

Welcome to E-XFL.COM

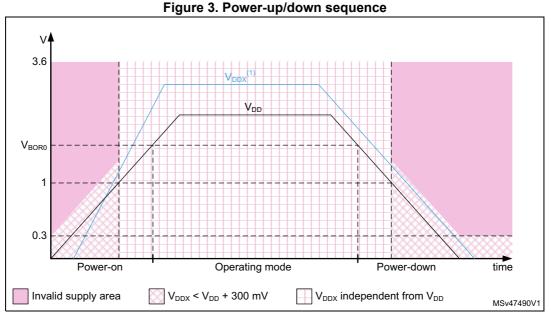
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, MMC/SD, QSPI, SAI, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, PWM, WDT
Number of I/O	52
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	160K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 16x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-UFBGA
Supplier Device Package	64-UFBGA (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l452rei6


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	able 2. STM32 ripheral		 L452Vx	STM32I		STM32L452Cx					
Flash mem	nory	256KB	512KB	256KB	512KB	256KB	512KB				
SRAM				160	KB						
Quad SPI				Ye	es						
	Advanced control		1 (16-bit)								
	General purpose			2 (16 1 (32							
	Basic			2 (16	S-bit)						
Timers	Low -power			2 (16	S-bit)						
	SysTick timer			1							
	Watchdog timers (independent, window)			2	2						
	SPI			3	3						
	l ² C		4								
Comm.	USART UART LPUART	3 1 1									
interfaces	SAI	1									
	CAN	1									
	USB FS	Yes									
	SDMMC		Ye	s ⁽¹⁾		N	10				
RTC		Yes									
Tamper pir	IS		3	2	2		2				
Random g	enerator			Ye	es						
GPIOs ⁽²⁾ Wakeup pi	ns		33 5	5 4 ⁽			38 3				
Capacitive Number of	-	2	21	1	2		6				
12-bit ADC Number of			1 6	1 16			1 0				
12-bit DAC	channels			1							
Internal vol buffer	Itage reference	Yes No									
Analog cor	nparator			2	2						
Operationa	al amplifiers			1							
Max. CPU	frequency			80 N	ЛНz						

Table 2. STM32L452xx family device features and peripheral counts

1. V_{DDX} refers to V_{DDA} .

3.9.2 Power supply supervisor

The device has an integrated ultra-low-power brown-out reset (BOR) active in all modes except Shutdown and ensuring proper operation after power-on and during power down. The device remains in reset mode when the monitored supply voltage V_{DD} is below a specified threshold, without the need for an external reset circuit.

The lowest BOR level is 1.71V at power on, and other higher thresholds can be selected through option bytes. The device features an embedded programmable voltage detector (PVD) that monitors the V_{DD} power supply and compares it to the VPVD threshold. An interrupt can be generated when V_{DD} drops below the VPVD threshold and/or when V_{DD} is higher than the VPVD threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software.

In addition, the device embeds a Peripheral Voltage Monitor which compares the independent supply voltage V_{DDA} with a fixed threshold in order to ensure that the peripheral is in its functional supply range.

without having any impact on the timing of "injected" conversions

- "injected" conversions for precise timing and with high conversion priority

DFSDM features	DFSDM1
Number of channels	8
Number of filters	4
Input from internal ADC	-
Supported trigger sources	10
Pulses skipper	-
ID registers support	-

3.22 Random number generator (RNG)

All devices embed an RNG that delivers 32-bit random numbers generated by an integrated analog circuit.

3.23 Timers and watchdogs

The STM32L452xx includes one advanced control timers, up to five general-purpose timers, two basic timers, two low-power timers, two watchdog timers and a SysTick timer. The table below compares the features of the advanced control, general purpose and basic timers.

Timer type	Timer typeTimerCounter resolutionCounter type		Prescaler factor	DMA Capture request compare generation channel		Complementary outputs	
Advanced control	TIM1	16-bit	Up, down, Up/down	Any integer between 1 and 65536	Yes	4	3
General- purpose	TIM2 32-bit Up, down, Up/down		Any integer between 1 and 65536	Yes	4	No	
General- purpose	TIM3	16-bit	Up, down, Up/down	Any integer between 1 and 65536	Yes	4	No
General- purpose	TIM15	16-bit	Up	Any integer between 1 and 65536	Yes	2	1
General- purpose	TIM16	16-bit	Up	Any integer between 1 and 65536	Yes	1	1
Basic	TIM6	16-bit	Up	Any integer between 1 and 65536	Yes	0	No

Table 11.	Timer	feature	comparison
-----------	-------	---------	------------

The SDMMC features include the following:

- Full compliance with MultiMediaCard System Specification Version 4.2. Card support for three different databus modes: 1-bit (default), 4-bit and 8-bit
- Full compatibility with previous versions of MultiMediaCards (forward compatibility)
- Full compliance with SD Memory Card Specifications Version 2.0
- Full compliance with SD I/O Card Specification Version 2.0: card support for two different databus modes: 1-bit (default) and 4-bit
- Data transfer up to 48 MHz for the 8 bit mode
- Data write and read with DMA capability

3.32 Universal serial bus (USB)

The STM32L452xx devices embed a full-speed USB device peripheral compliant with the USB specification version 2.0. The internal USB PHY supports USB FS signaling, embedded DP pull-up and also battery charging detection according to Battery Charging Specification Revision 1.2. The USB interface implements a full-speed (12 Mbit/s) function interface with added support for USB 2.0 Link Power Management. It has software-configurable endpoint setting with packet memory up-to 1 KB and suspend/resume support. It requires a precise 48 MHz clock which can be generated from the internal main PLL (the clock source must use a HSE crystal oscillator) or by the internal 48 MHz oscillator in automatic trimming mode. The synchronization for this oscillator can be taken from the USB data stream itself (SOF signalization) which allows crystal less operation.

3.33 Clock recovery system (CRS)

The STM32L452xx devices embed a special block which allows automatic trimming of the internal 48 MHz oscillator to guarantee its optimal accuracy over the whole device operational range. This automatic trimming is based on the external synchronization signal, which could be either derived from LSE oscillator, from an external signal on CRS_SYNC pin or generated by user software. For faster lock-in during startup it is also possible to combine automatic trimming with manual trimming action.

3.34 Quad SPI memory interface (QUADSPI)

The Quad SPI is a specialized communication interface targeting single, dual or quad SPI flash memories. It can operate in any of the three following modes:

- Indirect mode: all the operations are performed using the QUADSPI registers
- Status polling mode: the external flash status register is periodically read and an interrupt can be generated in case of flag setting
- Memory-mapped mode: the external Flash is memory mapped and is seen by the system as if it were an internal memory

Both throughput and capacity can be increased two-fold using dual-flash mode, where two Quad SPI flash memories are accessed simultaneously.

4 Pinouts and pin description

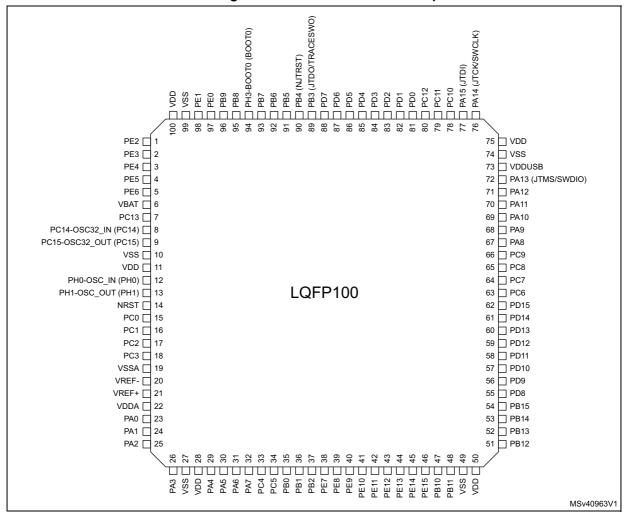


Figure 6. STM32L452Vx LQFP100 pinout⁽¹⁾

1. The above figure shows the package top view.

		Pi	n Nu	ımbe	r						Pin fund	ctions
UFQFPN48	WLCSP64	LQFP64	LQFP64 SMPS	UFBGA64	LQFP100	UFBGA100	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	-	-	-	-	4	C2	PE5	I/O	FT	-	TRACED2, TIM3_CH3, DFSDM1_CKIN3, TSC_G7_IO4, SAI1_SCK_A, EVENTOUT	-
-	-	-	-	-	5	D2	PE6	I/O	FT	-	TRACED3, TIM3_CH4, SAI1_SD_A, EVENTOUT	RTC_TAMP3/WKUP3
1	B7	1	1	B2	6	E2	VBAT	S	-	-	-	-
2	B8	2	2	A2	7	C1	PC13	I/O	FT	(1) (2)	EVENTOUT	RTC_TAMP1/RTC_TS/ RTC_OUT/WKUP2
3	C8	3	3	A1	8	D1	PC14- OSC32_ IN (PC14)	I/O	FT	(1) (2)	EVENTOUT	OSC32_IN
4	C7	4	4	B1	9	E1	PC15- OSC32_ OUT (PC15)	I/O	FT	(1) (2)	EVENTOUT	OSC32_OUT
-	-	-	-	-	10	F2	VSS	S	-	-	-	-
-	-	-	-	-	11	G2	VDD	S	-	-	-	-
5	D8	5	5	C1	12	F1	PH0- OSC_IN (PH0)	I/O	FT	-	EVENTOUT	OSC_IN
6	E8	6	6	D1	13	G1	PH1- OSC_ OUT (PH1)	I/O	FT	-	EVENTOUT	OSC_OUT
7	F8	7	7	E1	14	H2	NRST	I/O	RST	-	-	-
-	D7	8	8	E3	15	H1	PC0	I/O	FT_fa	-	LPTIM1_IN1, I2C4_SCL, I2C3_SCL, LPUART1_RX, LPTIM2_IN1, EVENTOUT	ADC1_IN1
-	D5	9	9	E2	16	J2	PC1	I/O	FT_fa	-	TRACED0, LPTIM1_OUT, I2C4_SDA, I2C3_SDA, LPUART1_TX, EVENTOUT	ADC1_IN2

Table 16. STM32L452xx pin definitions (continued)

STM32L452xx

Pinouts and pin description

			Tabl	e 17. Alternate	function AF0 to	o AF7 ⁽¹⁾ (conti	nued)		
		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
Po	ort	SYS_AF	TIM1/TIM2 LPTIM1	I2C4/TIM1/ TIM2/TIM3	I2C4/USART2/ CAN1/TIM1	2C1/ 2C2/ 2C3/ 2C4	SPI1/SPI2/I2C4	SPI3/DFSDM/ COMP1	USART1/ USART2/ USART3
	PB0	-	TIM1_CH2N	TIM3_CH3	-	-	SPI1_NSS	DFSDM1_ CKIN0	USART3_CK
	PB1	-	TIM1_CH3N	TIM3_CH4	-	-	-	DFSDM1_ DATIN0	USART3_RTS_ DE
	PB2	RTC_OUT	LPTIM1_OUT	-	-	I2C3_SMBA	-	DFSDM1_ CKIN0	-
	PB3	JTDO/ TRACESWO	TIM2_CH2	-	-	-	SPI1_SCK	SPI3_SCK	USART1_RTS_ DE
	PB4	NJTRST	-	TIM3_CH1	-	I2C3_SDA	SPI1_MISO	SPI3_MISO	USART1_CTS
	PB5	-	LPTIM1_IN1	TIM3_CH2	CAN1_RX	I2C1_SMBA	SPI1_MOSI	SPI3_MOSI	USART1_CK
	PB6	-	LPTIM1_ETR	-	-	I2C1_SCL	I2C4_SCL	-	USART1_TX
Port B	PB7	-	LPTIM1_IN2	-	-	I2C1_SDA	I2C4_SDA	-	USART1_RX
POILD	PB8	-	-	-	-	I2C1_SCL	-	-	-
	PB9	-	IR_OUT	-	-	I2C1_SDA	SPI2_NSS	-	-
	PB10	-	TIM2_CH3	-	I2C4_SCL	I2C2_SCL	SPI2_SCK	-	USART3_TX
	PB11	-	TIM2_CH4	-	I2C4_SDA	I2C2_SDA	-	-	USART3_RX
	PB12	-	TIM1_BKIN	-	TIM1_BKIN_C OMP2	I2C2_SMBA	SPI2_NSS	DFSDM1_ DATIN1	USART3_CK
	PB13	-	TIM1_CH1N	-	-	I2C2_SCL	SPI2_SCK	DFSDM1_ CKIN1	USART3_CTS
	PB14	-	TIM1_CH2N	-	-	I2C2_SDA	SPI2_MISO	DFSDM1_ DATIN2	USART3_RTS_ DE
	PB15	RTC_REFIN	TIM1_CH3N	-	-	-	SPI2_MOSI	DFSDM1_ CKIN2	-

DS11912 Rev 4

577

73/212

ſ	1
	Q
	N
	_
	N

DS11912 Rev 4

5

			Tabl	e 17. Alternate	function AF0 to	o AF7 ⁽¹⁾ (conti	nued)		
		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
Po	ort	SYS_AF	TIM1/TIM2 LPTIM1	I2C4/TIM1/ TIM2/TIM3	I2C4/USART2/ CAN1/TIM1	2C1/ 2C2/ 2C3/ 2C4	SPI1/SPI2/I2C4	SPI3/DFSDM/ COMP1	USART1/ USART2/ USART3
	PE0	-	-	-	-	-	-	-	-
	PE1	-	-	-	-	-	-	-	-
	PE2	TRACECK	-	TIM3_ETR	-	-	-	-	-
	PE3	TRACED0	-	TIM3_CH1	-	-	-	-	-
-	PE4	TRACED1	-	TIM3_CH2	-	-	-	DFSDM1_ DATIN3	-
	PE5	TRACED2	-	TIM3_CH3	-	-	-	DFSDM1_ CKIN3	-
	PE6	TRACED3	-	TIM3_CH4	-	-	-	-	-
	PE7	-	TIM1_ETR	-	-	-	-	DFSDM1_ DATIN2	-
Port E	PE8	-	TIM1_CH1N	-	-	-	-	DFSDM1_ CKIN2	-
	PE9	-	TIM1_CH1	-	-	-	-	DFSDM1_ CKOUT	-
	PE10	-	TIM1_CH2N	-	-	-	-	-	-
	PE11	-	TIM1_CH2	-	-	-	-	-	-
	PE12	-	TIM1_CH3N	-	-	-	SPI1_NSS	-	-
	PE13	-	TIM1_CH3	-	-	-	SPI1_SCK	-	-
	PE14	-	TIM1_CH4	TIM1_BKIN2	TIM1_BKIN2_ COMP2	-	SPI1_MISO	-	-
	PE15	-	TIM1_BKIN	-	TIM1_BKIN_ COMP1	-	SPI1_MOSI	-	-

ST
Z
5
Ň
ř
4
ĊΠ
Ň
×
×

Pinouts and pin description

			Tabl	le 18. Alternate	function AF8	to AF15 ⁽¹⁾ (cont	inued)			
		AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15	
Po	ort	UART4/ LPUART1/ CAN1	CAN1/TSC	CAN1/USB/ QUADSPI	-	SDMMC1/ COMP1/ COMP2	SAI1	TIM2/TIM15/ TIM16/LPTIM2	EVENTOUT	
	PB0	-	-	QUADSPI_ BK1_IO1	-	COMP1_OUT	SAI1_EXTCLK	-	EVENTOUT	
	PB1	LPUART1_RTS _DE	-	QUADSPI_ BK1_IO0	-	-	-	LPTIM2_IN1	EVENTOUT	
	PB2	-	-	-	-	-	-	-	EVENTOUT	
	PB3	-	-	-	-	-	SAI1_SCK_B	-	EVENTOUT	
	PB4	-	TSC_G2_IO1	-	-	-	SAI1_MCLK_B	-	EVENTOUT	
	PB5	-	TSC_G2_IO2	-	-	COMP2_OUT	SAI1_SD_B	TIM16_BKIN	EVENTOUT	
	PB6	CAN1_TX	TSC_G2_IO3	-	-	-	SAI1_FS_B	TIM16_CH1N	EVENTOUT	
Port B	PB7	UART4_CTS	TSC_G2_IO4	-	-	-	-	-	EVENTOUT	
FUILD	PB8	-	CAN1_RX	-	-	SDMMC1_D4	SAI1_MCLK_A	TIM16_CH1	EVENTOUT	
	PB9	-	CAN1_TX	-	-	SDMMC1_D5	SAI1_FS_A	-	EVENTOUT	
	PB10	LPUART1_RX	TSC_SYNC	QUADSPI_CLK	-	COMP1_OUT	SAI1_SCK_A	-	EVENTOUT	
	PB11	LPUART1_TX	-	QUADSPI_ BK1_NCS	-	COMP2_OUT	-	-	EVENTOUT	
	PB12	LPUART1_RTS _DE	TSC_G1_IO1	CAN1_RX	-	-	SAI1_FS_A	TIM15_BKIN	EVENTOUT	
	PB13	LPUART1_CTS	TSC_G1_IO2	CAN1_TX	-	-	SAI1_SCK_A	TIM15_CH1N	EVENTOUT	
	PB14	-	TSC_G1_IO3	-	-	-	SAI1_MCLK_A	TIM15_CH1	EVENTOUT	
	PB15	-	TSC_G1_IO4	-	-	-	SAI1_SD_A	TIM15_CH2	EVENTOUT	

DS11912 Rev 4

সি

79/212

6 Electrical characteristics

6.1 Parameter conditions

Unless otherwise specified, all voltages are referenced to V_{SS}.

6.1.1 Minimum and maximum values

Unless otherwise specified, the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at $T_A = 25$ °C and $T_A = T_{Amax}$ (given by the selected temperature range).

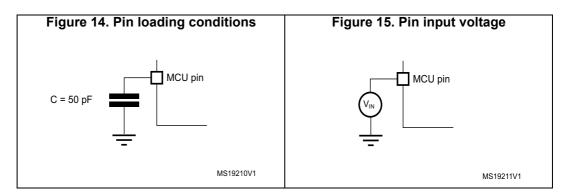
Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean $\pm 3\sigma$).

6.1.2 Typical values

Unless otherwise specified, typical data are based on $T_A = 25$ °C, $V_{DD} = V_{DDA} = 3$ V. They are given only as design guidelines and are not tested.

Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean $\pm 2\sigma$).

6.1.3 Typical curves


Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

6.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in *Figure 14*.

6.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in Figure 15.

				/	
Symbol	Parameter	Conditions	Min	Мах	Unit
	Ambient temperature for the	Maximum power dissipation	-40	85	
т.	suffix 6 version	Low-power dissipation ⁽⁵⁾	-40	105	°C
IA	TA Ambient temperature for the	Maximum power dissipation	-40	125	
	suffix 3 version	Low-power dissipation ⁽⁵⁾	-40	130	
т	lunction tomporature range	Suffix 6 version	-40	105	°C
ТJ	Junction temperature range	Suffix 3 version	-40	130	

 Table 23. General operating conditions (continued)

1. When RESET is released functionality is guaranteed down to $V_{BOR0}\,$ Min.

2. This formula has to be applied only on the power supplies related to the IO structure described by the pin definition table. Maximum I/O input voltage is the smallest value between $Min(V_{DD}, V_{DDA}, V_{DDUSB})$ +3.6 V and 5.5V.

 For operation with voltage higher than Min (V_{DD}, V_{DDA}, V_{DDUSB}) +0.3 V, the internal Pull-up and Pull-Down resistors must be disabled.

4. If T_A is lower, higher P_D values are allowed as long as T_J does not exceed T_{Jmax} (see Section 7.7: Thermal characteristics).

 In low-power dissipation state, T_A can be extended to this range as long as T_J does not exceed T_{Jmax} (see Section 7.7: Thermal characteristics).

6.3.2 Operating conditions at power-up / power-down

The parameters given in *Table 24* are derived from tests performed under the ambient temperature condition summarized in *Table 23*.

Symbol	Parameter	Conditions	Min	Мах	Unit
+	V _{DD} rise time rate		0	8	µs/V
t _{VDD}	V _{DD} fall time rate	-	10	8	μ5/ ν
+	V _{DDA} rise time rate		0	8	µs/V
t _{VDDA}	V _{DDA} fall time rate	-	10	8	μ5/ ν
+	V _{DDUSB} rise time rate		0	8	µs/V
^t VDDUSB	V_{DDUSB} fall time rate	-	10	8	μ5/ ν

Table 24. Operating conditions at power-up / power-down

The requirements for power-up/down sequence specified in *Section 3.9.1: Power supply schemes* must be respected.

6.3.3 Embedded reset and power control block characteristics

The parameters given in *Table 25* are derived from tests performed under the ambient temperature conditions summarized in *Table 23: General operating conditions*.

Symbol	Parameter	Conditions ⁽¹⁾	Min	Тур	Max	Unit
t _{RSTTEMPO} ⁽²⁾	Reset temporization after BOR0 is detected	V_{DD} rising	-	250	400	μs

6.3.4 Embedded voltage reference

The parameters given in *Table 26* are derived from tests performed under the ambient temperature and supply voltage conditions summarized in *Table 23: General operating conditions*.

Parameter	Conditions	Min	Тур	Мах	Unit
Internal reference voltage	–40 °C < T _A < +130 °C	1.182	1.212	1.232	V
ADC sampling time when reading the internal reference voltage	-	4 ⁽²⁾	-	-	μs
Start time of reference voltage buffer when ADC is enable	-	-	8	12 ⁽²⁾	μs
V_{REFINT} buffer consumption from V_{DD} when converted by ADC	-	-	12.5	20 ⁽²⁾	μA
Internal reference voltage spread over the temperature range	V _{DD} = 3 V	-	5	7.5 ⁽²⁾	mV
Temperature coefficient	–40°C < T _A < +130°C	-	30	50 ⁽²⁾	ppm/°C
Long term stability	1000 hours, T = 25°C	-	300	1000 ⁽²⁾	ppm
Voltage coefficient	3.0 V < V _{DD} < 3.6 V	-	250	1200 ⁽²⁾	ppm/V
1/4 reference voltage		24	25	26	
1/2 reference voltage	-	49	50	51	% V _{REFINT}
3/4 reference voltage		74	75	76	
	Internal reference voltage ADC sampling time when reading the internal reference voltage Start time of reference voltage buffer when ADC is enable V _{REFINT} buffer consumption from V _{DD} when converted by ADC Internal reference voltage spread over the temperature range Temperature coefficient Long term stability Voltage coefficient 1/4 reference voltage 1/2 reference voltage	Internal reference voltage $-40 \ ^{\circ}C < T_A < +130 \ ^{\circ}C$ ADC sampling time when reading the internal reference voltage-Start time of reference voltage buffer when ADC is enable-VREFINT buffer consumption from V_DD when converted by ADC-Internal reference voltage spread over the temperature range-Temperature coefficient-40 \ ^{\circ}C < T_A < +130 \ ^{\circ}CLong term stability1000 hours, T = 25 \ ^{\circ}CVoltage coefficient3.0 V < V_DD < 3.6 V	Internal reference voltage $-40 \degree C < T_A < +130 \degree C$ 1.182 ADC sampling time when reading the internal reference voltage- $4^{(2)}$ Start time of reference voltage buffer when ADC is enable V_{REFINT} buffer consumption from V_DD when converted by ADCInternal reference voltage spread over the temperature rangeV_DD = 3 V-Temperature coefficient $-40\degree C < T_A < +130\degree C$ -Long term stability1000 hours, T = 25\degree C-Voltage coefficient $3.0 \lor < \lor_{DD} < 3.6 \lor$ -1/4 reference voltage 1/2 reference voltage-241/2 reference voltage 49	Internal reference voltage $-40 \degree C < T_A < +130 \degree C$ 1.1821.212ADC sampling time when reading the internal reference voltage- $4^{(2)}$ -Start time of reference voltage buffer when ADC is enable 8 V_{REFINT} buffer consumption from V _{DD} when converted by ADC12.5Internal reference voltage spread over the temperature range $V_{DD} = 3 \lor$ -5Temperature coefficient $-40\degree C < T_A < +130\degree C$ -30Long term stability1000 hours, T = 25°C-300Voltage coefficient $3.0 \lor < \bigvee_{DD} < 3.6 \lor$ -2501/2 reference voltage 1/2 reference voltage4950	Internal reference voltage $-40 \degree C < T_A < +130 \degree C$ 1.182 1.212 1.232 ADC sampling time when reading the internal reference voltage - $4^{(2)}$ - - Start time of reference voltage buffer when ADC is enable - - 8 $12^{(2)}$ V _{REFINT} buffer consumption from V _{DD} when converted by ADC - - 12.5 $20^{(2)}$ Internal reference voltage spread over the temperature range V _{DD} = 3 V - 5 $7.5^{(2)}$ Temperature coefficient $-40\degree C < T_A < +130\degree C$ - 30 $50^{(2)}$ Long term stability 1000 hours, T = 25°C - 300 $1000^{(2)}$ Voltage coefficient $3.0 \lor < V_{DD} < 3.6 \lor$ - 250 $1200^{(2)}$ 1/2 reference voltage - - 24 25 26

1. The shortest sampling time can be determined in the application by multiple iterations.

2. Guaranteed by design.

Table 38. Typical current consumption in Run modes, with different codesrunning from Flash, ART disable and power supplied by external SMPS (V_{DD12} = 1.05 V)

		C	onditions ⁽	1)	ΤΥΡ		ТҮР		
Symbol	Parameter	-	Voltage scaling	Code	25 °C	Unit	25 °C	Unit	
		$f_{HCLK} = f_{HSE}$ up to	MHz	Reduced code ⁽²⁾	1.08		42		
	Supply	48 MHz included,		Coremark	0.98		38		
I _{DD_ALL} (Run)	current in	bypass mode PLL ON above	= 26	Dhrystone 2.1	0.98	mA	38	µA/MHz	
(1001)	Run mode	48 MHz	Носк	Fibonacci	0.90		35		
		all peripherals	fHC	While(1)	0.86		33		

All values are obtained by calculation based on measurements done without SMPS and using following parameters: SMPS input = 3.3 V, SMPS efficiency = 85%, V_{DD12} = 1.05 V

2. Reduced code used for characterization results provided in Table 27, Table 29, Table 31.

Table 39. Typical current consumption in Run and Low-power run modes, with different codesrunning from SRAM1

			Conditio	ons	ТҮР		ТҮР	
Symbol	Parameter	-	Voltage scaling	Code	25 °C	Unit	25 °C	Unit
			Hz	Reduced code ⁽¹⁾	2.40		92	
			Range 2 _{LK} = 26 MHz	Coremark	2.20		85	
		f _{HCLK} = f _{HSE} up to	ange = 2(Dhrystone 2.1	2.35	mA	90	µA/MHz
		48 MHz included,	Ra f _{HCLK}	Fibonacci	2.20		85	
I _{DD_ALL}	Supply current in	bypass mode PLL ON above	f _{H0}	While(1)	2.30		88	
(Run)	Run mode		Range 1 _{LK} = 80 MHz	Reduced code ⁽¹⁾	8.55		107	µA/MHz
		peripherals		Coremark	7.75	mA	97	
		disable	= 8(Dhrystone 2.1	8.45		106	
			Ra f _{HCLK}	Fibonacci	7.80		98	
			f _H c	While(1)	8.75		109	
				Reduced code ⁽¹⁾	220		110	
	Supply	£ _£ _0.M	1-	Coremark	190		95	
I _{DD_ALL} (LPRun)	current in Low-power	f _{HCLK} = f _{MSI} = 2 MH all peripherals disa		Dhrystone 2.1	215	μA	108	µA/MHz
()	run			Fibonacci	200		100	1
				While(1)	210		105	

1. Reduced code used for characterization results provided in Table 27, Table 29, Table 31.

		Con	ditions				TYP					MAX ⁽¹⁾			
Symbol	Parameter	-	Voltage scaling	f _{HCLK}	25 °C	55 °C	85 °C	105 °C	125 °C	25 °C	55 °C	85 °C	105 °C	125 °C	Unit
				26 MHz	0.700	0.730	0.830	1.00	1.35	0.80	0.90	1.05	1.30	1.90	
				16 MHz	0.475	0.505	0.605	0.775	1.10	0.55	0.65	0.80	1.05	1.65	
			8 MHz	0.300	0.325	0.425	0.590	0.920	0.35	0.45	0.60	0.85	1.45		
			Range 2	4 MHz	0.210	0.235	0.335	0.500	0.830	0.25	0.30	0.45	0.75	1.35	
		$f_{HCLK} = f_{HSE}$ up		2 MHz	0.165	0.190	0.290	0.455	0.785	0.20	0.25	0.40	0.70	1.25	
I _{DD_ALL}	Supply current in sleep mode,	to 48 MHz included, bypass mode pll ON above 48 MHz all peripherals disable		1 MHz	0.145	0.170	0.265	0.430	0.760	0.15	0.25	0.40	0.65	1.25	
				100 kHz	0.125	0.150	0.245	0.410	0.740	0.15	0.20	0.35	0.65	1.20	m/
(Sleep)			Range 1	80 MHz	2.30	2.35	2.45	2.65	3.05	2.55	2.65	2.85	3.15	3.80	111/-
				72 MHz	2.10	2.15	2.25	2.45	2.80	2.35	2.40	2.60	2.90	3.55	
				64 MHz	1.90	1.90	2.05	2.25	2.60	2.10	2.20	2.35	2.70	3.35	
				48 MHz	1.40	1.40	1.55	1.75	2.15	1.60	1.65	1.85	2.15	2.80	
				32 MHz	0.970	1.00	1.15	1.30	1.70	1.10	1.20	1.40	1.70	2.35	
				24 MHz	0.765	0.800	0.920	1.10	1.50	0.90	0.95	1.15	1.45	2.10	
				16 MHz	0.555	0.590	0.705	0.895	1.25	0.65	0.75	0.90	1.20	1.85	
	Supply			2 MHz	76.0	110	215	395	745	120	185	355	610	1250	
I _{DD ALL}	current in low-power	f _{HCLK} = f _{MSI}		1 MHz	54.0	86.5	195	370	725	88.5	160	335	585	1250	
(LPSleep)	sleep	all peripherals dis	able	400 kHz	39.0	70.5	175	355	710	68.5	140	320	570	1200	μA
	mode			100 kHz	35.5	75.0	195	345	715	66.0	130	305	560	1200	

1. Guaranteed by characterization results, unless otherwise specified.

DS11912 Rev 4

Symbol	Parameter	Conditions		ТҮР					MAX ⁽¹⁾					Unit
Symbol		-	V _{DD}	25 °C	55 °C	85 °C	105 °C	125 °C	25 °C	55 °C	85 °C	105 °C	125 °C	
			1.8 V	165	275	950	2600	6550	-	-	-	-	-	
Supply current in Shutdown I _{DD_ALL} mode	Supply current	bypassed at 32768 Hz	2.4 V	235	370	1150	3100	7650	-	-	-	-	-	
	in Shutdown		3 V	325	485	1450	3750	9050	-	-	-	-	-	
			3.6 V	445	655	1900	4800	11500	-	-	-	-	-	nA
(Shutdown with RTC)		RTC clocked by LSE quartz ⁽²⁾ in low drive	1.8 V	290	410	1050	2550	6700	-	-	-	-	-	
,	retained) RTC		2.4 V	375	515	1250	3050	7800	-	-	-	-	-	
	enabled	mode	3 V	480	645	1550	3700	8800	-	-	-	-	-	
			3.6 V	625	840	1950	4950	11500	-	-	-	-	-	
I _{DD_ALL} wakeup from Shutdown)	Supply current during wakeup from Shutdown mode	Wakeup clock is MSI = 4 MHz. See ⁽³⁾ .	3 V	1.00	-	-	-	-	-	-	-	-	_	mA

- -. . . . -. . -

1. Guaranteed by characterization results, unless otherwise specified.

2. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors.

3. Wakeup with code execution from Flash. Average value given for a typical wakeup time as specified in Table 52: Low-power mode wakeup timings.

Table 50. Current consumption in VBAT mode

		Conditions			ТҮР					MAX ⁽¹⁾				
Symbol	Parameter	-	V _{BAT}	25 °C	55 °C	85 °C	105 °C	125 °C	25 °C	55 °C	85 °C	105 °C	125 °C	Unit
			1.8 V	3.00	-	-	-	-	-	-	-	-	-	
	RTC disabled	2.4 V	4.00	-	-	-	-	-	-	-	-	-		
			3 V	5.00	-	-	-	-	-	-	-	-	-	
I _{DD VBAT}	Backup domain		3.6 V	11.0	-	-	-	-	-	-	-	-	-	nA
(VBĀAT)	supply current		1.8 V	145	165	285	550	-	-	-	-	-	-	ПА
		RTC enabled and clocked by LSE	2.4 V	205	235	370	670	-	-	-	-	-	-	
		bypassed at 32768 Hz	3 V	285	315	470	820	-	-	-	-	-	-	
			3.6 V	375	430	715	1350	-	-	-	-	-	-	

1. Guaranteed by characterization results, unless otherwise specified.

DS11912 Rev 4

119/212

In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in *Section 6.2*:

- The sum of the currents sourced by all the I/Os on V_{DDIOx}, plus the maximum consumption of the MCU sourced on V_{DD}, cannot exceed the absolute maximum rating ΣI_{VDD} (see *Table 20: Voltage characteristics*).
- The sum of the currents sunk by all the I/Os on V_{SS}, plus the maximum consumption of the MCU sunk on V_{SS}, cannot exceed the absolute maximum rating ΣI_{VSS} (see *Table 20: Voltage characteristics*).

Output voltage levels

Unless otherwise specified, the parameters given in the table below are derived from tests performed under the ambient temperature and supply voltage conditions summarized in *Table 23: General operating conditions*. All I/Os are CMOS- and TTL-compliant (FT OR TT unless otherwise specified).

Symbol	Parameter	Conditions	Min	Max	Unit
V _{OL}	Output low level voltage for an I/O pin	CMOS port ⁽²⁾	-	0.4	
V _{OH}	Output high level voltage for an I/O pin	I _{IO} = 8 mA V _{DDIOx} ≥ 2.7 V	V _{DDIOx} -0.4	-	
V _{OL} ⁽³⁾	Output low level voltage for an I/O pin	TTL port ⁽²⁾	-	0.4	
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin	I _{IO} = 8 mA V _{DDIOx} ≥ 2.7 V	2.4	-	
V _{OL} ⁽³⁾	Output low level voltage for an I/O pin	I _{IO} = 20 mA	-	1.3	
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin	V _{DDIOx} ≥ 2.7 V	V _{DDIOx} -1.3	-	
V _{OL} ⁽³⁾	Output low level voltage for an I/O pin	I _{IO} = 4 mA	-	0.45	
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin	V _{DDIOx} ≥ 1.62 V	V _{DDIOx} -0.45	-	V
V _{OL} ⁽³⁾	Output low level voltage for an I/O pin	I _{IO} = 2 mA	-	0.35 _x V _{DDIOx}	
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin	1.62 V ≥ V _{DDIOx} ≥ 1.08 V	0.65 _x V _{DDIOx}	-	
		I _{IO} = 20 mA V _{DDIOx} ≥ 2.7 V	-	0.4	
V _{OLFM+}	Output low level voltage for an FT I/O pin in FM+ mode (FT I/O with "f" option)	I _{IO} = 10 mA V _{DDIOx} ≥ 1.62 V	-	0.4	
	. ,	I _{IO} = 2 mA 1.62 V ≥ V _{DDIOx} ≥ 1.08 V	-	0.4	

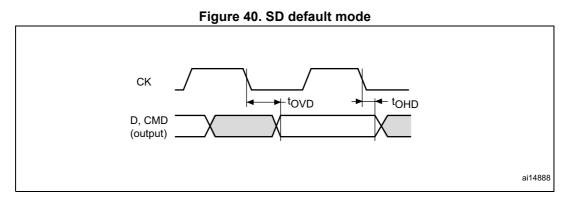
Table 72. Output voltage characteristics⁽¹⁾

 The I_{IO} current sourced or sunk by the device must always respect the absolute maximum rating specified in *Table 20:* Voltage characteristics, and the sum of the currents sourced or sunk by all the I/Os (I/O ports and control pins) must always respect the absolute maximum ratings ΣI_{IO}.

2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.

3. Guaranteed by design.

Input/output AC characteristics


The definition and values of input/output AC characteristics are given in *Figure 27* and *Table 73*, respectively.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit	
I _{LOAD}	Drive evenent	Normal mode		-	-	500		
	Drive current	Low-power mode	- V _{DDA} ≥ 2 V	-	-	100	μA	
I _{LOAD_PGA}	Drive current in PGA mode	Normal mode		-	-	450		
		Low-power mode	V _{DDA} ≥2V	-	-	50		
R _{LOAD}	Resistive load (connected to VSSA or to VDDA)	Normal mode	• V _{DDA} < 2 V	4	-	-	- kΩ	
		Low-power mode	VDDA < 2 V	20	-	-		
R _{LOAD_PGA}	Resistive load in PGA mode (connected to VSSA or to V _{DDA})	Normal mode	- V _{DDA} < 2 V	4.5	-	-		
		Low-power mode		40	-	-		
C _{LOAD}	Capacitive load		-	-	-	50	pF	
CMRR	Common mode	Normal mode		-	-85	-	dB	
OMINI	rejection ratio	Low-power mode		-	-90	-	uВ	
PSRR	Power supply rejection ratio	Normal mode	C _{LOAD} ≤ 50 pf, R _{LOAD} ≥ 4 kΩ DC	70	85	-	dB	
		Low-power mode	C _{LOAD} ≤ 50 pf, R _{LOAD} ≥ 20 kΩ DC	72	90	-		
	Gain Bandwidth Product	Normal mode	V _{DDA} ≥ 2.4 V	550	1600	2200	kHz	
GBW		Low-power mode	(OPA_RANGE = 1)	100	420	600		
		Normal mode	V _{DDA} < 2.4 V (OPA_RANGE = 0)	250	700	950		
		Low-power mode		40	180	280		
	Slew rate (from 10 and 90% of output voltage)	Normal mode		-	700	-	V/ms	
SR ⁽³⁾		Low-power mode	- V _{DDA} ≥ 2.4 V	-	180	-		
36.4		Normal mode		-	300	-		
		Low-power mode	- V _{DDA} < 2.4 V	-	80	-		
10	Open loop gain	Normal mode		55	110	-	40	
AO		Low-power mode		45	110	-	dB	
V _{OHSAT} ⁽³⁾	High saturation voltage	Normal mode	I _{load} = max or R _{load} =	V _{DDA} - 100	-	-	mV	
		Low-power mode	min Input at V _{DDA} .	V _{DDA} - 50	-	-		
V _{OLSAT} ⁽³⁾	Low saturation voltage	Normal mode	I _{load} = max or R _{load} =	-	-	100		
		Low-power mode	min Input at 0.	-	-	50		
Φm	Phase margin	Normal mode	•	-	74	-	0	
		Low-power mode		-	66	-	1	

Table 87.	OPAMP	characteristics ⁽¹⁾	(continued)
-----------	-------	--------------------------------	-------------

USB characteristics

The STM32L452xx USB interface is fully compliant with the USB specification version 2.0 and is USB-IF certified (for Full-speed device operation).

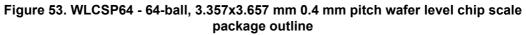
Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V _{DDUSB}	USB transceiver operating volta	3.0 ⁽²⁾	-	3.6	V	
T _{crystal_less}	USB crystal less operation temp	-15	-	85	°C	
R _{PUI}	Embedded USB_DP pull-up value during idle		900	1250	1600	
R _{PUR}	Embedded USB_DP pull-up val reception	1400	2300	3200	Ω	
Z _{DRV} ⁽³⁾	Output driver impedance ⁽⁴⁾	Driving high and low	28	36	44	Ω

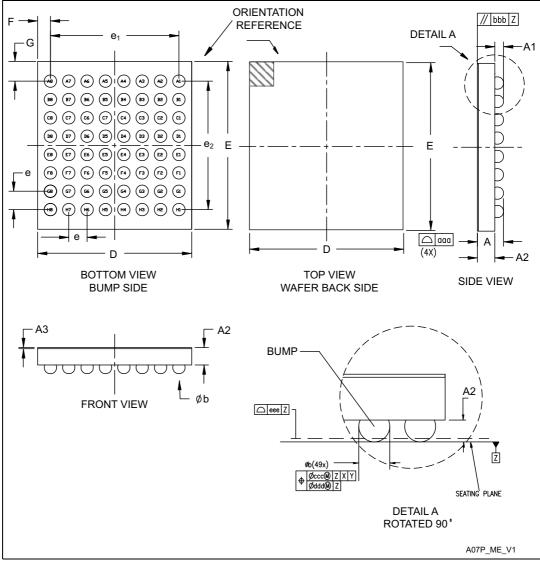
 Table 101. USB electrical characteristics⁽¹⁾

1. T_A = -40 to 125 °C unless otherwise specified.

2. The STM32L452xx USB functionality is ensured down to 2.7 V but not the full USB electrical characteristics which are degraded in the 2.7-to-3.0 V voltage range.

3. Guaranteed by design.


4. No external termination series resistors are required on USB_DP (D+) and USB_DM (D-); the matching impedance is already included in the embedded driver.


CAN (controller area network) interface

Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate function characteristics (CAN_TX and CAN_RX).

7.5 WLCSP64 package information

1. Dimensions are expressed in millimeters.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2018 STMicroelectronics – All rights reserved

DS11912 Rev 4

