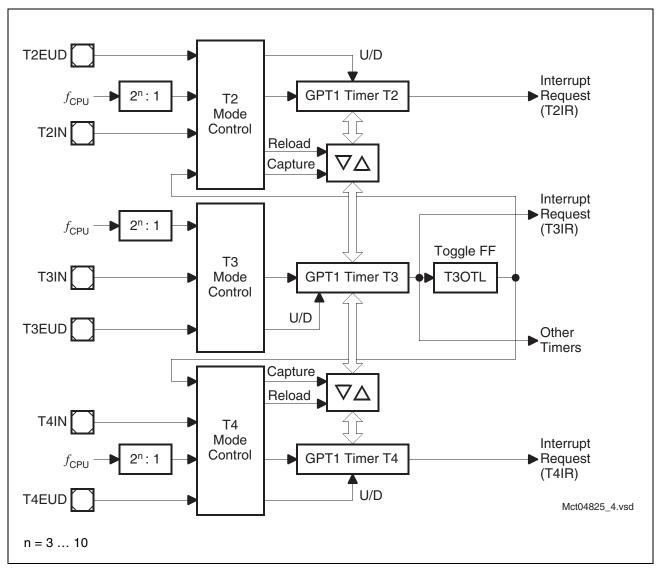


Figure 6 Block Diagram of GPT1

A/D Converter

For analog signal measurement, a 10-bit A/D converter with 8 multiplexed input channels and a sample and hold circuit has been integrated on-chip. It uses the method of successive approximation. The sample time (for loading the capacitors) and the conversion time is programmable and can so be adjusted to the external circuitry.

Overrun error detection/protection is provided for the conversion result register (ADDAT): either an interrupt request will be generated when the result of a previous conversion has not been read from the result register at the time the next conversion is complete, or the next conversion is suspended in such a case until the previous result has been read.

For applications which require less than 8 analog input channels, the remaining channel inputs can be used as digital input port pins.

The A/D converter of the C164CI supports four different conversion modes. In the standard Single Channel conversion mode, the analog level on a specified channel is sampled once and converted to a digital result. In the Single Channel Continuous mode, the analog level on a specified channel is repeatedly sampled and converted without software intervention. In the Auto Scan mode, the analog levels on a prespecified number of channels (standard or extension) are sequentially sampled and converted. In the Auto Scan Continuous mode, the number of prespecified channels is repeatedly sampled and converted. In the Auto Scan Continuous mode, the conversion of a specific channel can be inserted (injected) into a running sequence without disturbing this sequence. This is called Channel Injection Mode.

The Peripheral Event Controller (PEC) may be used to automatically store the conversion results into a table in memory for later evaluation, without requiring the overhead of entering and exiting interrupt routines for each data transfer.

After each reset and also during normal operation the ADC automatically performs calibration cycles. This automatic self-calibration constantly adjusts the converter to changing operating conditions (e.g. temperature) and compensates process variations.

These calibration cycles are part of the conversion cycle, so they do not affect the normal operation of the A/D converter.

In order to decouple analog inputs from digital noise and to avoid input trigger noise those pins used for analog input can be disconnected from the digital IO or input stages under software control. This can be selected for each pin separately via register P5DIDIS (Port 5 Digital Input Disable).

Power Management

The C164CI provides several means to control the power it consumes either at a given time or averaged over a certain timespan. Three mechanisms can be used (partly in parallel):

• **Power Saving Modes** switch the C164CI into a special operating mode (control via instructions).

Idle Mode stops the CPU while the peripherals can continue to operate.

Sleep Mode and Power Down Mode stop all clock signals and all operation (RTC may optionally continue running). Sleep Mode can be terminated by external interrupt signals.

Clock Generation Management controls the distribution and the frequency of internal and external clock signals (control via register SYSCON2).
 Slow Down Mode lets the C164CI run at a CPU clock frequency of f_{OSC}/1 ... 32 (half for prescaler operation) which drastically reduces the consumed power. The PLL can be optionally disabled while operating in Slow Down Mode.

External circuitry can be controlled via the programmable frequency output FOUT.

• **Peripheral Management** permits temporary disabling of peripheral modules (control via register SYSCON3).

Each peripheral can separately be disabled/enabled. A group control option disables a major part of the peripheral set by setting one single bit.

The on-chip RTC supports intermittend operation of the C164CI by generating cyclic wakeup signals. This offers full performance to quickly react on action requests while the intermittend sleep phases greatly reduce the average power consumption of the system.

Instruction Set Summary

 Table 6 lists the instructions of the C164CI in a condensed way.

The various addressing modes that can be used with a specific instruction, the operation of the instructions, parameters for conditional execution of instructions, and the opcodes for each instruction can be found in the "C166 Family Instruction Set Manual".

This document also provides a detailled description of each instruction.

Mnemonic	Description	Bytes
ADD(B)	Add word (byte) operands	2/4
ADDC(B)	Add word (byte) operands with Carry	2/4
SUB(B)	Subtract word (byte) operands	2/4
SUBC(B)	Subtract word (byte) operands with Carry	2/4
MUL(U)	(Un)Signed multiply direct GPR by direct GPR (16-16-bit)	2
DIV(U)	(Un)Signed divide register MDL by direct GPR (16-/16-bit)	2
DIVL(U)	(Un)Signed long divide reg. MD by direct GPR (32-/16-bit)	2
CPL(B)	Complement direct word (byte) GPR	2
NEG(B)	Negate direct word (byte) GPR	2
AND(B)	Bitwise AND, (word/byte operands)	2/4
OR(B)	Bitwise OR, (word/byte operands)	2/4
XOR(B)	Bitwise XOR, (word/byte operands)	2/4
BCLR	Clear direct bit	2
BSET	Set direct bit	2
BMOV(N)	Move (negated) direct bit to direct bit	4
BAND, BOR, BXOR	AND/OR/XOR direct bit with direct bit	4
BCMP	Compare direct bit to direct bit	4
BFLDH/L	Bitwise modify masked high/low byte of bit-addressable direct word memory with immediate data	4
CMP(B)	Compare word (byte) operands	2/4
CMPD1/2	Compare word data to GPR and decrement GPR by 1/2	2/4
CMPI1/2	Compare word data to GPR and increment GPR by 1/2	2/4
PRIOR	Determine number of shift cycles to normalize direct word GPR and store result in direct word GPR	2
SHL / SHR	Shift left/right direct word GPR	2
ROL / ROR	Rotate left/right direct word GPR	2
ASHR	Arithmetic (sign bit) shift right direct word GPR	2

Table 6Instruction Set Summary

Table 7C164Cl Registers, Ordered by Name (cont'd)

-				8-Bit Addr.	Description	Reset Value	
CC26IC	b	F174 _H	Ε	BA _H	CAPCOM Reg. 26 Interrupt Ctrl. Reg.	0000 _H	
CC27		FE76 _H		3B _H	CAPCOM Register 27	0000 _H	
CC27IC	b	F176 _H	Ε	BB _H	CAPCOM Reg. 27 Interrupt Ctrl. Reg.	0000 _H	
CC28		FE78 _H		3C _H	CAPCOM Register 28	0000 _H	
CC28IC	b	F178 _H	Ε	BC _H	CAPCOM Reg. 28 Interrupt Ctrl. Reg.	0000 _H	
CC29		FE7A _H		3D _H	CAPCOM Register 29	0000 _H	
CC29IC	b	F184 _H	Ε	C2 _H	CAPCOM Reg. 29 Interrupt Ctrl. Reg.	0000 _H	
CC30		FE7C _H		3E _H	CAPCOM Register 30	0000 _H	
CC30IC	b	F18C _H	Ε	C6 _H	CAPCOM Reg. 30 Interrupt Ctrl. Reg.	0000 _H	
CC31		FE7E _H		3F _H	CAPCOM Register 31	0000 _H	
CC31IC	b	F194 _H	Ε	CA _H	CAPCOM Reg. 31 Interrupt Ctrl. Reg.	0000 _H	
CC60		FE30 _H		18 _H	CAPCOM 6 Register 0	0000 _H	
CC61		FE32 _H		19 _H	CAPCOM 6 Register 1	0000 _H	
CC62		FE34 _H		1A _H	CAPCOM 6 Register 2	0000 _H	
CC6EIC	b	F188 _H	Ε	C4 _H	CAPCOM 6 Emergency Interrrupt Control Register	0000 _H	
CC6CIC	b	F17E _H	Ε	BF _H	CAPCOM 6 Interrupt Control Register	0000 _H	
CC6MCON	b	FF32 _H		99 _H	CAPCOM 6 Mode Control Register	00FF _H	
CC6MIC	b	FF36 _H		9B _H	CAPCOM 6 Mode Interrupt Ctrl. Reg.	0000 _H	
CC6MSEL		F036 _H	Ε	1B _H	CAPCOM 6 Mode Select Register	0000 _H	
CC8IC	b	FF88 _H		C4 _H	External Interrupt 0 Control Register	0000 _H	
CC9IC	b	FF8A _H		C5 _H	External Interrupt 1 Control Register	0000 _H	
CCM4	b	FF22 _H		91 _H	CAPCOM Mode Control Register 4	0000 _H	
CCM5	b	FF24 _H		92 _H	CAPCOM Mode Control Register 5	0000 _H	
CCM6	b	FF26 _H		93 _H	CAPCOM Mode Control Register 6	0000 _H	
CCM7	b	FF28 _H		94 _H	CAPCOM Mode Control Register 7	0000 _H	
CMP13		FE36 _H		1B _H	CAPCOM 6 Timer 13 Compare Reg.	0000 _H	
СР		FE10 _H		08 _H	CPU Context Pointer Register	FC00 _H	
CSP		FE08 _H		04 _H	CPU Code Segment Pointer Register (8 bits, not directly writeable)	0000 _H	

Parameter Interpretation

The parameters listed in the following partly represent the characteristics of the C164Cl and partly its demands on the system. To aid in interpreting the parameters right, when evaluating them for a design, they are marked in column "Symbol":

CC (Controller Characteristics):

The logic of the C164CI will provide signals with the respective characteristics.

SR (System Requirement):

The external system must provide signals with the respective characteristics to the C164CI.

DC Characteristics

(Operating Conditions apply)¹⁾

Parameter	Symbol		Limit Values		Unit	Test Conditions
			min.	max.		
Input low voltage (TTL, all except XTAL1)	V _{IL}	SR	-0.5	0.2 V _{DD} - 0.1	V	_
Input low voltage XTAL1	V_{IL2}	SR	-0.5	0.3 V _{DD}	V	-
Input low voltage (Special Threshold)	V _{ILS}	SR	-0.5	2.0	V	_
Input high voltage (TTL, all except RSTIN, XTAL1)	V _{IH}	SR	0.2 V _{DD} + 0.9	V _{DD} + 0.5	V	_
Input high voltage RSTIN (when operated as input)	V _{IH1}	SR	0.6 V _{DD}	V _{DD} + 0.5	V	-
Input high voltage XTAL1	V _{IH2}	SR	0.7 V _{DD}	V _{DD} + 0.5	V	_
Input high voltage (Special Threshold)	V _{IHS}	SR	0.8 V _{DD} - 0.2	V _{DD} + 0.5	V	-
Input Hysteresis (Special Threshold)	HYS		400	_	mV	Series resistance = 0Ω
Output low voltage ²⁾	V_{OL}	CC	-	1.0	V	$I_{OL} \leq I_{OLmax}^{3)}$
			_	0.45	V	$I_{OL} \le I_{OLnom}^{3)4)}$
Output high voltage ⁵⁾	V _{OH}	CC	V _{DD} - 1.0	_	V	$I_{OH} \ge I_{OHmax}^{3)}$
			V _{DD} - 0.45	_	V	$I_{OH} \ge I_{OHnom}^{3)4)$
Input leakage current (Port 5)	I _{OZ1}	CC	_	±200	nA	$0 V < V_{IN} < V_{DD}$

Port Output Driver Mode	Maximum Output Current $(I_{OLmax}, -I_{OHmax})^{1}$	Nominal Output Current $(I_{OLnom}, -I_{OHnom})^{2)}$		
Strong driver	10 mA	2.5 mA		
Medium driver	4.0 mA	1.0 mA		
Weak driver	0.5 mA	0.1 mA		

Table 10 Current Limits for Port Output Drivers

¹⁾ An output current above II_{OXnom}I may be drawn from up to three pins at the same time. For any group of 16 neighboring port output pins the total output current in each direction (ΣI_{OL} and Σ-I_{OH}) must remain below 50 mA.

²⁾ The current ROM-version of the C164CI (step Ax) is equipped with port drivers, which provide reduced driving capability and reduced control. Please refer to the actual errata sheet for details.

Power Consumption C164CI (ROM)

(Operating Conditions apply)

Parameter	Sym-	Limit	Values	Unit	Test	
	bol	min.	max.		Conditions	
Power supply current (active) with all peripherals active	I _{DD}	_	1 + 2.5 × f _{CPU}	mA	$\overline{\text{RSTIN}} = V_{\text{IL}}$ $f_{\text{CPU}} \text{ in } [\text{MHz}]^{1)}$	
Idle mode supply current with all peripherals active	I _{IDX}	_	1 + 1.1 × f _{CPU}	mA	$\overline{\text{RSTIN}} = V_{\text{IH1}}$ $f_{\text{CPU}} \text{ in [MHz]}^{1)}$	
Idle mode supply current with all peripherals deactivated, PLL off, SDD factor = 32	I _{IDO} ²⁾	_	500 + 50 × f _{OSC}	μA	$\overline{\text{RSTIN}} = V_{\text{IH1}}$ $f_{\text{OSC}} \text{ in } [\text{MHz}]^{1)}$	
Sleep and Power-down mode supply current with RTC running	I _{PDR} ²⁾	-	200 + 25 × f _{OSC}	μA	$V_{\text{DD}} = V_{\text{DDmax}}$ f_{OSC} in [MHz] ³⁾	
Sleep and Power-down mode supply current with RTC disabled	I _{PDO}	_	50	μA	$V_{\rm DD} = V_{\rm DDmax}^{3)}$	

¹⁾ The supply current is a function of the operating frequency. This dependency is illustrated in Figure 9. These parameters are tested at V_{DDmax} and maximum CPU clock with all outputs disconnected and all inputs at V_{IL} or V_{IH}.

²⁾ This parameter is determined mainly by the current consumed by the oscillator (see Figure 8). This current, however, is influenced by the external oscillator circuitry (crystal, capacitors). The values given refer to a typical circuitry and may change in case of a not optimized external oscillator circuitry.

³⁾ This parameter is tested including leakage currents. All inputs (including pins configured as inputs) at 0 V to 0.1 V or at V_{DD} - 0.1 V to V_{DD} , V_{REF} = 0 V, all outputs (including pins configured as outputs) disconnected.

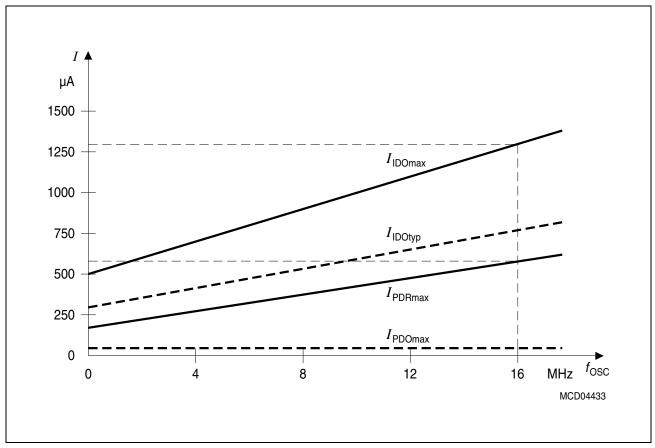


Figure 8 Idle and Power Down Supply Current as a Function of Oscillator Frequency

Direct Drive

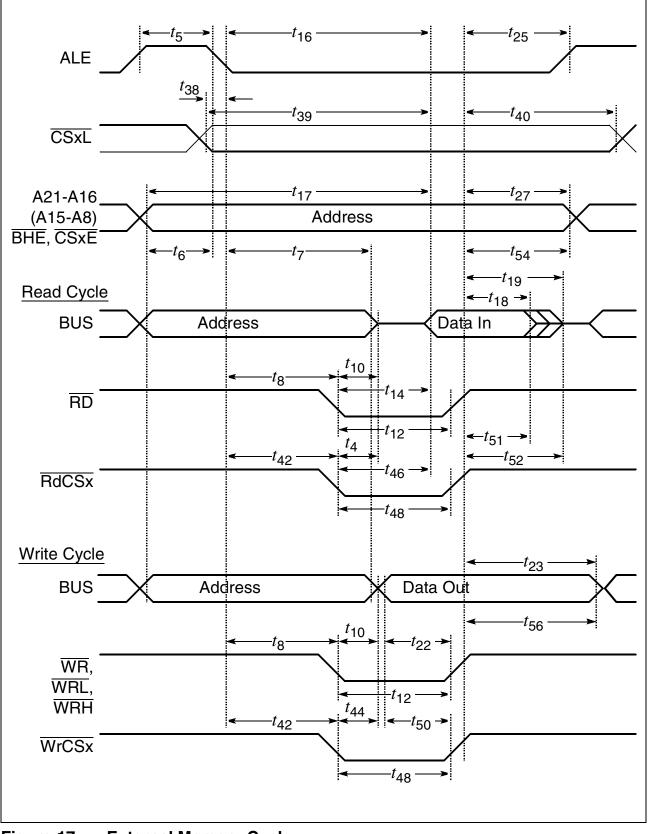
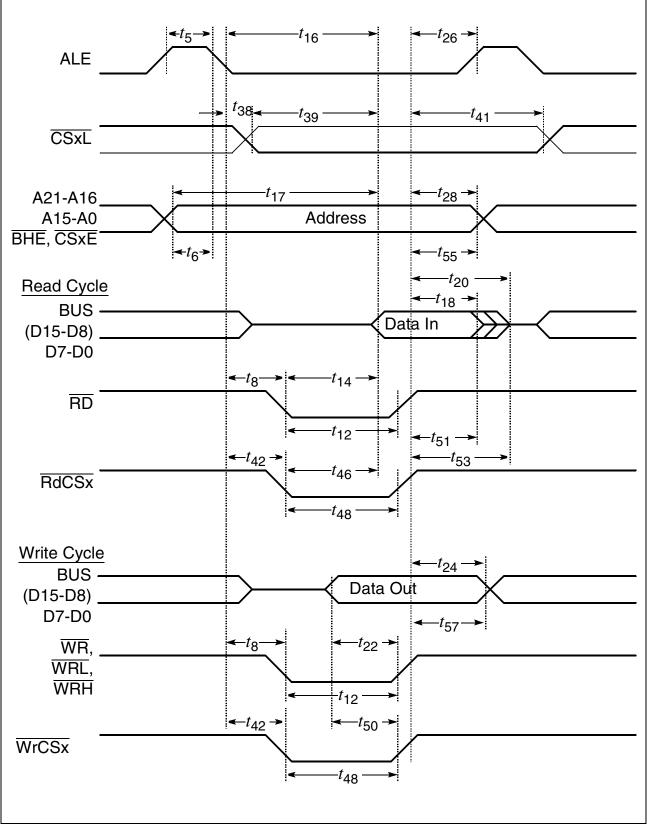
When direct drive is configured (CLKCFG = 011_B) the on-chip phase locked loop is disabled and the CPU clock is directly driven from the internal oscillator with the input clock signal.

The frequency of f_{CPU} directly follows the frequency of f_{OSC} so the high and low time of f_{CPU} (i.e. the duration of an individual TCL) is defined by the duty cycle of the input clock f_{OSC} .

The timings listed below that refer to TCLs therefore must be calculated using the minimum TCL that is possible under the respective circumstances. This minimum value can be calculated via the following formula:

 $TCL_{min} = 1/f_{OSC} \times DC_{min}$ (DC = duty cycle)

For two consecutive TCLs the deviation caused by the duty cycle of f_{OSC} is compensated so the duration of 2TCL is always $1/f_{OSC}$. The minimum value TCL_{min} therefore has to be used only once for timings that require an odd number of TCLs (1, 3, ...). Timings that require an even number of TCLs (2, 4, ...) may use the formula 2TCL = $1/f_{OSC}$.

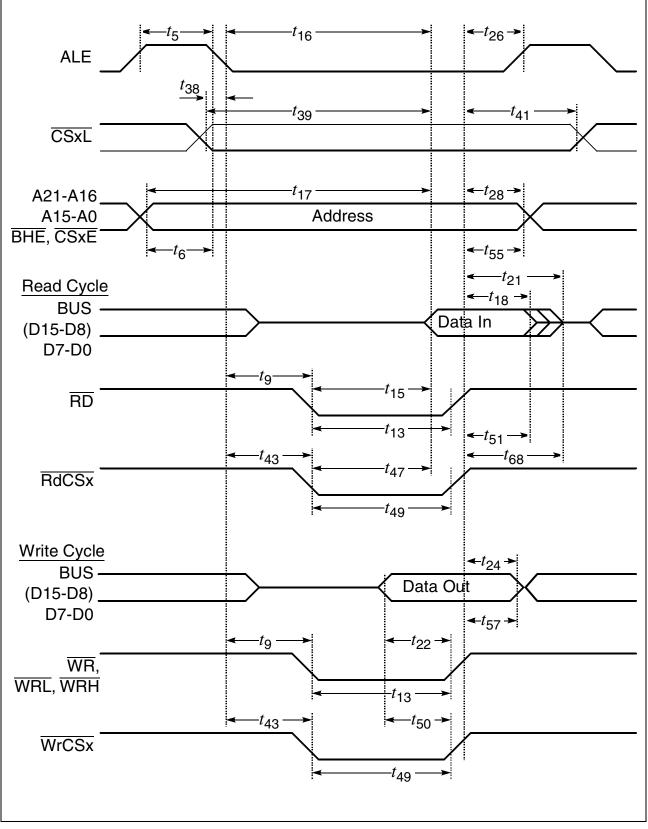

Figure 17 External Memory Cycle: Multiplexed Bus, With Read/Write Delay, Extended ALE

Figure 20 External Memory Cycle: Demultiplexed Bus, With Read/Write Delay, Normal ALE

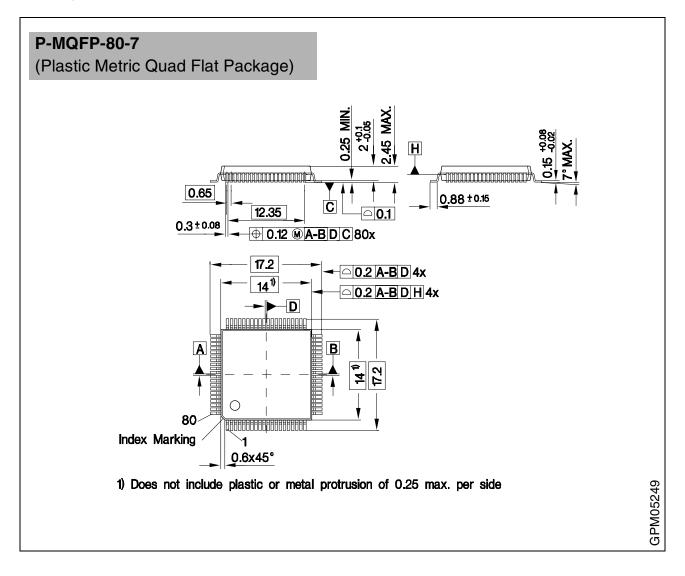


Figure 23 External Memory Cycle: Demultiplexed Bus, No Read/Write Delay, Extended ALE

Package Outlines

Sorts of Packing Package outlines for tubes, trays etc. are contained in our Data Book "Package Information". SMD = Surface Mounted Device