

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, QSPI, SAI, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, PWM, WDT
Number of I/O	38
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	160K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 10x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	48-UFQFN Exposed Pad
Supplier Device Package	48-UFQFPN (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l452ceu3

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.17	Voltage reference buffer (VREFBUF) 4	1
3.18	Comparators (COMP) 4	2
3.19	Operational amplifier (OPAMP) 4	2
3.20	Touch sensing controller (TSC) 4	2
3.21	Digital filter for Sigma-Delta Modulators (DFSDM) 4	3
3.22	Random number generator (RNG) 4	5
3.23	Timers and watchdogs 4	5
	3.23.1 Advanced-control timer (TIM1)4	6
	3.23.2 General-purpose timers (TIM2, TIM3, TIM15, TIM16)4	6
	3.23.3 Basic timer (TIM6) 4	6
	3.23.4 Low-power timer (LPTIM1 and LPTIM2)4	7
	3.23.5 Infrared interface (IRTIM)	
	3.23.6 Independent watchdog (IWDG) 4	
	3.23.7 System window watchdog (WWDG)	
	3.23.8 SysTick timer	
3.24	Real-time clock (RTC) and backup registers	
3.25	Inter-integrated circuit interface (I ² C) 4	
3.26	Universal synchronous/asynchronous receiver transmitter (USART) 5	0
3.27	Low-power universal asynchronous receiver transmitter (LPUART) 5	1
3.28	Serial peripheral interface (SPI) 5	2
3.29	Serial audio interfaces (SAI) 5	2
3.30	Controller area network (CAN) 5	3
3.31	Secure digital input/output and MultiMediaCards Interface (SDMMC) 5	3
3.32	Universal serial bus (USB)	4
3.33	Clock recovery system (CRS)	4
3.34	Quad SPI memory interface (QUADSPI)	4
3.35	Development support	6
	3.35.1 Serial wire JTAG debug port (SWJ-DP)	6
	3.35.2 Embedded Trace Macrocell [™] 5	6
Pinou	uts and pin description5	7
Memo	ory mapping	4
Elect	rical characteristics8	8

4

5

6

Peripheral	STM32L452Vx	STM32L452Rx	STM32L452Cx						
Operating voltage		1.71 to 3.6 V							
Operating temperature		nbient operating temperature: 40 to 85 °C / -40 to 125 °C Junction temperature: 40 to 105 °C / -40 to 130 °C							
Packages	LQFP100 UFBGA100	WLCSP64 LQFP64 UFBGA64	UFQFPN48						

Table 2. STM32L452xx family device features and peripheral counts (continued)

1. WKUP5, ADC1_IN14 and SDMMC interface are not supported by 64-pin packages with SMPS option.

2. In case external SMPS package type is used, 2 GPIO's are replaced by VDD12 pins to connect the SMPS power supplies hence reducing the number of available GPIO's by 2.

3 Functional overview

3.1 Arm[®] Cortex[®]-M4 core with FPU

The Arm[®] Cortex[®]-M4 with FPU processor is the latest generation of Arm[®] processors for embedded systems. It was developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced response to interrupts.

The Arm[®] Cortex[®]-M4 with FPU 32-bit RISC processor features exceptional codeefficiency, delivering the high-performance expected from an Arm[®] core in the memory size usually associated with 8- and 16-bit devices.

The processor supports a set of DSP instructions which allow efficient signal processing and complex algorithm execution.

Its single precision FPU speeds up software development by using metalanguage development tools, while avoiding saturation.

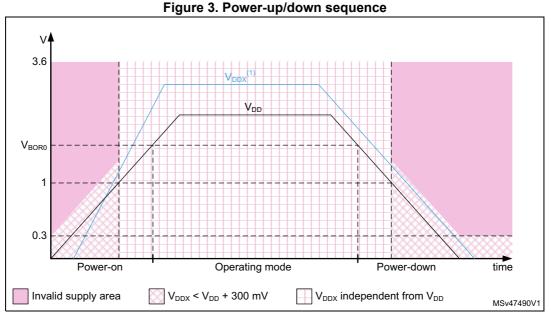
With its embedded ${\rm Arm}^{\rm @}$ core, the STM32L452xx family is compatible with all ${\rm Arm}^{\rm @}$ tools and software.

Figure 1 shows the general block diagram of the STM32L452xx family devices.

3.2 Adaptive real-time memory accelerator (ART Accelerator[™])

The ART Accelerator[™] is a memory accelerator which is optimized for STM32 industrystandard Arm[®] Cortex[®]-M4 processors. It balances the inherent performance advantage of the Arm[®] Cortex[®]-M4 over Flash memory technologies, which normally requires the processor to wait for the Flash memory at higher frequencies.

To release the processor near 100 DMIPS performance at 80MHz, the accelerator implements an instruction prefetch queue and branch cache, which increases program execution speed from the 64-bit Flash memory. Based on CoreMark benchmark, the performance achieved thanks to the ART accelerator is equivalent to 0 wait state program execution from Flash memory at a CPU frequency up to 80 MHz.


3.3 Memory protection unit

The memory protection unit (MPU) is used to manage the CPU accesses to memory to prevent one task to accidentally corrupt the memory or resources used by any other active task. This memory area is organized into up to 8 protected areas that can in turn be divided up into 8 subareas. The protection area sizes are between 32 bytes and the whole 4 gigabytes of addressable memory.

The MPU is especially helpful for applications where some critical or certified code has to be protected against the misbehavior of other tasks. It is usually managed by an RTOS (real-time operating system). If a program accesses a memory location that is prohibited by the MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can dynamically update the MPU area setting, based on the process to be executed.

The MPU is optional and can be bypassed for applications that do not need it.

1. V_{DDX} refers to V_{DDA} .

3.9.2 Power supply supervisor

The device has an integrated ultra-low-power brown-out reset (BOR) active in all modes except Shutdown and ensuring proper operation after power-on and during power down. The device remains in reset mode when the monitored supply voltage V_{DD} is below a specified threshold, without the need for an external reset circuit.

The lowest BOR level is 1.71V at power on, and other higher thresholds can be selected through option bytes. The device features an embedded programmable voltage detector (PVD) that monitors the V_{DD} power supply and compares it to the VPVD threshold. An interrupt can be generated when V_{DD} drops below the VPVD threshold and/or when V_{DD} is higher than the VPVD threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software.

In addition, the device embeds a Peripheral Voltage Monitor which compares the independent supply voltage V_{DDA} with a fixed threshold in order to ensure that the peripheral is in its functional supply range.

					Stop	o 0/1	Sto	op 2	Star	ndby	Shut	down	
Peripheral	Run Sleep Low- Low- power power run sleep		-	Wakeup capability	-	Wakeup capability	-	Wakeup capability	-	Wakeup capability	VBAT		
CRC calculation unit	0	0	0	0	-	-	-	-	-	-	-	-	-
GPIOs	0	0	0	0	0	0	0	0	(9)	5 pins (10)	(11)	5 pins (10)	-

 Table 5. Functionalities depending on the working mode⁽¹⁾ (continued)

1. Legend: Y = Yes (Enable). O = Optional (Disable by default. Can be enabled by software). - = Not available.

- 2. The Flash can be configured in power-down mode. By default, it is not in power-down mode.
- 3. The SRAM clock can be gated on or off.
- 4. SRAM2 content is preserved when the bit RRS is set in PWR_CR3 register.
- Some peripherals with wakeup from Stop capability can request HSI16 to be enabled. In this case, HSI16 is woken up by the peripheral, and only feeds the peripheral which requested it. HSI16 is automatically put off when the peripheral does not need it anymore.
- 6. UART and LPUART reception is functional in Stop mode, and generates a wakeup interrupt on Start, address match or received frame event.
- 7. I2C address detection is functional in Stop mode, and generates a wakeup interrupt in case of address match.
- 8. Voltage scaling Range 1 only.
- 9. I/Os can be configured with internal pull-up, pull-down or floating in Standby mode.
- 10. The I/Os with wakeup from Standby/Shutdown capability are: PA0, PC13, PE6, PA2, PC5.
- 11. I/Os can be configured with internal pull-up, pull-down or floating in Shutdown mode but the configuration is lost when exiting the Shutdown mode.

3.9.5 Reset mode

In order to improve the consumption under reset, the I/Os state under and after reset is "analog state" (the I/O schmitt trigger is disable). In addition, the internal reset pull-up is deactivated when the reset source is internal.

3.9.6 VBAT operation

The VBAT pin allows to power the device VBAT domain from an external battery, an external supercapacitor, or from V_{DD} when no external battery and an external supercapacitor are present. The VBAT pin supplies the RTC with LSE and the backup registers. Three anti-tamper detection pins are available in VBAT mode.

VBAT operation is automatically activated when V_{DD} is not present.

An internal VBAT battery charging circuit is embedded and can be activated when V_{DD} is present.

Note: When the microcontroller is supplied from VBAT, external interrupts and RTC alarm/events do not exit it from VBAT operation.

3.35 Development support

3.35.1 Serial wire JTAG debug port (SWJ-DP)

The Arm[®] SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target.

Debug is performed using 2 pins only instead of 5 required by the JTAG (JTAG pins could be re-use as GPIO with alternate function): the JTAG TMS and TCK pins are shared with SWDIO and SWCLK, respectively, and a specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP.

3.35.2 Embedded Trace Macrocell™

The Arm[®] Embedded Trace Macrocell[™] provides a greater visibility of the instruction and data flow inside the CPU core by streaming compressed data at a very high rate from the STM32L452xx through a small number of ETM pins to an external hardware trace port analyzer (TPA) device. Real-time instruction and data flow activity be recorded and then formatted for display on the host computer that runs the debugger software. TPA hardware is commercially available from common development tool vendors.

The Embedded Trace Macrocell[™] operates with third party debugger software tools.

Na	me	Abbreviation	Definition						
Pin ı	name	Unless otherwise specified in reset is the same as the actu	brackets below the pin name, the pin function during and after al pin name						
		S Supply pin							
Pin	type	I	Input only pin						
		I/O	Input / output pin						
		FT	5 V tolerant I/O						
		TT 3.6 V tolerant I/O							
		RST Bidirectional reset pin with embedded weak pull-up resist							
I/O sti	ructure	Option for TT or FT I/Os							
		_f ⁽¹⁾ I/O, Fm+ capable							
		_u ⁽²⁾	I/O, with USB function supplied by V _{DDUSB}						
		_a ⁽³⁾	I/O, with Analog switch function supplied by V _{DDA}						
No	otes	Unless otherwise specified by a note, all I/Os are set as analog inputs during and after rese							
Pin	Alternate functions	Functions selected through C	GPIOx_AFR registers						
functions	Additional functions	Functions directly selected/enabled through peripheral registers							

Table 15. Legend/abbreviations used in the pinout tab

1. The related I/O structures in *Table 16* are: FT_f, FT_fa.

2. The related I/O structures in *Table 16* are: FT_u, FT_fu.

3. The related I/O structures in *Table 16* are: FT_a, FT_fa, TT_a.

		Piı	n Nu	ımbe	er						Pin fund	ctions
UFQFPN48	WLCSP64	LQFP64	LQFP64 SMPS	UFBGA64	LQFP100	UFBGA100	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	-	-	-	-	1	B2	PE2	I/O	FT	-	TRACECK, TIM3_ETR, TSC_G7_IO1, SAI1_MCLK_A, EVENTOUT	-
-	-	-	-	-	2	A1	PE3	I/O	FT	-	TRACED0, TIM3_CH1, TSC_G7_IO2, SAI1_SD_B, EVENTOUT	-
-	-	-	-	-	3	B1	PE4	I/O	FT	-	TRACED1, TIM3_CH2, DFSDM1_DATIN3, TSC_G7_IO3, SAI1_FS_A, EVENTOUT	-

		Piı	n Nu	ımbe	r				-		Pin functions			
UFQFPN48	WLCSP64	LQFP64	LQFP64 SMPS	UFBGA64	LQFP100	UFBGA100	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions		
-	B2	-	-	-	75	G11	VDD	S	-	-	-	-		
37	C3	49	49	A7	76	A10	PA14 (JTCK/ SWCLK)	I/O	FT	(3)	JTCK/SWCLK, LPTIM1_OUT, I2C1_SMBA, I2C4_SMBA, SAI1_FS_B, EVENTOUT	-		
38	A2	50	50	A6	77	A9	PA15 (JTDI)	I/O	FT	(3)	JTDI, TIM2_CH1, TIM2_ETR, USART2_RX, SPI1_NSS, SPI3_NSS, USART3_RTS_DE, UART4_RTS_DE, TSC_G3_IO1, EVENTOUT	-		
-	D4	51	51	B7	78	B11	PC10	I/O	FT	-	TRACED1, SPI3_SCK, USART3_TX, UART4_TX, TSC_G3_IO2, SDMMC1_D2, EVENTOUT	-		
-	В3	52	52	B6	79	C10	PC11	I/O	FT	-	SPI3_MISO, USART3_RX, UART4_RX, TSC_G3_IO3, SDMMC1_D3, EVENTOUT	-		
-	A3	53	53	C5	80	B10	PC12	I/O	FT	-	TRACED3, SPI3_MOSI, USART3_CK, TSC_G3_IO4, SDMMC1_CK, EVENTOUT	-		
-	-	-	-	-	81	C9	PD0	I/O	FT	-	SPI2_NSS, CAN1_RX, EVENTOUT	-		
-	-	-	-	-	82	B9	PD1	I/O	FT	-	SPI2_SCK, CAN1_TX, EVENTOUT	-		
-	C4	54	_	B5	83	C8	PD2	I/O	FT	-	TRACED2, TIM3_ETR, USART3_RTS_DE, TSC_SYNC, SDMMC1_CMD, EVENTOUT	-		

Table 16. STM32L452xx pin definitions (continued)

Symbol	Parameter	Conditions ⁽¹⁾	Min	Тур	Max	Unit
V	V _{DDA} peripheral voltage	Rising edge	1.78	1.82	1.86	V
V _{PVM4}	monitoring	Falling edge	1.77	1.81	1.85	v
V _{hyst_PVM3}	PVM3 hysteresis	-	-	10	-	mV
V _{hyst_PVM4}	PVM4 hysteresis	-	-	10	-	mV
I _{DD} (PVM1) (2)	PVM1 consumption from V_{DD}	-	-	0.2	-	μA
I _{DD} (PVM3/PVM4) (2)	PVM3 and PVM4 consumption from V _{DD}	-	-	2	-	μA

 Table 25. Embedded reset and power control block characteristics (continued)

1. Continuous mode means Run/Sleep modes, or temperature sensor enable in Low-power run/Low-power sleep modes.

2. Guaranteed by design.

3. BOR0 is enabled in all modes (except shutdown) and its consumption is therefore included in the supply current characteristics tables.

Symbol	Parameter	Conditions			TYP			MAX ⁽¹⁾					Uni	
Symbol	Farameter	-	V _{DD}	25 °C	55 °C	85 °C	105 °C	125 °C	25 °C	55 °C	85 °C	105 °C	125 °C	
			1.8 V	165	275	950	2600	6550	-	-	-	-	-	
	Supply current	RTC clocked by LSE	2.4 V	235	370	1150	3100	7650	-	-	-	-	-	
	in Shutdown mode	h bypassed at 32768 Hz	3 V	325	485	1450	3750	9050	-	-	-	-	-	
I _{DD_ALL}			3.6 V	445	655	1900	4800	11500	-	-	-	-	-	nA
(Shutdown with RTC)	(backup registers		1.8 V	290	410	1050	2550	6700	-	-	-	-	-	
,	retained) RTC		2.4 V	375	515	1250	3050	7800	-	-	-	-	-	
	enabled		3 V	480	645	1550	3700	8800	-	-	-	-	-	
			3.6 V	625	840	1950	4950	11500	-	-	-	-	-	
I _{DD_ALL} wakeup from Shutdown)	Supply current during wakeup from Shutdown mode	Wakeup clock is MSI = 4 MHz. See ⁽³⁾ .	3 V	1.00	-	-	-	-	-	_	-	-	-	mA

1. Guaranteed by characterization results, unless otherwise specified.

2. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors.

3. Wakeup with code execution from Flash. Average value given for a typical wakeup time as specified in Table 52: Low-power mode wakeup timings.

Symbol	Parameter	Conditions	ТҮР			MAX ⁽¹⁾				Unit				
	Farameter	-	V _{BAT}	25 °C	55 °C	85 °C	105 °C	125 °C	25 °C	55 °C	85 °C	105 °C	125 °C	Unit
I _{DD_VBAT} Backup domain (VBAT) supply current		1.8 V	3.00	-	-	-	-	-	-	-	-	-		
	Backup domain supply current	RTC disabled	2.4 V	4.00	-	-	-	-	-	-	-	-	-	
			3 V	5.00	-	-	-	-	-	-	-	-	-	
			3.6 V	11.0	-	-	-	-	-	-	-	-	-	nA
			1.8 V	145	165	285	550	-	-	-	-	-	-	
		clocked by LSE	2.4 V	205	235	370	670	-	-	-	-	-	-	
			3 V	285	315	470	820	-	-	-	-	-	-	
			3.6 V	375	430	715	1350	-	-	-	-	-	-	

1. Guaranteed by characterization results, unless otherwise specified.

DS11912 Rev 4

	Peripheral	Range 1	Range 2	Low-power run and sleep	Unit
	AHB to APB2 ⁽⁴⁾	1.0	0.9	0.9	
APB2	FW	0.2	0.2	0.2	
	SAI1 independent clock domain	2.3	1.8	1.9	
	SAI1 clock domain	2.1	1.8	2.0	
	SDMMC1 independent clock domain	4.7	3.9	3.9	
	SDMMC1 clock domain	2.5	1.9	1.9	
	SPI1	1.8	1.6	1.7	
APDZ	SYSCFG/VREFBUF/COMP	0.6	0.5	0.6	µA/MHz
	TIM1	8.1	6.5	7.6	
	TIM15	3.7	3.0	3.4	
	TIM16	2.7	2.1	2.6	
	USART1 independent clock domain	4.8	4.2	4.6	
	USART1 clock domain	1.5	1.3	1.7	
	All APB2 on	24.2	19.9	22.6	
	ALL	100.9	77.1	94.8	

Table 51. Peripheral current consumption (continued)

1. The BusMatrix is automatically active when at least one master is ON (CPU, DMA).

2. The GPIOx (x= A...H) dynamic current consumption is approximately divided by a factor two versus this table values when the GPIO port is locked thanks to LCKK and LCKy bits in the GPIOx_LCKR register. In order to save the full GPIOx current consumption, the GPIOx clock should be disabled in the RCC when all port I/Os are used in alternate function or analog mode (clock is only required to read or write into GPIO registers, and is not used in AF or analog modes).

3. The AHB to APB1 Bridge is automatically active when at least one peripheral is ON on the APB1.

4. The AHB to APB2 Bridge is automatically active when at least one peripheral is ON on the APB2.

6.3.6 Wakeup time from low-power modes and voltage scaling transition times

The wakeup times given in *Table 52* are the latency between the event and the execution of the first user instruction.

The device goes in low-power mode after the WFE (Wait For Event) instruction.

Symbol	Parameter	Conditions	Тур	Мах	Unit
t _{WUSLEEP}	Wakeup time from Sleep mode to Run mode	-	6	6	Nb of
twulpsleep	Wakeup time from Low- power sleep mode to Low- power run mode	Wakeup in Flash with Flash in power-down during low-power sleep mode (SLEEP_PD=1 in FLASH_ACR) and with clock MSI = 2 MHz	6	9	CPU cycles

Table 52. Low-power mode wakeup timings⁽¹⁾

6.3.7 External clock source characteristics

High-speed external user clock generated from an external source

In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO.

The external clock signal has to respect the I/O characteristics in *Section 6.3.14*. However, the recommended clock input waveform is shown in *Figure 19: High-speed external clock source AC timing diagram*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f	User external clock source frequency	Voltage scaling Range 1	-	8	48	MHz
f _{HSE_ext}		Voltage scaling Range 2	-	8	26	
V _{HSEH}	OSC_IN input pin high level voltage	-	$0.7 V_{\text{DDIOx}}$	-	V _{DDIOx}	V
V _{HSEL}	OSC_IN input pin low level voltage	-	V _{SS}	-	0.3 V _{DDIOx}	
t _{w(HSEH)} t _{w(HSEL)}	OSC_IN high or low time	Voltage scaling Range 1	7	-	-	2
		Voltage scaling Range 2	18	-	-	ns

Table 55. High-speed	l external use	r clock charac	cteristics ⁽¹⁾
----------------------	----------------	----------------	---------------------------

1. Guaranteed by design.

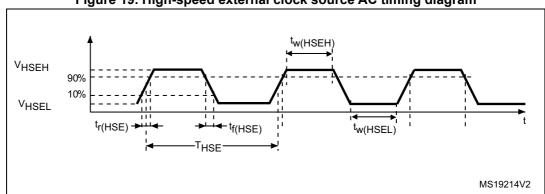


Figure 19. High-speed external clock source AC timing diagram

6.3.9 PLL characteristics

The parameters given in *Table 63* are derived from tests performed under temperature and V_{DD} supply voltage conditions summarized in *Table 23: General operating conditions*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
£	PLL input clock ⁽²⁾	-	4	-	16	MHz	
f _{PLL_IN}	PLL input clock duty cycle -		45	-	55	%	
£	DLL multiplier output clock D	Voltage scaling Range 1	3.0968	-	80	MHz	
^f PLL_P_OUT	PLL multiplier output clock P	Voltage scaling Range 2	3.0968	-	26		
f _{PLL_Q_OUT}	DLL multiplier output clock O	Voltage scaling Range 1	12	-	80	MHz	
	PLL multiplier output clock Q	Voltage scaling Range 2	12	-	26		
f _{PLL_R_OUT}	DLL multiplier output clock D	Voltage scaling Range 1	12	-	80	MHz	
	PLL multiplier output clock R	Voltage scaling Range 2	12	-	26		
4		Voltage scaling Range 1 96 -		-	344	MHz	
fvco_out	PLL VCO output	Voltage scaling Range 2	96	-	128		
t _{LOCK}	PLL lock time	-	-	15	40	μs	
Jitter	RMS cycle-to-cycle jitter	Svetom clock 20 Miliz	-	40	-	100	
Jiller	RMS period jitter	System clock 80 MHz	-	30	- ±p:	±ρs	
		VCO freq = 96 MHz	-	200	260		
I _{DD} (PLL)	PLL power consumption on $V_{DD}^{(1)}$	VCO freq = 192 MHz	-	300	380	0 μΑ	
		VCO freq = 344 MHz	-	520	650		

	Table 63.	PLL,	PLLSAI1	characteristics ⁽¹⁾
--	-----------	------	---------	--------------------------------

1. Guaranteed by design.

2. Take care of using the appropriate division factor M to obtain the specified PLL input clock values. The M factor is shared between the 2 PLLs.

Electrical characteristics

- 1. Refer to Figure 26: I/O input characteristics.
- 2. Tested in production.
- 3. Guaranteed by design.
- 4. All FT_xx IO except FT_u and PC3 I/O.
- 5. $Max(V_{DDXXX})$ is the maximum value of all the I/O supplies.
- To sustain a voltage higher than Min(V_{DD}, V_{DDA}, V_{DDUSB}) +0.3 V, the internal Pull-up and Pull-Down resistors must be disabled.
- 7. This value represents the pad leakage of the IO itself. The total product pad leakage is provided by this formula: $I_{Total_Ileak_max} = 10 \ \mu A + [number of IOs where V_{IN} is applied on the pad] \times I_{Ikg}(Max).$
- Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This PMOS/NMOS contribution to the series resistance is minimal (~10% order).

All I/Os are CMOS- and TTL-compliant (no software configuration required). Their characteristics cover more than the strict CMOS-technology or TTL parameters. The coverage of these requirements is shown in *Figure 26* for standard I/Os, and in *Figure 26* for 5 V tolerant I/Os.

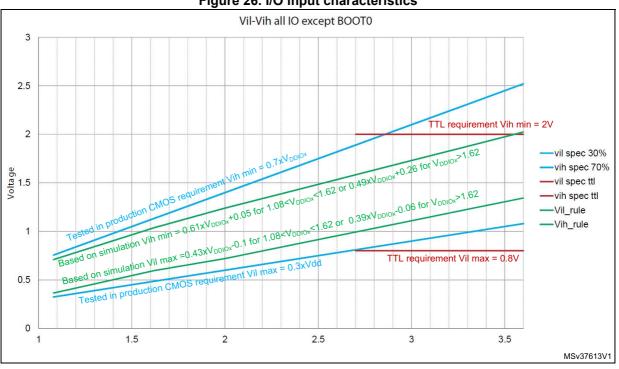


Figure 26. I/O input characteristics

Output driving current

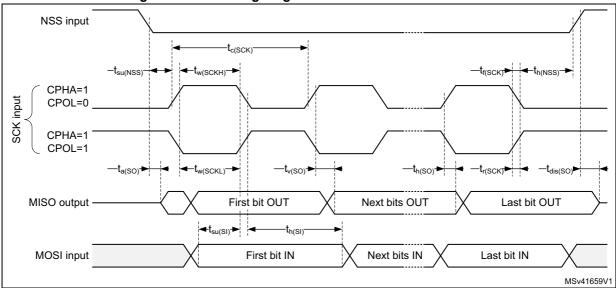
The GPIOs (general purpose input/outputs) can sink or source up to ±8 mA, and sink or source up to ± 20 mA (with a relaxed V_{OL}/V_{OH}).

Speed	Symbol	Parameter	Conditions	Min	Max	Unit	
				C=50 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	50	
			C=50 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	25		
	Fmax	Maximum fraguanay	C=50 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	5	MHz	
	Fillax	Maximum frequency	C=10 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	100 ⁽³⁾	IVINZ	
10			C=10 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	37.5		
			C=10 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	5		
			C=50 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	5.8		
		Output rise and fall time	C=50 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	11		
	Tr/Tf		C=50 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	28	20	
			C=10 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	2.5	ns	
			C=10 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	5		
			C=10 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	12		
			C=30 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	120 ⁽³⁾		
		Fmax Maximum frequency	C=30 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	50	- MHz	
	Fmax		C=30 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	10		
	Fmax		C=10 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	180 ⁽³⁾		
11			C=10 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	75		
			C=10 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	10		
			C=30 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	3.3		
	Tr/Tf	Output rise and fall time	C=30 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	6	ns	
			C=30 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	16		
[m]	Fmax	Maximum frequency		-	1	MHz	
Fm+	Tf	Output fall time ⁽⁴⁾	C=50 pF, 1.6 V≤V _{DDIOx} ≤3.6 V	-	5	ns	

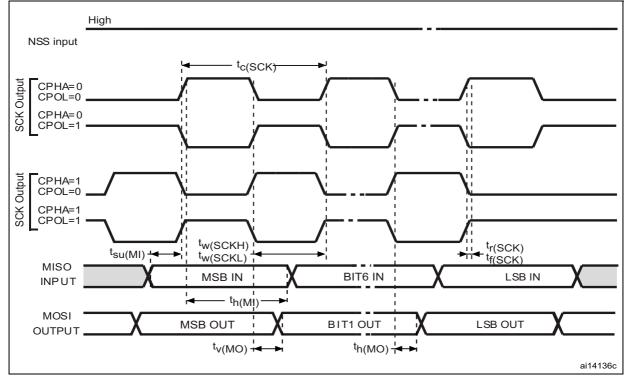
 The I/O speed is configured using the OSPEEDRy[1:0] bits. The Fm+ mode is configured in the SYSCFG_CFGR1 register. Refer to the RM0394 reference manual for a description of GPIO Port configuration register.

2. Guaranteed by design.

3. This value represents the I/O capability but the maximum system frequency is limited to 80 MHz.


4. The fall time is defined between 70% and 30% of the output waveform accordingly to I²C specification.

Symbol	Parameter	Co	onditions	Min	Тур	Max	Unit	
T _{W_to_W}	Minimal time between two consecutive writes into the DAC_DORx register to guarantee a correct DAC1_OUT1 for a small variation of the input code (1 LSB) DAC_MCR:MODEx[2:0] = 000 or 001 DAC_MCR:MODEx[2:0] = 010 or 011	CL ≤ 50 pF, RL ≥ 5 kΩ CL ≤ 10 pF		1	-	-	μs	
		DAC1_OUT1	DAC output buffer ON, C _{SH} = 100 nF	-	0.7	3.5	ms	
	Sampling time in sample and hold mode (code transition between the	pin connected	DAC output buffer OFF, C _{SH} = 100 nF	-	10.5	18	1115	
t _{SAMP}	lowest input code and the highest input code when DAC1_OUT1 reaches final value ±1LSB)	DAC1_OUT1 pin not connected (internal connection only)	DAC output buffer OFF	-	2	3.5	μs	
I _{leak}	Output leakage current	Sample and hold mode, DAC1_OUT1 pin connected		-	-	_(3)	nA	
Cl _{int}	Internal sample and hold capacitor	-		5.2	7	8.8	pF	
t _{TRIM}	Middle code offset trim time	DAC output bu	ffer ON	50	-	-	μs	
V _{offset}	Middle code offset for 1	V _{REF+} = 3.6 V		-	1500	-	μV	
• offset	trim code step	V _{REF+} = 1.8 V		-	750	-	μ۷	
		DAC output	No load, middle code (0x800)	-	315	500		
		buffer ON	No load, worst code (0xF1C)	-	450	670		
I _{DDA} (DAC)	DAC consumption from V _{DDA}	DAC output buffer OFF	No load, middle code (0x800)	-	-	0.2	μA	
		Sample and hold mode, C _{SH} = 100 nF		-	315 x Ton/(Ton +Toff) (4)	670 x Ton/(Ton +Toff) (4)		


Table 83. DAC characteristics⁽¹⁾ (continued)

1. Measurement points are done at CMOS levels: 0.3 V_{DD} and 0.7 $V_{\text{DD}}.$

Figure 34. SPI timing diagram - master mode

1. Measurement points are done at CMOS levels: 0.3 $\rm V_{DD}$ and 0.7 $\rm V_{DD}.$

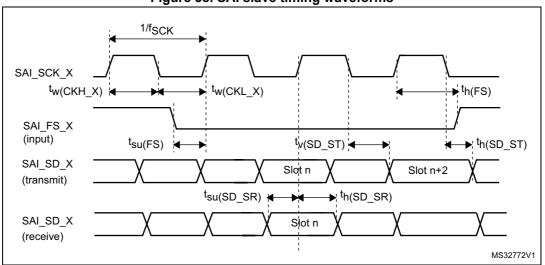


Figure 38. SAI slave timing waveforms

SDMMC characteristics

Unless otherwise specified, the parameters given in *Table 99* for SDIO are derived from tests performed under the ambient temperature, f_{PCLKx} frequency and V_{DD} supply voltage conditions summarized in *Table 23: General operating conditions*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 11
- Capacitive load C = 30 pF
- Measurement points are done at CMOS levels: 0.5 x V_{DD}

Refer to Section 6.3.14: I/O port characteristics for more details on the input/output characteristics.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit				
f _{PP}	Clock frequency in data transfer mode	-	0	-	50	MHz				
-	SDIO_CK/fPCLK2 frequency ratio	-	-	-	4/3	-				
t _{W(CKL)}	Clock low time	f _{PP} = 50 MHz	8	10	-	ns				
t _{W(CKH)}	Clock high time	f _{PP} = 50 MHz	8	10	-	ns				
CMD, D inputs (referenced to CK) in MMC and SD HS mode										
t _{ISU}	Input setup time HS	f _{PP} = 50 MHz	3.5	-	-	ns				
t _{IH}	Input hold time HS	f _{PP} = 50 MHz	2.5	-	-	ns				
CMD, D outp	uts (referenced to CK) in MMC and SD	HS mode								
t _{OV}	Output valid time HS	f _{PP} = 50 MHz	-	12	13	ns				
t _{ОН}	Output hold time HS	f _{PP} = 50 MHz	10	-	-	ns				
CMD, D inputs (referenced to CK) in SD default mode										
t _{ISUD}	Input setup time SD	f _{PP} = 50 MHz	3.5	-	-	ns				
t _{IHD}	Input hold time SD	f _{PP} = 50 MHz	3	-	-	ns				

Table 99. SD / MMC dynamic characteristics, V_{DD} =2.7 V to 3.6 V⁽¹⁾

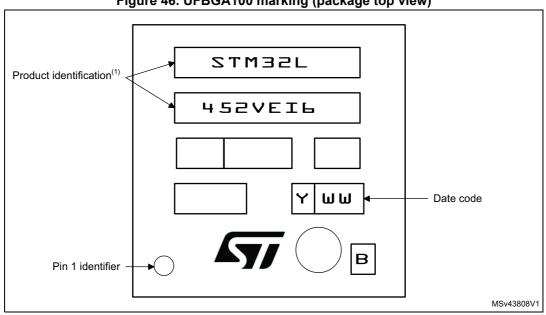
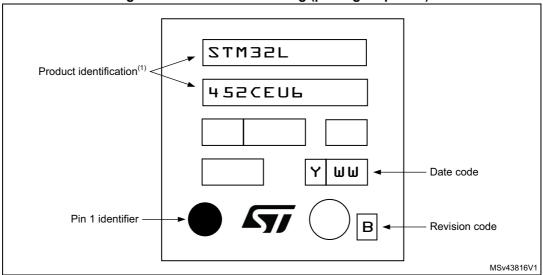



Figure 46. UFBGA100 marking (package top view)

Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity. 1.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

 Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity.

