

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Discontinued at Digi-Key
Core Processor	C166
Core Size	16-Bit
Speed	25MHz
Connectivity	CANbus, EBI/EMI, SPI, SSC, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	59
Program Memory Size	•
Program Memory Type	ROMIess
EEPROM Size	•
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	4.75V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-QFP
Supplier Device Package	PG-MQFP-80-7
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/saf-c164ci-l25m-ca

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

C164CI/SI C164CL/SL

16-Bit Single-Chip Microcontroller

Microcontrollers

Never stop thinking.

C164CI

Revision History:		2001-05		V2.0			
Previous Version:		1999-08 1998-02 04.97	(Preliminary) (Advance Information)				
Page	Page Subjects (major changes since last revision) ¹⁾						
All	Converted	Converted to Infineon layout					
1	Operating	Operating frequency up to 25 MHz					
1 et al.	References to Flash removed						
1	Timer Unit with three timers						
1, 12, 73	On-chip XRAM described						
2	Derivative	table updated					
10	Supply vol	tage is 5 V					
21	Functional	ity of reduced	CAPCOM6 corrected				
22 f	Timer des	cription improv	ed				
29, 30	Sections "Oscillator Watchdog" and "Power Management" added						
37	POCON re	eset values adj	usted				
41 to 73	Parameter	section rewor	ked				

 These changes refer to the last two versions. Version 1998-02 covers OTP and ROM derivatives, while version 1999-08 ist the most recent one.

Controller Area Network (CAN): License of Robert Bosch GmbH

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to:

mcdocu.comments@infineon.com

16-Bit Single-Chip Microcontroller C166 Family

C164CI

C164CI/SI, C164CL/SL

- High Performance 16-bit CPU with 4-Stage Pipeline
 - 80 ns Instruction Cycle Time at 25 MHz CPU Clock
 - 400 ns Multiplication (16×16 bit), 800 ns Division (32 / 16 bit)
 - Enhanced Boolean Bit Manipulation Facilities
 - Additional Instructions to Support HLL and Operating Systems
 - Register-Based Design with Multiple Variable Register Banks
 - Single-Cycle Context Switching Support
 - 16 MBytes Total Linear Address Space for Code and Data
 - 1024 Bytes On-Chip Special Function Register Area
- 16-Priority-Level Interrupt System with 32 Sources, Sample-Rate down to 40 ns
- 8-Channel Interrupt-Driven Single-Cycle Data Transfer Facilities via Peripheral Event Controller (PEC)
- Clock Generation via on-chip PLL (factors 1:1.5/2/2.5/3/4/5), via prescaler or via direct clock input
- On-Chip Memory Modules
 - 2 KBytes On-Chip Internal RAM (IRAM)
 - 2 KBytes On-Chip Extension RAM (XRAM)
 - up to 64 KBytes On-Chip Program Mask ROM or OTP Memory
- On-Chip Peripheral Modules
 - 8-Channel 10-bit A/D Converter with Programmable Conversion Time down to 7.8 μs
 - 8-Channel General Purpose Capture/Compare Unit (CAPCOM2)
 - Capture/Compare Unit for flexible PWM Signal Generation (CAPCOM6) (3/6 Capture/Compare Channels and 1 Compare Channel)
 - Multi-Functional General Purpose Timer Unit with 3 Timers
 - Two Serial Channels (Synchronous/Asynchronous and High-Speed-Synchronous)
 - On-Chip CAN Interface (Rev. 2.0B active) with 15 Message Objects (Full CAN/Basic CAN)
 - On-Chip Real Time Clock
- Up to 4 MBytes External Address Space for Code and Data
 - Programmable External Bus Characteristics for Different Address Ranges
 - Multiplexed or Demultiplexed External Address/Data Buses with 8-Bit or 16-Bit Data Bus Width
 - Four Optional Programmable Chip-Select Signals
- Idle, Sleep, and Power Down Modes with Flexible Power Management
- Programmable Watchdog Timer and Oscillator Watchdog
- Up to 59 General Purpose I/O Lines, partly with Selectable Input Thresholds and Hysteresis

Pin Configuration

(top view)

Figure 2

*) The marked pins of Port 4 and Port 8 can have CAN interface lines assigned to them. Table 2 on the pages below lists the possible assignments.

The *marked input signals* are available only in devices with a full-function CAPCOM6. They are not available in devices with a reduced-function CAPCOM6.

Memory Organization

The memory space of the C164CI is configured in a Von Neumann architecture which means that code memory, data memory, registers and I/O ports are organized within the same linear address space which includes 16 MBytes. The entire memory space can be accessed bytewise or wordwise. Particular portions of the on-chip memory have additionally been made directly bitaddressable.

The C164Cl incorporates 64 KBytes of on-chip OTP memory or 64/48 KBytes of on-chip mask-programmable ROM (not in the ROM-less derivative, of course) for code or constant data. The lower 32 KBytes of the on-chip ROM/OTP can be mapped either to segment 0 or segment 1.

The OTP memory can be programmed by the CPU itself (in system, e.g. during booting) or directly via an external interface (e.g. before assembly). The programming time is approx. 100 μ s per word. An external programming voltage $V_{\text{PP}} = 11.5$ V must be supplied for this purpose (via pin $\overline{\text{EA}}/V_{\text{PP}}$).

2 KBytes of on-chip Internal RAM (IRAM) are provided as a storage for user defined variables, for the system stack, general purpose register banks and even for code. A register bank can consist of up to 16 wordwide (R0 to R15) and/or bytewide (RL0, RH0, ..., RL7, RH7) so-called General Purpose Registers (GPRs).

1024 bytes (2×512 bytes) of the address space are reserved for the Special Function Register areas (SFR space and ESFR space). SFRs are wordwide registers which are used for controlling and monitoring functions of the different on-chip units. Unused SFR addresses are reserved for future members of the C166 Family.

2 KBytes of on-chip Extension RAM (XRAM) are provided to store user data, user stacks, or code. The XRAM is accessed like external memory and therefore cannot be used for the system stack or for register banks and is not bitaddressable. The XRAM permits 16-bit accesses with maximum speed.

In order to meet the needs of designs where more memory is required than is provided on chip, up to 4 MBytes of external RAM and/or ROM can be connected to the microcontroller.

External Bus Controller

All of the external memory accesses are performed by a particular on-chip External Bus Controller (EBC). It can be programmed either to Single Chip Mode when no external memory is required, or to one of four different external memory access modes, which are as follows:

- 16-/18-/20-/22-bit Addresses, 16-bit Data, Demultiplexed
- 16-/18-/20-/22-bit Addresses, 16-bit Data, Multiplexed
- 16-/18-/20-/22-bit Addresses, 8-bit Data, Multiplexed
- 16-/18-/20-/22-bit Addresses, 8-bit Data, Demultiplexed

In the demultiplexed bus modes, addresses are output on PORT1 and data is input/ output on PORT0 or P0L, respectively. In the multiplexed bus modes both addresses and data use PORT0 for input/output.

Important timing characteristics of the external bus interface (Memory Cycle Time, Memory Tri-State Time, Length of ALE and Read Write Delay) have been made programmable to allow the user the adaption of a wide range of different types of memories and external peripherals.

In addition, up to 4 independent address windows may be defined (via register pairs ADDRSELx / BUSCONx) which control the access to different resources with different bus characteristics. These address windows are arranged hierarchically where BUSCON4 overrides BUSCON3 and BUSCON2 overrides BUSCON1. All accesses to locations not covered by these 4 address windows are controlled by BUSCON0.

Up to 4 external \overline{CS} signals (3 windows plus default) can be generated in order to save external glue logic. The C164Cl offers the possibility to switch the \overline{CS} outputs to an unlatched mode. In this mode the internal filter logic is switched off and the \overline{CS} signals are directly generated from the address. The unlatched \overline{CS} mode is enabled by setting CSCFG (SYSCON.6).

For applications which require less than 4 MBytes of external memory space, this address space can be restricted to 1 MByte, 256 KByte, or to 64 KByte. In this case Port 4 outputs four, two, or no address lines at all. It outputs all 6 address lines, if an address space of 4 MBytes is used.

Note: When the on-chip CAN Module is used with the interface lines assigned to Port 4, the CAN lines override the segment address lines and the segment address output on Port 4 is therefore limited to 4 bits i.e. address lines A19 ... A16.

Central Processing Unit (CPU)

The main core of the CPU consists of a 4-stage instruction pipeline, a 16-bit arithmetic and logic unit (ALU) and dedicated SFRs. Additional hardware has been spent for a separate multiply and divide unit, a bit-mask generator and a barrel shifter.

Based on these hardware provisions, most of the C164CI's instructions can be executed in just one machine cycle which requires 2 CPU clocks (4 TCL). For example, shift and rotate instructions are always processed during one machine cycle independent of the number of bits to be shifted. All multiple-cycle instructions have been optimized so that they can be executed very fast as well: branches in 2 cycles, a 16×16 bit multiplication in 5 cycles and a 32-/16-bit division in 10 cycles. Another pipeline optimization, the so-called 'Jump Cache', reduces the execution time of repeatedly performed jumps in a loop from 2 cycles to 1 cycle.

Figure 4

CPU Block Diagram

Interrupt System

With an interrupt response time within a range from just 5 to 12 CPU clocks (in case of internal program execution), the C164CI is capable of reacting very fast to the occurrence of non-deterministic events.

The architecture of the C164CI supports several mechanisms for fast and flexible response to service requests that can be generated from various sources internal or external to the microcontroller. Any of these interrupt requests can be programmed to being serviced by the Interrupt Controller or by the Peripheral Event Controller (PEC).

In contrast to a standard interrupt service where the current program execution is suspended and a branch to the interrupt vector table is performed, just one cycle is 'stolen' from the current CPU activity to perform a PEC service. A PEC service implies a single byte or word data transfer between any two memory locations with an additional increment of either the PEC source or the destination pointer. An individual PEC transfer counter is implicity decremented for each PEC service except when performing in the continuous transfer mode. When this counter reaches zero, a standard interrupt is performed to the corresponding source related vector location. PEC services are very well suited, for example, for supporting the transmission or reception of blocks of data. The C164CI has 8 PEC channels each of which offers such fast interrupt-driven data transfer capabilities.

A separate control register which contains an interrupt request flag, an interrupt enable flag and an interrupt priority bitfield exists for each of the possible interrupt sources. Via its related register, each source can be programmed to one of sixteen interrupt priority levels. Once having been accepted by the CPU, an interrupt service can only be interrupted by a higher prioritized service request. For the standard interrupt processing, each of the possible interrupt sources has a dedicated vector location.

Fast external interrupt inputs are provided to service external interrupts with high precision requirements. These fast interrupt inputs feature programmable edge detection (rising edge, falling edge or both edges).

Software interrupts are supported by means of the 'TRAP' instruction in combination with an individual trap (interrupt) number.

Table 3 shows all of the possible C164CI interrupt sources and the corresponding hardware-related interrupt flags, vectors, vector locations and trap (interrupt) numbers.

Note: Interrupt nodes which are not used by associated peripherals, may be used to generate software controlled interrupt requests by setting the respective interrupt request bit (xIR).

Table 3C164Cl Interrupt Nodes (cont'd)

Source of Interrupt or PEC Service Request	Request Flag	Enable Flag	Interrupt Vector	Vector Location	Trap Number
CAPCOM 6 Timer 12	T12IR	T12IE	T12INT	00'0134 _H	4D _H
CAPCOM 6 Timer 13	T13IR	T13IE	T13INT	00'0138 _H	4E _H
CAPCOM 6 Emergency	CC6EIR	CC6EIE	CC6EINT	00'013C _H	4F _H

Real Time Clock

The Real Time Clock (RTC) module of the C164Cl consists of a chain of 3 divider blocks, a fixed 8:1 divider, the reloadable 16-bit timer T14, and the 32-bit RTC timer (accessible via registers RTCH and RTCL). The RTC module is directly clocked with the on-chip oscillator frequency divided by 32 via a separate clock driver ($f_{\rm RTC} = f_{\rm OSC}/32$) and is therefore independent from the selected clock generation mode of the C164Cl. All timers count up.

The RTC module can be used for different purposes:

- System clock to determine the current time and date
- Cyclic time based interrupt
- 48-bit timer for long term measurements

Figure 7 RTC Block Diagram

Note: The registers associated with the RTC are not affected by a reset in order to maintain the correct system time even when intermediate resets are executed.

A/D Converter

For analog signal measurement, a 10-bit A/D converter with 8 multiplexed input channels and a sample and hold circuit has been integrated on-chip. It uses the method of successive approximation. The sample time (for loading the capacitors) and the conversion time is programmable and can so be adjusted to the external circuitry.

Overrun error detection/protection is provided for the conversion result register (ADDAT): either an interrupt request will be generated when the result of a previous conversion has not been read from the result register at the time the next conversion is complete, or the next conversion is suspended in such a case until the previous result has been read.

For applications which require less than 8 analog input channels, the remaining channel inputs can be used as digital input port pins.

The A/D converter of the C164CI supports four different conversion modes. In the standard Single Channel conversion mode, the analog level on a specified channel is sampled once and converted to a digital result. In the Single Channel Continuous mode, the analog level on a specified channel is repeatedly sampled and converted without software intervention. In the Auto Scan mode, the analog levels on a prespecified number of channels (standard or extension) are sequentially sampled and converted. In the Auto Scan Continuous mode, the number of prespecified channels is repeatedly sampled and converted. In the Auto Scan Continuous mode, the conversion of a specific channel can be inserted (injected) into a running sequence without disturbing this sequence. This is called Channel Injection Mode.

The Peripheral Event Controller (PEC) may be used to automatically store the conversion results into a table in memory for later evaluation, without requiring the overhead of entering and exiting interrupt routines for each data transfer.

After each reset and also during normal operation the ADC automatically performs calibration cycles. This automatic self-calibration constantly adjusts the converter to changing operating conditions (e.g. temperature) and compensates process variations.

These calibration cycles are part of the conversion cycle, so they do not affect the normal operation of the A/D converter.

In order to decouple analog inputs from digital noise and to avoid input trigger noise those pins used for analog input can be disconnected from the digital IO or input stages under software control. This can be selected for each pin separately via register P5DIDIS (Port 5 Digital Input Disable).

Parallel Ports

The C164CI provides up to 59 I/O lines which are organized into five input/output ports and one input port. All port lines are bit-addressable, and all input/output lines are individually (bit-wise) programmable as inputs or outputs via direction registers. The I/O ports are true bidirectional ports which are switched to high impedance state when configured as inputs. The output drivers of three I/O ports can be configured (pin by pin) for push/pull operation or open-drain operation via control registers. During the internal reset, all port pins are configured as inputs.

The input threshold of Port 3, Port 4, and Port 8 is selectable (TTL or CMOS like), where the special CMOS like input threshold reduces noise sensitivity due to the input hysteresis. The input threshold may be selected individually for each byte of the respective ports.

All port lines have programmable alternate input or output functions associated with them. All port lines that are not used for these alternate functions may be used as general purpose IO lines.

PORT0 and PORT1 may be used as address and data lines when accessing external memory, while Port 4 outputs the additional segment address bits A21/19/17 ... A16 and the optional chip select signals in systems where segmentation is enabled to access more than 64 KBytes of memory.

Ports P1L, P1H, and P8 are associated with the capture inputs or compare outputs of the CAPCOM units and/or serve as external interrupt inputs.

Port 3 includes alternate functions of timers, serial interfaces, the optional bus control signal BHE/WRH, and the system clock output CLKOUT (or the programmable frequency output FOUT).

Port 5 is used for the analog input channels to the A/D converter or timer control signals.

The edge characteristics (transition time) and driver characteristics (output current) of the C164CI's port drivers can be selected via the Port Output Control registers (POCONx).

Table 7C164Cl Registers, Ordered by Name (cont'd)

Name		Physica Address	 5	8-Bit Addr.	Description	Reset Value
CC26IC	b	F174 _H	Ε	BA _H	CAPCOM Reg. 26 Interrupt Ctrl. Reg.	0000 _H
CC27		FE76 _H		3B _H	CAPCOM Register 27	0000 _H
CC27IC	b	F176 _H	Ε	BB _H	CAPCOM Reg. 27 Interrupt Ctrl. Reg.	0000 _H
CC28		FE78 _H		3C _H	CAPCOM Register 28	0000 _H
CC28IC	b	F178 _H	Ε	BC _H	CAPCOM Reg. 28 Interrupt Ctrl. Reg.	0000 _H
CC29		FE7A _H		3D _H	CAPCOM Register 29	0000 _H
CC29IC	b	F184 _H	Ε	C2 _H	CAPCOM Reg. 29 Interrupt Ctrl. Reg.	0000 _H
CC30		FE7C _H		3E _H	CAPCOM Register 30	0000 _H
CC30IC	b	F18C _H	Ε	C6 _H	CAPCOM Reg. 30 Interrupt Ctrl. Reg.	0000 _H
CC31		FE7E _H		3F _H	CAPCOM Register 31	0000 _H
CC31IC	b	F194 _H	Ε	CA _H	CAPCOM Reg. 31 Interrupt Ctrl. Reg.	0000 _H
CC60		FE30 _H		18 _H	CAPCOM 6 Register 0	0000 _H
CC61		FE32 _H		19 _H	CAPCOM 6 Register 1	0000 _H
CC62		FE34 _H		1A _H	CAPCOM 6 Register 2	0000 _H
CC6EIC	b	F188 _H	Ε	C4 _H	CAPCOM 6 Emergency Interrrupt Control Register	0000 _H
CC6CIC	b	F17E _H	Ε	BF _H	CAPCOM 6 Interrupt Control Register	0000 _H
CC6MCON	b	FF32 _H		99 _H	CAPCOM 6 Mode Control Register	00FF _H
CC6MIC	b	FF36 _H		9B _H	CAPCOM 6 Mode Interrupt Ctrl. Reg.	0000 _H
CC6MSEL		F036 _H	Ε	1B _H	CAPCOM 6 Mode Select Register	0000 _H
CC8IC	b	FF88 _H		C4 _H	External Interrupt 0 Control Register	0000 _H
CC9IC	b	FF8A _H		C5 _H	External Interrupt 1 Control Register	0000 _H
CCM4	b	FF22 _H		91 _H	CAPCOM Mode Control Register 4	0000 _H
CCM5	b	FF24 _H		92 _H	CAPCOM Mode Control Register 5	0000 _H
CCM6	b	FF26 _H		93 _H	CAPCOM Mode Control Register 6	0000 _H
CCM7	b	FF28 _H		94 _H	CAPCOM Mode Control Register 7	0000 _H
CMP13		FE36 _H		1B _H	CAPCOM 6 Timer 13 Compare Reg.	0000 _H
СР		FE10 _H		08 _H	CPU Context Pointer Register	FC00 _H
CSP		FE08 _H		04 _H	CPU Code Segment Pointer Register (8 bits, not directly writeable)	0000 _H

DC Characteristics (cont'd)

(Operating Conditions apply)¹⁾

Parameter	Symbol	Limit Values		Unit	Test Conditions	
		min.	max.			
Input leakage current (all other)	I _{OZ2} CC	_	±500	nA	0.45 V < V _{IN} < V _{DD}	
RSTIN inactive current ⁶⁾	I _{RSTH} ⁷⁾	_	-10	μA	$V_{\rm IN} = V_{\rm IH1}$	
RSTIN active current ⁶⁾	I _{RSTL} ⁸⁾	-100	_	μA	$V_{\rm IN} = V_{\rm IL}$	
RD/WR inact. current ⁹⁾	I _{RWH} ⁷⁾	_	-40	μA	V_{OUT} = 2.4 V	
RD/WR active current ⁹⁾	I _{RWL} ⁸⁾	-500	_	μA	$V_{OUT} = V_{OLmax}$	
ALE inactive current ⁹⁾	I _{ALEL} ⁷⁾	_	40	μA	$V_{OUT} = V_{OLmax}$	
ALE active current ⁹⁾	I _{ALEH} ⁸⁾	500	_	μA	V_{OUT} = 2.4 V	
Port 4 inactive current ⁹⁾	I _{P4H} ⁷⁾	_	-40	μA	V_{OUT} = 2.4 V	
Port 4 active current ⁹⁾	I _{P4L} ⁸⁾	-500	_	μA	$V_{OUT} = V_{OL1max}$	
PORT0 configuration current ¹⁰⁾	I _{P0H} ⁷⁾	_	-10	μA	$V_{\rm IN} = V_{\rm IHmin}$	
	I _{P0L} ⁸⁾	-100	-	μA	$V_{\rm IN} = V_{\rm ILmax}$	
XTAL1 input current	I _{IL} CC	_	±20	μA	$0 V < V_{IN} < V_{DD}$	
Pin capacitance ¹¹⁾ (digital inputs/outputs)	C _{IO} CC	_	10	pF	f = 1 MHz $T_A = 25 \text{ °C}$	

¹⁾ Keeping signal levels within the levels specified in this table, ensures operation without overload conditions. For signal levels outside these specifications also refer to the specification of the overload current I_{OV} .

²⁾ For pin RSTIN this specification is only valid in bidirectional reset mode.

³⁾ The maximum deliverable output current of a port driver depends on the selected output driver mode, see Table 10, Current Limits for Port Output Drivers. The limit for pin groups must be respected.

⁴⁾ As a rule, with decreasing output current the output levels approach the respective supply level ($V_{OL} \rightarrow V_{SS}$, $V_{OH} \rightarrow V_{DD}$). However, only the levels for nominal output currents are guaranteed.

⁵⁾ This specification is not valid for outputs which are switched to open drain mode. In this case the respective output will float and the voltage results from the external circuitry.

⁶⁾ These parameters describe the $\overline{\text{RSTIN}}$ pullup, which equals a resistance of ca. 50 to 250 k Ω .

⁷⁾ The maximum current may be drawn while the respective signal line remains inactive.

⁸⁾ The minimum current must be drawn in order to drive the respective signal line active.

⁹⁾ This specification is valid during Reset and during Adapt-mode. The Port 4 current values are only valid for pins P4.3-0, which can act as CS outputs.

¹⁰⁾ This specification is valid during Reset if required for configuration, and during Adapt-mode.

¹¹⁾ Not 100% tested, guaranteed by design and characterization.

AC Characteristics Definition of Internal Timing

The internal operation of the C164CI is controlled by the internal CPU clock f_{CPU} . Both edges of the CPU clock can trigger internal (e.g. pipeline) or external (e.g. bus cycles) operations.

The specification of the external timing (AC Characteristics) therefore depends on the time between two consecutive edges of the CPU clock, called "TCL" (see Figure 11).

Figure 11 Generation Mechanisms for the CPU Clock

The CPU clock signal f_{CPU} can be generated from the oscillator clock signal f_{OSC} via different mechanisms. The duration of TCLs and their variation (and also the derived external timing) depends on the used mechanism to generate f_{CPU} . This influence must be regarded when calculating the timings for the C164CI.

Note: The example for PLL operation shown in Figure 11 refers to a PLL factor of 4.

The used mechanism to generate the basic CPU clock is selected by bitfield CLKCFG in register RP0H.7-5.

Upon a long hardware reset register RP0H is loaded with the logic levels present on the upper half of PORT0 (P0H), i.e. bitfield CLKCFG represents the logic levels on pins

P0.15-13 (P0H.7-5). Register RP0H can be loaded from the upper half of register RSTCON under software control.

Table 11 associates the combinations of these three bits with the respective clock generation mode.

CLKCFG ¹⁾ (RP0H.7-5)	CPU Frequency $f_{CPU} = f_{OSC} \times F$	External Clock Input Range ²⁾	Notes
1 1 1	$f_{OSC} \times 4$	2.5 to 6.25 MHz	Default configuration
1 1 0	$f_{OSC} \times 3$	3.33 to 8.33 MHz	-
101	$f_{OSC} \times 2$	5 to 12.5 MHz	-
1 0 0	$f_{OSC} \times 5$	2 to 5 MHz	-
0 1 1	$f_{OSC} \times 1$	1 to 25 MHz	Direct drive ³⁾
0 1 0	$f_{\rm OSC} imes$ 1.5	6.66 to 16.66 MHz	-
0 0 1	f _{OSC} / 2	2 to 50 MHz	CPU clock via prescaler
0 0 0	$f_{\rm OSC} \times 2.5$	4 to 10 MHz	-

 Table 11
 C164Cl Clock Generation Modes

¹⁾ Please note that pin P0.15 (corresponding to RP0H.7) is inverted in emulation mode, and thus also in EHM.

²⁾ The external clock input range refers to a CPU clock range of 10 ... 25 MHz.

³⁾ The maximum frequency depends on the duty cycle of the external clock signal.

Prescaler Operation

When prescaler operation is configured (CLKCFG = 001_B) the CPU clock is derived from the internal oscillator (input clock signal) by a 2:1 prescaler.

The frequency of f_{CPU} is half the frequency of f_{OSC} and the high and low time of f_{CPU} (i.e. the duration of an individual TCL) is defined by the period of the input clock f_{OSC} .

The timings listed in the AC Characteristics that refer to TCLs therefore can be calculated using the period of f_{OSC} for any TCL.

Phase Locked Loop

When PLL operation is configured (via CLKCFG) the on-chip phase locked loop is enabled and provides the CPU clock (see **Table 11**). The PLL multiplies the input frequency by the factor **F** which is selected via the combination of pins P0.15-13 (i.e. $f_{CPU} = f_{OSC} \times F$). With every **F**'th transition of f_{OSC} the PLL circuit synchronizes the CPU clock to the input clock. This synchronization is done smoothly, i.e. the CPU clock frequency does not change abruptly.

A/D Converter Characteristics

(Operating Conditions apply)

Table 13	A/D Converter	Characteristics
----------	---------------	------------------------

Parameter	Symbol		Limit	Values	Unit	Test	
			min.	max.		Conditions	
Analog reference supply	VAREF	SR	4.0	V _{DD} + 0.1	V	1)	
Analog reference ground	VAGNE	SR	V _{SS} - 0.1	$V_{\rm SS}$ + 0.2	V	-	
Analog input voltage range	V_{AIN}	SR	V _{AGND}	VAREF	V	2)	
Basic clock frequency	f _{BC}		0.5	6.25	MHz	3)	
Conversion time	t _C	CC	_	40 t _{BC} +	-	4)	
				$t_{\rm S}$ + $2t_{\rm CPU}$		$t_{CPU} = 1 / f_{CPU}$	
Calibration time after reset	t _{CAL}	CC	_	3328 t _{BC}	-	5)	
Total unadjusted error	TUE	CC	_	<u>+</u> 2	LSB	1)	
Internal resistance of	R _{AREF}	SR	_	t _{BC} / 60	kΩ	<i>t</i> _{BC} in [ns] ⁶⁾⁷⁾	
				- 0.23		7\0\	
Internal resistance of analog source	R _{ASRC}	;SR	_	t _S / 450 - 0.25	kΩ	t _S in [ns] ⁷⁾⁸⁾	
ADC input capacitance	C_{AIN}	CC	_	33	pF	7)	

¹⁾ TUE is tested at $V_{AREF} = 5.0 \text{ V}$, $V_{AGND} = 0 \text{ V}$, $V_{DD} = 4.9 \text{ V}$. It is guaranteed by design for all other voltages within the defined voltage range.

If the analog reference supply voltage exceeds the power supply voltage by up to 0.2 V

(i.e. $V_{ABEF} = V_{DD} = +0.2 \text{ V}$) the maximum TUE is increased to ±3 LSB. This range is not 100% tested.

The specified TUE is guaranteed only if the absolute sum of input overload currents on Port 5 pins (see I_{OV} specification) does not exceed 10 mA.

During the reset calibration sequence the maximum TUE may be \pm 4 LSB.

- ²⁾ V_{AIN} may exceed V_{AGND} or V_{AREF} up to the absolute maximum ratings. However, the conversion result in these cases will be X000_H or X3FF_H, respectively.
- ³⁾ The limit values for f_{BC} must not be exceeded when selecting the CPU frequency and the ADCTC setting.
- ⁴⁾ This parameter includes the sample time $t_{\rm S}$, the time for determining the digital result and the time to load the result register with the conversion result.

Values for the basic clock t_{BC} depend on programming and can be taken from Table 14.

This parameter depends on the ADC control logic. It is not a real maximum value, but rather a fixum.

- ⁵⁾ During the reset calibration conversions can be executed (with the current accuracy). The time required for these conversions is added to the total reset calibration time.
- ⁶⁾ During the conversion the ADC's capacitance must be repeatedly charged or discharged. The internal resistance of the reference voltage source must allow the capacitance to reach its respective voltage level within each conversion step. The maximum internal resistance results from the programmed conversion timing.
- ⁷⁾ Not 100% tested, guaranteed by design and characterization.

Figure 19 External Memory Cycle: Multiplexed Bus, No Read/Write Delay, Extended ALE

External XRAM Access

If XPER-Share mode is enabled the on-chip XRAM of the C164CI can be accessed (during hold states) by an external master like an asynchronous SRAM.

Table 16	XRAM Access	Timing	(Operating	Conditions	apply)
		•	· · · ·		/

Parameter			nbol	Limit Values		Unit
				min.	max.	
Address setup time before RD/WR falling edge		<i>t</i> ₄₀	SR	4	-	ns
Address hold time after RD/WR rising edge		<i>t</i> ₄₁	SR	0	-	ns
Data turn on delay after \overline{RD} falling edge		t ₄₂	CC	2	-	ns
Data output valid delay after address latched	Read	t ₄₃	CC	_	37	ns
Data turn off delay after \overline{RD} rising edge		t ₄₄	CC	0	10	ns
Write data setup time before \overline{WR} rising edge		t ₄₅	SR	10	-	ns
Write data hold time after \overline{WR} rising edge	ite	t ₄₆	SR	1	-	ns
WR pulse width	V	t ₄₇	SR	18	-	ns
WR signal recovery time		t ₄₈	SR	<i>t</i> ₄₀	-	ns

Figure 25 External Access to the XRAM

Infineon goes for Business Excellence

"Business excellence means intelligent approaches and clearly defined processes, which are both constantly under review and ultimately lead to good operating results.

Better operating results and business excellence mean less idleness and wastefulness for all of us, more professional success, more accurate information, a better overview and, thereby, less frustration and more satisfaction."

Dr. Ulrich Schumacher

http://www.infineon.com