

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	-
Core Size	-
Speed	-
Connectivity	-
Peripherals	-
Number of I/O	-
Program Memory Size	-
Program Memory Type	-
EEPROM Size	-
RAM Size	-
Voltage - Supply (Vcc/Vdd)	-
Data Converters	-
Oscillator Type	-
Operating Temperature	-
Mounting Type	-
Package / Case	-
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/c164ci8emdbkxqma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Edition 2001-05

Published by Infineon Technologies AG, St.-Martin-Strasse 53, D-81541 München, Germany © Infineon Technologies AG 2001. All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as warranted characteristics.

Terms of delivery and rights to technical change reserved.

We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

Infineon Technologies is an approved CECC manufacturer.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide.

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

C164CI

Revision History:		2001-05		V2.0			
Previous Version:		1999-08 1998-02 04.97	(Preliminary) (Advance Information)				
Page	Subjects	(major change	es since last revision) ¹⁾				
All	Converted	to Infineon lay	/out				
1	Operating	frequency up t	to 25 MHz				
1 et al.	References to Flash removed						
1	Timer Unit with three timers						
1, 12, 73	On-chip X	RAM described	d				
2	Derivative	table updated					
10	Supply vol	tage is 5 V					
21	Functional	ity of reduced	CAPCOM6 corrected				
22 f	Timer description improved						
29, 30	Sections "Oscillator Watchdog" and "Power Management" added						
37	POCON re	POCON reset values adjusted					
41 to 73	Parameter	Parameter section reworked					

 These changes refer to the last two versions. Version 1998-02 covers OTP and ROM derivatives, while version 1999-08 ist the most recent one.

Controller Area Network (CAN): License of Robert Bosch GmbH

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to:

mcdocu.comments@infineon.com

Pin Configuration

(top view)

Figure 2

*) The marked pins of Port 4 and Port 8 can have CAN interface lines assigned to them. Table 2 on the pages below lists the possible assignments.

The *marked input signals* are available only in devices with a full-function CAPCOM6. They are not available in devices with a reduced-function CAPCOM6.

Table 2	Fable 2Pin Definitions and Functions (cont'd)							
Symbol	Pin No.	Input Outp.	Function					
EA/V _{PP}	28	1	 External Access Enable pin. A low level at this pin during and after Reset forces the C164CI to latch the configuration from PORT0 and pin RD, and to begin instruction execution out of external memory. A high level forces the C164CI to latch the configuration from pins RD and ALE, and to begin instruction execution out of the internal program memory. "ROMless" versions must have this pin tied to '0'. 					
			Note: This pin also accepts the programming voltage for the OTP derivatives.					
PORT0 POL.0-7 POH.0-7	29- 36 37-39, 42-46	IO	PORT0 consists of the two 8-bit bidirectional I/O ports P0L and P0H. It is bit-wise programmable for input or output via direction bits. For a pin configured as input, the output driver is put into high-impedance state. In case of an external bus configuration, PORT0 serves as the address (A) and address/data (AD) bus in multiplexed					
			bus modes and as the modes.	he data (D) bus	s in demultiplexed bus			
			Data Path Width: P0L.0 – P0L.7: P0H.0 – P0H.7: Multiplexed bus mo Data Path Width: P0L.0 – P0L.7: P0H.0 – P0H.7:	8-bit D0 – D7 I/O odes: 8-bit AD0 – AD7 A8 – A15	16-bit D0 – D7 D8 – D15 16-bit AD0 – AD7 AD8 – AD15			

PORT1 P1L.0-7 P1H.0-7				
P1L.0-7 P1H.0-7		10	PORT1 cor	nsists of the two 8-bit bidirectional I/O ports P1L
P1H.0-7	47-52,		and P1H. It	is bit-wise programmable for input or output via
P1H.0-7	57-59		direction bit	s. For a pin configured as input, the output driver
	59,		is put into h	igh-impedance state. PORT1 is used as the
	62-68		16-bit addre	ess bus (A) in demultiplexed bus modes and also
			after switch	ing from a demultiplexed bus mode to a
			multiplexed	bus mode.
	47		The followin	ng PORT1 pins also serve for alt. functions:
P1L.0	47	1/0		CAPCOM6: Input / Output of Channel 0
P1L.1	48	0	COU160	CAPCOM6: Output of Channel U
P1L.2	49	1/0		CAPCOM6: Input / Output of Channel 1
PIL.3	50		CO0161	CAPCOM6: Output of Channel 1
P1L.4	51	0		CAPCOMO: Input / Output of Channel 2
	52 57	0	COUT62	Output of 10 bit Compare Channel
	57			
	50			CAPCOMO. Trap input
			level on this	an input pin with an internal pullup resistor. A low
			CAPCOM6	unit to the logic level defined by software
P1H 0	59	1	$\frac{C}{CC6POS0}$	CAPCOM6 [•] Position 0 Input **)
			FX0IN	Fast External Interrupt 0 Input
P1H.1	62	li i	CC6POS1	CAPCOM6: Position 1 Input. **)
	-		EX1IN	Fast External Interrupt 1 Input
P1H.2	63	1	CC6POS2	CAPCOM6: Position 2 Input, **)
		1	EX2IN	Fast External Interrupt 2 Input
P1H.3	64	1	EX3IN	Fast External Interrupt 3 Input,
			T7IN	CAPCOM2: Timer T7 Count Input
P1H.4	65	I/O	CC24IO	CAPCOM2: CC24 Capture Inp./Compare Outp.
P1H.5	66	I/O	CC25IO	CAPCOM2: CC25 Capture Inp./Compare Outp.
P1H.6	67	I/O	CC26IO	CAPCOM2: CC26 Capture Inp./Compare Outp.
P1H.7	68	I/O	CC27IO	CAPCOM2: CC27 Capture Inp./Compare Outp.
			Note: The	marked (**) input signals are available only in

Functional Description

The architecture of the C164CI combines advantages of both RISC and CISC processors and of advanced peripheral subsystems in a very well-balanced way. In addition the on-chip memory blocks allow the design of compact systems with maximum performance.

The following block diagram gives an overview of the different on-chip components and of the advanced, high bandwidth internal bus structure of the C164CI.

Note: All time specifications refer to a CPU clock of 25 MHz (see definition in the AC Characteristics section).

Figure 3 Block Diagram

The program memory, the internal RAM (IRAM) and the set of generic peripherals are connected to the CPU via separate buses. A fourth bus, the XBUS, connects external resources as well as additional on-chip resoures, the X-Peripherals (see Figure 3).

The XBUS resources (XRAM, CAN) of the C164CI can be enabled or disabled during initialization by setting the general X-Peripheral enable bit XPEN (SYSCON.2). Modules that are disabled consume neither address space nor port pins.

External Bus Controller

All of the external memory accesses are performed by a particular on-chip External Bus Controller (EBC). It can be programmed either to Single Chip Mode when no external memory is required, or to one of four different external memory access modes, which are as follows:

- 16-/18-/20-/22-bit Addresses, 16-bit Data, Demultiplexed
- 16-/18-/20-/22-bit Addresses, 16-bit Data, Multiplexed
- 16-/18-/20-/22-bit Addresses, 8-bit Data, Multiplexed
- 16-/18-/20-/22-bit Addresses, 8-bit Data, Demultiplexed

In the demultiplexed bus modes, addresses are output on PORT1 and data is input/ output on PORT0 or P0L, respectively. In the multiplexed bus modes both addresses and data use PORT0 for input/output.

Important timing characteristics of the external bus interface (Memory Cycle Time, Memory Tri-State Time, Length of ALE and Read Write Delay) have been made programmable to allow the user the adaption of a wide range of different types of memories and external peripherals.

In addition, up to 4 independent address windows may be defined (via register pairs ADDRSELx / BUSCONx) which control the access to different resources with different bus characteristics. These address windows are arranged hierarchically where BUSCON4 overrides BUSCON3 and BUSCON2 overrides BUSCON1. All accesses to locations not covered by these 4 address windows are controlled by BUSCON0.

Up to 4 external \overline{CS} signals (3 windows plus default) can be generated in order to save external glue logic. The C164Cl offers the possibility to switch the \overline{CS} outputs to an unlatched mode. In this mode the internal filter logic is switched off and the \overline{CS} signals are directly generated from the address. The unlatched \overline{CS} mode is enabled by setting CSCFG (SYSCON.6).

For applications which require less than 4 MBytes of external memory space, this address space can be restricted to 1 MByte, 256 KByte, or to 64 KByte. In this case Port 4 outputs four, two, or no address lines at all. It outputs all 6 address lines, if an address space of 4 MBytes is used.

Note: When the on-chip CAN Module is used with the interface lines assigned to Port 4, the CAN lines override the segment address lines and the segment address output on Port 4 is therefore limited to 4 bits i.e. address lines A19 ... A16.

Table 3 C164CI Interrupt Nodes

Source of Interrupt or PEC Service Request	Request Flag	Enable Flag	Interrupt Vector	Vector Location	Trap Number
Fast External Interrupt 0	CC8IR	CC8IE	CC8INT	00'0060 _H	18 _H
Fast External Interrupt 1	CC9IR	CC9IE	CC9INT	00'0064 _H	19 _H
Fast External Interrupt 2	CC10IR	CC10IE	CC10INT	00'0068 _H	1A _H
Fast External Interrupt 3	CC11IR	CC11IE	CC11INT	00'006C _H	1B _H
GPT1 Timer 2	T2IR	T2IE	T2INT	00'0088 _H	22 _H
GPT1 Timer 3	T3IR	T3IE	T3INT	00'008C _H	23 _H
GPT1 Timer 4	T4IR	T4IE	T4INT	00'0090 _H	24 _H
A/D Conversion Complete	ADCIR	ADCIE	ADCINT	00'00A0 _H	28 _H
A/D Overrun Error	ADEIR	ADEIE	ADEINT	00'00A4 _H	29 _H
ASC0 Transmit	S0TIR	S0TIE	SOTINT	00'00A8 _H	2A _H
ASC0 Transmit Buffer	S0TBIR	S0TBIE	S0TBINT	00'011C _H	47 _H
ASC0 Receive	SORIR	SORIE	SORINT	00'00AC _H	2B _H
ASC0 Error	S0EIR	S0EIE	S0EINT	00'00B0 _H	2C _H
SSC Transmit	SCTIR	SCTIE	SCTINT	00'00B4 _H	2D _H
SSC Receive	SCRIR	SCRIE	SCRINT	00'00B8 _H	2E _H
SSC Error	SCEIR	SCEIE	SCEINT	00'00BC _H	2F _H
CAPCOM Register 16	CC16IR	CC16IE	CC16INT	00'00C0 _H	30 _H
CAPCOM Register 17	CC17IR	CC17IE	CC17INT	00'00C4 _H	31 _H
CAPCOM Register 18	CC18IR	CC18IE	CC18INT	00'00C8 _H	32 _H
CAPCOM Register 19	CC19IR	CC19IE	CC19INT	00'00CC _H	33 _H
CAPCOM Register 24	CC24IR	CC24IE	CC24INT	00'00E0 _H	38 _H
CAPCOM Register 25	CC25IR	CC25IE	CC25INT	00'00E4 _H	39 _H
CAPCOM Register 26	CC26IR	CC26IE	CC26INT	00'00E8 _H	3A _H
CAPCOM Register 27	CC27IR	CC27IE	CC27INT	00'00EC _H	3B _H
CAPCOM Timer 7	T7IR	T7IE	T7INT	00'00F4 _H	3D _H
CAPCOM Timer 8	T8IR	T8IE	T8INT	00'00F8 _H	3E _H
CAPCOM6 Interrupt	CC6IR	CC6IE	CC6INT	00'00FC _H	3F _H
CAN Interface 1	XP0IR	XP0IE	XP0INT	00'0100 _H	40 _H
PLL/OWD and RTC	XP3IR	XP3IE	XP3INT	00'010C _H	43 _H

Table 7C164Cl Registers, Ordered by Name (cont'd)

Name		Physica Address	 5	8-Bit Addr.	Description	Reset Value		
CC26IC	b	F174 _H E		F174 _H E B		BA _H	CAPCOM Reg. 26 Interrupt Ctrl. Reg.	0000 _H
CC27		FE76 _H		3B _H	CAPCOM Register 27	0000 _H		
CC27IC	b	F176 _H	Ε	BB _H	CAPCOM Reg. 27 Interrupt Ctrl. Reg.	0000 _H		
CC28		FE78 _H		3C _H	CAPCOM Register 28	0000 _H		
CC28IC	b	F178 _H	Ε	BC _H	CAPCOM Reg. 28 Interrupt Ctrl. Reg.	0000 _H		
CC29		FE7A _H		3D _H	CAPCOM Register 29	0000 _H		
CC29IC	b	F184 _H	Ε	C2 _H	CAPCOM Reg. 29 Interrupt Ctrl. Reg.	0000 _H		
CC30		FE7C _H		3E _H	CAPCOM Register 30	0000 _H		
CC30IC	b	F18C _H	Ε	C6 _H	CAPCOM Reg. 30 Interrupt Ctrl. Reg.	0000 _H		
CC31		FE7E _H		3F _H	CAPCOM Register 31	0000 _H		
CC31IC	b	F194 _H	Ε	CA _H	CAPCOM Reg. 31 Interrupt Ctrl. Reg.	0000 _H		
CC60		FE30 _H		18 _H	CAPCOM 6 Register 0	0000 _H		
CC61		FE32 _H		19 _H	CAPCOM 6 Register 1	0000 _H		
CC62		FE34 _H		1A _H	CAPCOM 6 Register 2	0000 _H		
CC6EIC	b	F188 _H	Ε	C4 _H	CAPCOM 6 Emergency Interrrupt Control Register	0000 _H		
CC6CIC	b	F17E _H	Ε	BF _H	CAPCOM 6 Interrupt Control Register	0000 _H		
CC6MCON	b	FF32 _H		99 _H	CAPCOM 6 Mode Control Register	00FF _H		
CC6MIC	b	FF36 _H		9B _H	CAPCOM 6 Mode Interrupt Ctrl. Reg.	0000 _H		
CC6MSEL		F036 _H	Ε	1B _H	CAPCOM 6 Mode Select Register	0000 _H		
CC8IC	b	FF88 _H		C4 _H	External Interrupt 0 Control Register	0000 _H		
CC9IC	b	FF8A _H		C5 _H	External Interrupt 1 Control Register	0000 _H		
CCM4	b	FF22 _H		91 _H	CAPCOM Mode Control Register 4	0000 _H		
CCM5	b	FF24 _H		92 _H	CAPCOM Mode Control Register 5	0000 _H		
CCM6	b	FF26 _H		93 _H	CAPCOM Mode Control Register 6	0000 _H		
CCM7	b	FF28 _H		94 _H	CAPCOM Mode Control Register 7	0000 _H		
CMP13		FE36 _H		1B _H	CAPCOM 6 Timer 13 Compare Reg.	0000 _H		
СР		FE10 _H		08 _H	CPU Context Pointer Register	FC00 _H		
CSP		FE08 _H		04 _H	CPU Code Segment Pointer Register (8 bits, not directly writeable)	0000 _H		

lable /	(5164CI H	legi	sters, C	Drdered by Name (control)	
Name		Physica Address	al S	8-Bit Addr.	Description	Reset Value
CTCON	b	FF30 _H		98 _H	CAPCOM 6 Compare Timer Ctrl. Reg.	1010 _H
DP0H	b	F102 _H	Ε	81 _H	P0H Direction Control Register	00 _H
DP0L	b	F100 _H	Ε	80 _H	P0L Direction Control Register	00 _H
DP1H	b	F106 _H	Ε	83 _H	P1H Direction Control Register	00 _H
DP1L	b	F104 _H	Ε	82 _H	P1L Direction Control Register	00 _H
DP3	b	FFC6 _H		E3 _H	Port 3 Direction Control Register	0000 _H
DP4	b	FFCA _H		E5 _H	Port 4 Direction Control Register	00 _H
DP8	b	FFD6 _H		EB _H	Port 8 Direction Control Register	00 _H
DPP0		FE00 _H		00 _H	CPU Data Page Pointer 0 Reg. (10 bits)	0000 _H
DPP1		FE02 _H		01 _H	CPU Data Page Pointer 1 Reg. (10 bits)	0001 _H
DPP2		FE04 _H		02 _H	CPU Data Page Pointer 2 Reg. (10 bits)	0002 _H
DPP3		FE06 _H		03 _H	CPU Data Page Pointer 3 Reg. (10 bits)	0003 _H
EXICON	b	F1C0 _H	Ε	E0 _H	External Interrupt Control Register	0000 _H
EXISEL	b	F1DA _H	Ε	ED _H	External Interrupt Source Select Reg.	0000 _H
FOCON	b	FFAA _H		D5 _H	Frequency Output Control Register	0000 _H
IDCHIP		F07C _H	Ε	3E _H	Identifier	XXXX _H
IDMANUF		F07E _H	Ε	3F _H	Identifier	1820 _H
IDMEM		F07A _H	Ε	3D _H	Identifier	XXXX _H
IDPROG		F078 _H	Ε	3C _H	Identifier	XXXX _H
IDMEM2		F076 _H	Ε	3B _H	Identifier	XXXX _H
ISNC	b	F1DE _H	Ε	EF _H	Interrupt Subnode Control Register	0000 _H
MDC	b	FF0E _H		87 _H	CPU Multiply Divide Control Register	0000 _H
MDH		FE0C _H		06 _H	CPU Multiply Divide Reg. – High Word	0000 _H
MDL		FE0E _H		07 _H	CPU Multiply Divide Reg. – Low Word	0000 _H
ODP3	b	F1C6 _H	Ε	E3 _H	Port 3 Open Drain Control Register	0000 _H
ODP4	b	F1CA _H	Ε	E5 _H	Port 4 Open Drain Control Register	00 _H
ODP8	b	F1D6 _H	Ε	EB _H	Port 8 Open Drain Control Register	00 _H
ONES	b	FF1E _H		8F _H	Constant Value 1's Register (read only)	FFFF _H
OPAD		EDC2 _H	Χ		OTP Progr. Interface Address Register	0000 _H

......

OPCTRL

EDC0_H X

0007_H

OTP Progr. Interface Control Register

Absolute Maximum Ratings

		5			
Parameter	Symbol	Limit Values U		Unit	Notes
		min.	max.		
Storage temperature	T _{ST}	-65	150	°C	-
Junction temperature	TJ	-40	150	°C	under bias
Voltage on V_{DD} pins with respect to ground (V_{SS})	V _{DD}	-0.5	6.5	V	-
Voltage on any pin with respect to ground (V_{SS})	V _{IN}	-0.5	V _{DD} + 0.5	V	-
Input current on any pin during overload condition	-	-10	10	mA	-
Absolute sum of all input currents during overload condition	-	-	100	mA	_
Power dissipation	P _{DISS}	—	1.5	W	-

Table 8 Absolute Maximum Rating Parameters

Note: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. During absolute maximum rating overload conditions ($V_{IN} > V_{DD}$ or $V_{IN} < V_{SS}$) the voltage on V_{DD} pins with respect to ground (V_{SS}) must not exceed the values defined by the absolute maximum ratings.

Port Output Driver Mode	Maximum Output Current (I _{OLmax} , -I _{OHmax}) ¹⁾	Nominal Output Current $(I_{OLnom}, -I_{OHnom})^2)$
Strong driver	10 mA	2.5 mA
Medium driver	4.0 mA	1.0 mA
Weak driver	0.5 mA	0.1 mA

Table 10 Current Limits for Port Output Drivers

¹⁾ An output current above II_{OXnom}I may be drawn from up to three pins at the same time. For any group of 16 neighboring port output pins the total output current in each direction (ΣI_{OL} and Σ-I_{OH}) must remain below 50 mA.

²⁾ The current ROM-version of the C164CI (step Ax) is equipped with port drivers, which provide reduced driving capability and reduced control. Please refer to the actual errata sheet for details.

Power Consumption C164CI (ROM)

(Operating Conditions apply)

Parameter	Sym-	Limit Values		Unit	Test
	bol	min.	max.		Conditions
Power supply current (active) with all peripherals active	I _{DD}	_	1 + 2.5 × f _{CPU}	mA	$\overline{\text{RSTIN}} = V_{\text{IL}}$ $f_{\text{CPU}} \text{ in } [\text{MHz}]^{1)}$
Idle mode supply current with all peripherals active	I _{IDX}	_	1 + 1.1 × <i>f</i> _{CPU}	mA	$\overline{\text{RSTIN}} = V_{\text{IH1}}$ $f_{\text{CPU}} \text{ in [MHz]}^{1)}$
Idle mode supply current with all peripherals deactivated, PLL off, SDD factor = 32	I _{IDO} ²⁾	_	500 + 50 × f _{OSC}	μA	$\overline{\text{RSTIN}} = V_{\text{IH1}}$ f_{OSC} in [MHz] ¹⁾
Sleep and Power-down mode supply current with RTC running	I _{PDR} ²⁾	_	200 + 25 × f _{OSC}	μA	$V_{\text{DD}} = V_{\text{DDmax}}$ f_{OSC} in [MHz] ³⁾
Sleep and Power-down mode supply current with RTC disabled	I _{PDO}	_	50	μA	$V_{\rm DD} = V_{\rm DDmax}^{3)}$

¹⁾ The supply current is a function of the operating frequency. This dependency is illustrated in Figure 9. These parameters are tested at V_{DDmax} and maximum CPU clock with all outputs disconnected and all inputs at V_{IL} or V_{IH}.

²⁾ This parameter is determined mainly by the current consumed by the oscillator (see Figure 8). This current, however, is influenced by the external oscillator circuitry (crystal, capacitors). The values given refer to a typical circuitry and may change in case of a not optimized external oscillator circuitry.

³⁾ This parameter is tested including leakage currents. All inputs (including pins configured as inputs) at 0 V to 0.1 V or at V_{DD} - 0.1 V to V_{DD} , V_{REF} = 0 V, all outputs (including pins configured as outputs) disconnected.

Power Consumption C164CI (OTP)

(Operating Conditions apply)

Parameter	Sym-	Limit Values		Unit	Test
	bol	min.	max.		Conditions
Power supply current (active) with all peripherals active	I _{DD}	-	10 + 3.5 × f _{CPU}	mA	$\overline{\text{RSTIN}} = V_{\text{IL}}$ $f_{\text{CPU}} \text{ in } [\text{MHz}]^{1)}$
Idle mode supply current with all peripherals active	I _{IDX}	-	5 + 1.25 × f _{CPU}	mA	$\overline{\text{RSTIN}} = V_{\text{IH1}}$ $f_{\text{CPU}} \text{ in [MHz]}^{1)}$
Idle mode supply current with all peripherals deactivated, PLL off, SDD factor = 32	I _{IDO} ²⁾	_	500 + 50 × f _{OSC}	μA	$\overline{\text{RSTIN}} = V_{\text{IH1}}$ f_{OSC} in [MHz] ¹⁾
Sleep and Power-down mode supply current with RTC running	I _{PDR} ²⁾	_	200 + 25 × f _{OSC}	μA	$V_{\text{DD}} = V_{\text{DDmax}}$ f_{OSC} in [MHz] ³⁾
Sleep and Power-down mode supply current with RTC disabled	I _{PDO}	-	50	μA	$V_{\rm DD} = V_{\rm DDmax}^{3)}$

¹⁾ The supply current is a function of the operating frequency. This dependency is illustrated in Figure 10. These parameters are tested at V_{DDmax} and maximum CPU clock with all outputs disconnected and all inputs at V_{IL} or V_{IH}.

²⁾ This parameter is determined mainly by the current consumed by the oscillator (see **Figure 8**). This current, however, is influenced by the external oscillator circuitry (crystal, capacitors). The values given refer to a typical circuitry and may change in case of a not optimized external oscillator circuitry.

³⁾ This parameter is tested including leakage currents. All inputs (including pins configured as inputs) at 0 V to 0.1 V or at V_{DD} - 0.1 V to V_{DD} , V_{REF} = 0 V, all outputs (including pins configured as outputs) disconnected.

P0.15-13 (P0H.7-5). Register RP0H can be loaded from the upper half of register RSTCON under software control.

Table 11 associates the combinations of these three bits with the respective clock generation mode.

CLKCFG ¹⁾ CPU Frequence(RP0H.7-5) $f_{CPU} = f_{OSC} \times F_{CPU}$		External Clock Input Range ²⁾	Notes			
1 1 1	$f_{OSC} \times 4$	2.5 to 6.25 MHz	Default configuration			
1 1 0	$f_{OSC} \times 3$	3.33 to 8.33 MHz	-			
101	$f_{OSC} \times 2$	5 to 12.5 MHz	-			
1 0 0	$f_{OSC} \times 5$	2 to 5 MHz	-			
0 1 1	$f_{OSC} \times 1$	1 to 25 MHz	Direct drive ³⁾			
0 1 0	$f_{\rm OSC} imes$ 1.5	6.66 to 16.66 MHz	-			
0 0 1	f _{OSC} / 2	2 to 50 MHz	CPU clock via prescaler			
0 0 0	$f_{\rm OSC} \times 2.5$	4 to 10 MHz	-			

 Table 11
 C164Cl Clock Generation Modes

¹⁾ Please note that pin P0.15 (corresponding to RP0H.7) is inverted in emulation mode, and thus also in EHM.

²⁾ The external clock input range refers to a CPU clock range of 10 ... 25 MHz.

³⁾ The maximum frequency depends on the duty cycle of the external clock signal.

Prescaler Operation

When prescaler operation is configured (CLKCFG = 001_B) the CPU clock is derived from the internal oscillator (input clock signal) by a 2:1 prescaler.

The frequency of f_{CPU} is half the frequency of f_{OSC} and the high and low time of f_{CPU} (i.e. the duration of an individual TCL) is defined by the period of the input clock f_{OSC} .

The timings listed in the AC Characteristics that refer to TCLs therefore can be calculated using the period of f_{OSC} for any TCL.

Phase Locked Loop

When PLL operation is configured (via CLKCFG) the on-chip phase locked loop is enabled and provides the CPU clock (see **Table 11**). The PLL multiplies the input frequency by the factor **F** which is selected via the combination of pins P0.15-13 (i.e. $f_{CPU} = f_{OSC} \times F$). With every **F**'th transition of f_{OSC} the PLL circuit synchronizes the CPU clock to the input clock. This synchronization is done smoothly, i.e. the CPU clock frequency does not change abruptly.

AC Characteristics External Clock Drive XTAL1

(Operating Conditions apply)

Parameter	Symbol		Direct Drive 1:1		Prescaler 2:1		PLL 1:N		Unit
			min.	max.	min.	max.	min.	max.	
Oscillator period	t _{OSC}	SR	40	_	20	_	60 ¹⁾	500 ¹⁾	ns
High time ²⁾	<i>t</i> ₁	SR	20 ³⁾	_	6	_	10	_	ns
Low time ²⁾	<i>t</i> ₂	SR	20 ³⁾	-	6	_	10	_	ns
Rise time ²⁾	t ₃	SR	_	8	-	5	_	10	ns
Fall time ²⁾	<i>t</i> ₄	SR	_	8	_	5	_	10	ns

Table 12 External Clock Drive Characteristics

 The minimum and maximum oscillator periods for PLL operation depend on the selected CPU clock generation mode. Please see respective table above.

²⁾ The clock input signal must reach the defined levels V_{IL2} and V_{IH2} .

³⁾ The minimum high and low time refers to a duty cycle of 50%. The maximum operating freqency (f_{CPU}) in direct drive mode depends on the duty cycle of the clock input signal.

Figure 13 External Clock Drive XTAL1

Note: If the on-chip oscillator is used together with a crystal, the oscillator frequency is limited to a range of 4 MHz to 16 MHz.

It is strongly recommended to measure the oscillation allowance (or margin) in the final target system (layout) to determine the optimum parameters for the oscillator operation. Please refer to the limits specified by the crystal supplier.

When driven by an external clock signal it will accept the specified frequency range. Operation at lower input frequencies is possible but is guaranteed by design only (not 100% tested).

⁸⁾ During the sample time the input capacitance C_{AIN} can be charged/discharged by the external source. The internal resistance of the analog source must allow the capacitance to reach its final voltage level within t_S . After the end of the sample time t_S , changes of the analog input voltage have no effect on the conversion result. Values for the sample time t_S depend on programming and can be taken from Table 14.

Sample time and conversion time of the C164CI's A/D Converter are programmable. Table 14 should be used to calculate the above timings.

The limit values for f_{BC} must not be exceeded when selecting ADCTC.

ADCON.15 14 (ADCTC)	A/D Converter Basic Clock $f_{\rm BC}$	ADCON.13 12 (ADSTC)	Sample time t _S
00	<i>f</i> _{СРU} / 4	00	$t_{\rm BC} imes 8$
01	<i>f</i> _{CPU} / 2	01	$t_{\rm BC} imes$ 16
10	<i>f</i> _{СРU} / 16	10	$t_{\rm BC} imes 32$
11	f _{CPU} / 8	11	$t_{\rm BC} imes 64$

Table 14 A/D Converter Computation Table

Converter Timing Example:

Assumptions:	∫cpu	= 25 MHz (i.e. <i>t</i> _{CPU} = 40 ns), ADCTC = '00', ADSTC = '00'.
Basic clock	f _{BC}	= f _{CPU} /4 = 6.25 MHz, i.e. t _{BC} = 160 ns.
Sample time	ts	$= t_{\rm BC} \times 8 = 1280$ ns.
Conversion time	t _C	$= t_{S} + 40 t_{BC} + 2 t_{CPU} = (1280 + 6400 + 80) \text{ ns} = 7.8 \ \mu\text{s}.$

Memory Cycle Variables

The timing tables below use three variables which are derived from the BUSCONx registers and represent the special characteristics of the programmed memory cycle. The following table describes, how these variables are to be computed.

Table 15Memory Cycle Variables

Description	Symbol	Values
ALE Extension	t _A	TCL × <alectl></alectl>
Memory Cycle Time Waitstates	t _C	2TCL × (15 - <mctc>)</mctc>
Memory Tristate Time	t _F	2TCL × (1 - <mttc>)</mttc>

Note: Please respect the maximum operating frequency of the respective derivative.

AC Characteristics

Multiplexed Bus

(Operating Conditions apply)

ALE cycle time = 6 TCL + $2t_A + t_C + t_F$ (120 ns at 25 MHz CPU clock without waitstates)

Parameter		nbol	Max. CF = 25	PU Clock MHz	Variable (1 / 2TCL =	Unit	
			min.	max.	min.	max.	
ALE high time	<i>t</i> 5	CC	$10 + t_{A}$	_	TCL - 10 + <i>t</i> _A	-	ns
Address setup to ALE	<i>t</i> ₆	CC	$4 + t_A$	-	TCL - 16 + <i>t</i> _A	-	ns
Address hold after ALE	<i>t</i> ₇	CC	$10 + t_{A}$	_	TCL - 10 + <i>t</i> _A	-	ns
ALE falling edge to RD, WR (with RW-delay)	<i>t</i> 8	CC	$10 + t_{A}$	-	TCL - 10 + <i>t</i> _A	-	ns
ALE falling edge to RD, WR (no RW-delay)	t ₉	СС	$-10 + t_{A}$	_	$-10 + t_{A}$	-	ns
Address float after RD, WR (with RW-delay)	<i>t</i> ₁₀	CC	_	6	_	6	ns
Address float after RD, WR (no RW-delay)	<i>t</i> ₁₁	CC	_	26	_	TCL + 6	ns
RD, WR low time (with RW-delay)	t ₁₂	CC	$30 + t_{\rm C}$	-	2TCL - 10 + <i>t</i> _C	-	ns

Multiplexed Bus (cont'd)

(Operating Conditions apply)

ALE cycle time = 6 TCL + $2t_A$ + t_C + t_F (120 ns at 25 MHz CPU clock without waitstates)

Parameter		nbol	Max. CF = 25	PU Clock MHz	Variable (1 / 2TCL = 1	Variable CPU Clock 1 / 2TCL = 1 to 25 MHz		
			min.	max.	min.	max.		
RD, WR low time (no RW-delay)	t ₁₃	CC	$50 + t_{\rm C}$	-	3TCL - 10 + <i>t</i> _C	_	ns	
RD to valid data in (with RW-delay)	t ₁₄	SR	_	$20 + t_{\rm C}$	_	2TCL - 20 + <i>t</i> _C	ns	
RD to valid data in (no RW-delay)	t ₁₅	SR	_	$40 + t_{\rm C}$	_	3TCL - 20 + <i>t</i> _C	ns	
ALE low to valid data in	^t 16	SR	_	$40 + t_{A} + t_{C}$	_	3TCL - 20 + <i>t</i> _A + <i>t</i> _C	ns	
Address to valid data in	t ₁₇	SR	_	$50 + 2t_A + t_C$	-	$4TCL - 30 + 2t_A + t_C$	ns	
Data hold after RD rising edge	t ₁₈	SR	0	-	0	_	ns	
Data float after RD	t ₁₉	SR	_	26 + $t_{\rm F}$	_	2TCL - 14 + <i>t</i> _F	ns	
Data valid to \overline{WR}	t ₂₂	CC	$20 + t_{\rm C}$	-	2TCL - 20 + <i>t</i> _C	_	ns	
Data hold after WR	t ₂₃	CC	26 + <i>t</i> _F	-	2TCL - 14 + <i>t</i> _F	_	ns	
$\frac{\text{ALE rising edge after }\overline{\text{RD}},}{\text{WR}}$	t ₂₅	CC	26 + <i>t</i> _F	-	2TCL - 14 + <i>t</i> _F	_	ns	
Address hold after \overline{RD} , WR	t ₂₇	CC	26 + <i>t</i> _F	-	2TCL - 14 + <i>t</i> _F	_	ns	
ALE falling edge to $\overline{\text{CS}}^{1)}$	t ₃₈	CC	-4 - t _A	10 - <i>t</i> _A	-4 - t _A	10 - <i>t</i> _A	ns	
CS low to Valid Data In ¹⁾	t ₃₉	SR	_	40 + t _C + 2t _A	-	3TCL - 20 + <i>t</i> _C + 2 <i>t</i> _A	ns	
$\overline{\text{CS}}$ hold after $\overline{\text{RD}}$, $\overline{\text{WR}}^{1)}$	<i>t</i> ₄₀	CC	$46 + t_{F}$	-	3TCL - 14 + <i>t</i> _F	_	ns	
ALE fall. edge to RdCS, WrCS (with RW delay)	t ₄₂	CC	$16 + t_{A}$	_	TCL - 4 + <i>t</i> _A	_	ns	

External XRAM Access

If XPER-Share mode is enabled the on-chip XRAM of the C164CI can be accessed (during hold states) by an external master like an asynchronous SRAM.

Table 16	XRAM Access	Timing	(Operating	Conditions	apply)
		•	· · · ·		/

Parameter		Symbol		Limit	Unit	
				min.	max.	
Address setup time before RD/WR falling edge		<i>t</i> ₄₀	SR	4	-	ns
Address hold time after RD/WR rising edge		<i>t</i> ₄₁	SR	0	-	ns
Data turn on delay after \overline{RD} falling edge		t ₄₂	CC	2	-	ns
Data output valid delay after address latched	Read	t ₄₃	CC	_	37	ns
Data turn off delay after \overline{RD} rising edge		t ₄₄	CC	0	10	ns
Write data setup time before \overline{WR} rising edge		t ₄₅	SR	10	-	ns
Write data hold time after \overline{WR} rising edge	ite	t ₄₆	SR	1	-	ns
WR pulse width	V	t ₄₇	SR	18	-	ns
WR signal recovery time		t ₄₈	SR	<i>t</i> ₄₀	-	ns

Figure 25 External Access to the XRAM

Package Outlines

Sorts of Packing Package outlines for tubes, trays etc. are contained in our Data Book "Package Information". SMD = Surface Mounted Device