

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, MMC/SD, QSPI, SAI, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, PWM, WDT
Number of I/O	83
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	160K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 16x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	100-UFBGA
Supplier Device Package	100-UFBGA (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l452vei3

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

List of tables

Table 1.	Device summary
Table 2.	STM32L452xx family device features and peripheral counts
Table 3.	Access status versus readout protection level and execution modes
Table 4.	STM32L452xx modes overview
Table 5.	Functionalities depending on the working mode
Table 6.	STM32L452xx peripherals interconnect matrix
Table 7.	DMA implementation
Table 8.	Temperature sensor calibration values
Table 9.	Internal voltage reference calibration values
Table 10.	DFSDM1 implementation
Table 11.	Timer feature comparison
Table 12.	I2C implementation
Table 13.	STM32L452xx USART/UART/LPUART features
Table 14.	SAI implementation
Table 15.	Legend/abbreviations used in the pinout table
Table 16.	STM32L452xx pin definitions
Table 17.	Alternate function AF0 to AF7
Table 18.	Alternate function AF8 to AF15
Table 19.	STM32L452xx memory map and peripheral register boundary addresses
Table 20.	Voltage characteristics
Table 21.	Current characteristics
Table 22.	Thermal characteristics
Table 23.	General operating conditions
Table 24.	Operating conditions at power-up / power-down
Table 25.	Embedded reset and power control block characteristics
Table 26.	Embedded internal voltage reference
Table 27.	Current consumption in Run and Low-power run modes, code with data processing
	running from Flash, ART enable (Cache ON Prefetch OFF)
Table 28.	Current consumption in Run modes, code with data processing running from Flash,
	ART enable (Cache ON Prefetch OFF) and power supplied by external SMPS
	(VDD12 = 1.10 V)
Table 29.	Current consumption in Run and Low-power run modes, code with data processing
	running from Flash, ART disable
Table 30.	Current consumption in Run modes, code with data processing running from Flash,
	ART disable and power supplied by external SMPS (VDD12 = 1.10 V)
Table 31.	Current consumption in Run and Low-power run modes, code with data processing
	running from SRAM1
Table 32.	Current consumption in Run, code with data processing running from
	SRAM1 and power supplied by external SMPS (VDD12 = 1.10 V)
Table 33.	Typical current consumption in Run and Low-power run modes, with different codes
	running from Flash, ART enable (Cache ON Prefetch OFF) 106
Table 34.	Typical current consumption in Run, with different codes running from Flash,
	ART enable (Cache ON Prefetch OFF) and power supplied by external SMPS
	(VDD12 = 1.10 V)
Table 35.	Typical current consumption in Run, with different codes running from Flash,
	ART enable (Cache ON Prefetch OFF) and power supplied by external SMPS
	(VDD12 = 1.05 V)
Table 36.	Typical current consumption in Run and Low-power run modes, with different codes

3.7 Boot modes

At startup, BOOT0 pin or nSWBOOT0 option bit, and BOOT1 option bit are used to select one of three boot options:

- Boot from user Flash
- Boot from system memory
- Boot from embedded SRAM

BOOT0 value may come from the PH3-BOOT0 pin or from an option bit depending on the value of a user option bit to free the GPIO pad if needed.

A Flash empty check mechanism is implemented to force the boot from system flash if the first flash memory location is not programmed and if the boot selection is configured to boot from main flash.

The boot loader is located in system memory. It is used to reprogram the Flash memory by using USART, I2C, SPI, CAN or USB FS in Device mode through DFU (device firmware upgrade).

3.8 Cyclic redundancy check calculation unit (CRC)

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a configurable generator polynomial value and size.

Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at link-time and stored at a given memory location.

3.9 **Power supply management**

3.9.1 **Power supply schemes**

- V_{DD} = 1.71 to 3.6 V: external power supply for I/Os (V_{DDIO1}), the internal regulator and the system analog such as reset, power management and internal clocks. It is provided externally through VDD pins.
- V_{DD12} = 1.05 to 1.32 V: external power supply bypassing internal regulator when connected to an external SMPS. It is provided externally through VDD12 pins and only available on packages with the external SMPS supply option. VDD12 does not require any external decoupling capacitance and cannot support any external load.
- V_{DDA} = 1.62 V (ADC/COMPs) / 1.8 (DAC/OPAMP) / 2.4 V (VREFBUF) to 3.6 V: external analog power supply for ADC, DAC, OPAMP, Comparators and Voltage reference buffer. The V_{DDA} voltage level is independent from the V_{DD} voltage.
- V_{DDUSB} = 3.0 to 3.6 V: external independent power supply for USB transceivers. The V_{DDUSB} voltage level is independent from the V_{DD} voltage.
- V_{BAT} = 1.55 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and backup registers (through power switch) when V_{DD} is not present.

Note: When the functions supplied by V_{DDA} are not used, this supply should preferably be shorted to V_{DD} .

3.11 Clocks and startup

The clock controller (see *Figure 4*) distributes the clocks coming from different oscillators to the core and the peripherals. It also manages clock gating for low-power modes and ensures clock robustness. It features:

- Clock prescaler: to get the best trade-off between speed and current consumption, the clock frequency to the CPU and peripherals can be adjusted by a programmable prescaler
- **Safe clock switching:** clock sources can be changed safely on the fly in run mode through a configuration register.
- **Clock management:** to reduce power consumption, the clock controller can stop the clock to the core, individual peripherals or memory.
- **System clock source:** four different clock sources can be used to drive the master clock SYSCLK:
 - 4-48 MHz high-speed external crystal or ceramic resonator (HSE), that can supply a PLL. The HSE can also be configured in bypass mode for an external clock.
 - 16 MHz high-speed internal RC oscillator (HSI16), trimmable by software, that can supply a PLL
 - Multispeed internal RC oscillator (MSI), trimmable by software, able to generate 12 frequencies from 100 kHz to 48 MHz. When a 32.768 kHz clock source is available in the system (LSE), the MSI frequency can be automatically trimmed by hardware to reach better than ±0.25% accuracy. The MSI can supply a PLL.
 - System PLL which can be fed by HSE, HSI16 or MSI, with a maximum frequency at 80 MHz.
- **RC48 with clock recovery system (HSI48)**: internal RC48 MHz clock source can be used to drive the SDMMC or the RNG peripherals. This clock can be output on the MCO.
- **Auxiliary clock source:** two ultralow-power clock sources that can be used to drive the real-time clock:
 - 32.768 kHz low-speed external crystal (LSE), supporting four drive capability modes. The LSE can also be configured in bypass mode for an external clock.
 - 32 kHz low-speed internal RC (LSI), also used to drive the independent watchdog. The LSI clock accuracy is ±5% accuracy.
- **Peripheral clock sources:** Several peripherals (SDMMC, RNG, SAI, USARTs, I2Cs, LPTimers, ADC) have their own independent clock whatever the system clock. Two PLLs, each having three independent outputs allowing the highest flexibility, can generate independent clocks for the ADC, the SDMMC/RNG and the SAI.
- **Startup clock:** after reset, the microcontroller restarts by default with an internal 4 MHz clock (MSI). The prescaler ratio and clock source can be changed by the application program as soon as the code execution starts.
- **Clock security system (CSS):** this feature can be enabled by software. If a HSE clock failure occurs, the master clock is automatically switched to HSI16 and a software

interrupt is generated if enabled. LSE failure can also be detected and generated an interrupt.

- Clock-out capability:
 - MCO: microcontroller clock output: it outputs one of the internal clocks for external use by the application. Low frequency clocks (LSI, LSE) are available down to Stop 1 low power state.
 - LSCO: low speed clock output: it outputs LSI or LSE in all low-power modes down to Standby mode. LSE can also be output on LSCO in Shutdown mode. LSCO is not available in VBAT mode.

Several prescalers allow to configure the AHB frequency, the high speed APB (APB2) and the low speed APB (APB1) domains. The maximum frequency of the AHB and the APB domains is 80 MHz.

The main features of the touch sensing controller are the following:

- Proven and robust surface charge transfer acquisition principle
- Supports up to 21 capacitive sensing channels
- Up to 3 capacitive sensing channels can be acquired in parallel offering a very good response time
- Spread spectrum feature to improve system robustness in noisy environments
- Full hardware management of the charge transfer acquisition sequence
- Programmable charge transfer frequency
- Programmable sampling capacitor I/O pin
- Programmable channel I/O pin
- Programmable max count value to avoid long acquisition when a channel is faulty
- Dedicated end of acquisition and max count error flags with interrupt capability
- One sampling capacitor for up to 3 capacitive sensing channels to reduce the system components
- Compatible with proximity, touchkey, linear and rotary touch sensor implementation
- Designed to operate with STMTouch touch sensing firmware library

3.21 Digital filter for Sigma-Delta Modulators (DFSDM)

The device embeds one DFSDM with 2 digital filters modules and 4 external input serial channels (transceivers) or alternately 4 internal parallel inputs support.

The DFSDM peripheral is dedicated to interface the external $\Sigma\Delta$ modulators to microcontroller and then to perform digital filtering of the received data streams (which represent analog value on $\Sigma\Delta$ modulators inputs). DFSDM can also interface PDM (Pulse Density Modulation) microphones and perform PDM to PCM conversion and filtering in

Note: The number of capacitive sensing channels is dependent on the size of the packages and subject to I/O availability.

The Quad SPI interface supports:

- Three functional modes: indirect, status-polling, and memory-mapped
- Dual-flash mode, where 8 bits can be sent/received simultaneously by accessing two flash memories in parallel.
- SDR and DDR support
- Fully programmable opcode for both indirect and memory mapped mode
- Fully programmable frame format for both indirect and memory mapped mode
- Each of the 5 following phases can be configured independently (enable, length, single/dual/quad communication)
 - Instruction phase
 - Address phase
 - Alternate bytes phase
 - Dummy cycles phase
 - Data phase
- Integrated FIFO for reception and transmission
- 8, 16, and 32-bit data accesses are allowed
- DMA channel for indirect mode operations
- Programmable masking for external flash flag management
- Timeout management
- Interrupt generation on FIFO threshold, timeout, status match, operation complete, and access error

S	
-	
_	
<	
<u>ມ</u>	
Ň	
ï	
-	
ĊΠ	
Ň	
¥.	
0	
~	

Pinouts and pin description

		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
Port		SYS_AF	TIM1/TIM2 LPTIM1	I2C4/TIM1/ TIM2/TIM3	I2C4/USART2/ CAN1/TIM1	2C1/ 2C2/ 2C3/ 2C4	SPI1/SPI2/I2C4	SPI3/DFSDM/ COMP1	USART1/ USART2/ USART3
	PA0	-	TIM2_CH1	-	-	-	-	-	USART2_CTS
	PA1	-	TIM2_CH2	-	-	I2C1_SMBA	SPI1_SCK	-	USART2_RTS_ DE
	PA2	-	TIM2_CH3	-	-	-	-	-	USART2_TX
	PA3	-	TIM2_CH4	-	-	-	-	-	USART2_RX
	PA4	-	-	-	-	-	SPI1_NSS	SPI3_NSS	USART2_CK
	PA5	-	TIM2_CH1	TIM2_ETR	-	-	SPI1_SCK	DFSDM1_ CKOUT	-
	PA6	-	TIM1_BKIN	TIM3_CH1	-	-	SPI1_MISO	COMP1_OUT	USART3_CTS
	PA7	-	TIM1_CH1N	TIM3_CH2	-	I2C3_SCL	SPI1_MOSI	DFSDM1_ DATIN0	-
Port A	PA8	МСО	TIM1_CH1	-	-	-	-	DFSDM1_ CKIN1	USART1_CK
	PA9	-	TIM1_CH2	-	-	I2C1_SCL	-	DFSDM1_ DATIN1	USART1_TX
	PA10	-	TIM1_CH3	-	-	I2C1_SDA	-	-	USART1_RX
	PA11	-	TIM1_CH4	TIM1_BKIN2	-	-	SPI1_MISO	COMP1_OUT	USART1_CTS
	PA12	-	TIM1_ETR	-	-	-	SPI1_MOSI	-	USART1_RTS_ DE
	PA13	JTMS/SWDAT	IR_OUT	-	-	-	-	-	-
	PA14	JTCK/SWCLK	LPTIM1_OUT	-	-	I2C1_SMBA	I2C4_SMBA	-	-
	PA15	JTDI	TIM2_CH1	TIM2_ETR	USART2_RX	-	SPI1_NSS	SPI3_NSS	USART3_RTS_ DE

Table 17. Alternate function AF0 to AF7⁽¹⁾

DS11912 Rev 4

5

72/212

- 1. All values are obtained by calculation based on measurements done without SMPS and using following parameters: SMPS input = 3.3 V, SMPS efficiency = 85%, V_{DD12} = 1.10 V
- 2. Reduced code used for characterization results provided in *Table 27, Table 29, Table 31*.

Table 35. Typical current consumption in Run, with different codes running from Flash, ART enable (Cache ON Prefetch OFF) and power supplied by external SMPS $(V_{DD12} = 1.05 \text{ V})$

		Conditions ⁽¹⁾			ТҮР		ΤΥΡ										
Symbol	Parameter	-	Voltage scaling	Code	25 °C	Unit	25 °C	Unit									
		$f_{HCLK} = f_{HSE}$ up to	Ν	Reduced code ⁽²⁾	0.92		36										
	Supply	48 MHz included, bypass mode PLL ON above 48 MHz	bypass mode PLL ON above 48 MHz	MHz	Coremark	1.04		40									
I _{DD_ALL}	current in											: 26	Dhrystone 2.1	1.08	mA	42	µA/MHz
(Run)	Run mode											-	-			= LK	Fibonacci
all peripherals disable	fнськ	While(1)	0.92		36												

1. All values are obtained by calculation based on measurements done without SMPS and using following parameters: SMPS input = 3.3 V, SMPS efficiency = 85%, V_{DD12} = 1.05 V

2. Reduced code used for characterization results provided in Table 27, Table 29, Table 31.

	Peripheral	Range 1	Range 2	Low-power run and sleep	Unit
	AHB to APB2 ⁽⁴⁾	1.0	0.9	0.9	
	FW	0.2	0.2	0.2	
	SAI1 independent clock domain	2.3	1.8	1.9	
	SAI1 clock domain	2.1	1.8	2.0	
	SDMMC1 independent clock domain	4.7	3.9	3.9	
	SDMMC1 clock domain	2.5	1.9	1.9	
APB2	SPI1	1.8	1.6	1.7	
APDZ	SYSCFG/VREFBUF/COMP	0.6	0.5	0.6	µA/MHz
	TIM1	8.1	6.5	7.6	
	TIM15	3.7	3.0	3.4	
	TIM16	2.7	2.1	2.6	
	USART1 independent clock domain	4.8	4.2	4.6	
	USART1 clock domain	1.5	1.3	1.7	
	All APB2 on	24.2	19.9	22.6	
	ALL	100.9	77.1	94.8	

Table 51. Peripheral current consumption (continued)

1. The BusMatrix is automatically active when at least one master is ON (CPU, DMA).

2. The GPIOx (x= A...H) dynamic current consumption is approximately divided by a factor two versus this table values when the GPIO port is locked thanks to LCKK and LCKy bits in the GPIOx_LCKR register. In order to save the full GPIOx current consumption, the GPIOx clock should be disabled in the RCC when all port I/Os are used in alternate function or analog mode (clock is only required to read or write into GPIO registers, and is not used in AF or analog modes).

3. The AHB to APB1 Bridge is automatically active when at least one peripheral is ON on the APB1.

4. The AHB to APB2 Bridge is automatically active when at least one peripheral is ON on the APB2.

6.3.6 Wakeup time from low-power modes and voltage scaling transition times

The wakeup times given in *Table 52* are the latency between the event and the execution of the first user instruction.

The device goes in low-power mode after the WFE (Wait For Event) instruction.

Symbol	Parameter	Conditions	Тур	Мах	Unit
twusleep	Wakeup time from Sleep mode to Run mode	-	6	6	Nb of
twulpsleep	Wakeup time from Low- power sleep mode to Low- power run mode	Wakeup in Flash with Flash in power-down during low-power sleep mode (SLEEP_PD=1 in FLASH_ACR) and with clock MSI = 2 MHz	6	9	CPU cycles

Table 52. Low-power mode wakeup timings⁽¹⁾

6.3.7 External clock source characteristics

High-speed external user clock generated from an external source

In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO.

The external clock signal has to respect the I/O characteristics in *Section 6.3.14*. However, the recommended clock input waveform is shown in *Figure 19: High-speed external clock source AC timing diagram*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
f _{HSE_ext}	User external clock source frequency	Voltage scaling Range 1	-	8	48	MHz	
		Voltage scaling Range 2	-	8	26	WHZ	
V _{HSEH}	OSC_IN input pin high level voltage	-	$0.7 V_{\text{DDIOx}}$	-	V _{DDIOx}	V	
V _{HSEL}	OSC_IN input pin low level voltage	-	V _{SS}	-	0.3 V _{DDIOx}		
t _{w(HSEH)}	OSC_IN high or low time	Voltage scaling Range 1	7	-	-	2	
t _{w(HSEL)}		Voltage scaling Range 2	18	-	-	ns	

Table 55. High-speed	d external use	er clock charact	teristics ⁽¹⁾
----------------------	----------------	------------------	--------------------------

1. Guaranteed by design.

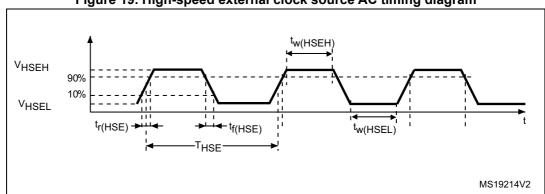


Figure 19. High-speed external clock source AC timing diagram

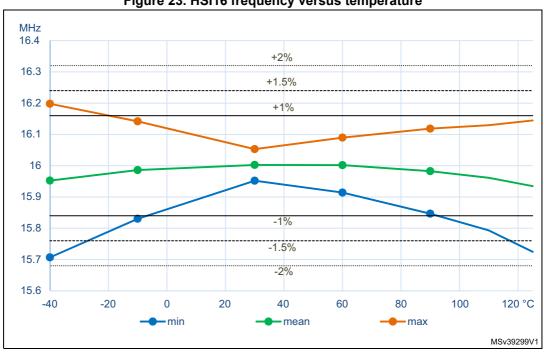


Figure 23. HSI16 frequency versus temperature

In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in *Section 6.2*:

- The sum of the currents sourced by all the I/Os on V_{DDIOx}, plus the maximum consumption of the MCU sourced on V_{DD}, cannot exceed the absolute maximum rating ΣI_{VDD} (see *Table 20: Voltage characteristics*).
- The sum of the currents sunk by all the I/Os on V_{SS}, plus the maximum consumption of the MCU sunk on V_{SS}, cannot exceed the absolute maximum rating ΣI_{VSS} (see *Table 20: Voltage characteristics*).

Output voltage levels

Unless otherwise specified, the parameters given in the table below are derived from tests performed under the ambient temperature and supply voltage conditions summarized in *Table 23: General operating conditions*. All I/Os are CMOS- and TTL-compliant (FT OR TT unless otherwise specified).

Symbol	Parameter	Conditions	Min	Max	Unit
V _{OL}	Output low level voltage for an I/O pin	CMOS port ⁽²⁾	-	0.4	
V _{OH}	Output high level voltage for an I/O pin	I _{IO} = 8 mA V _{DDIOx} ≥ 2.7 V	V _{DDIOx} -0.4	-	
V _{OL} ⁽³⁾	Output low level voltage for an I/O pin	TTL port ⁽²⁾	-	0.4	
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin	I _{IO} = 8 mA V _{DDIOx} ≥ 2.7 V	2.4	-	
V _{OL} ⁽³⁾	Output low level voltage for an I/O pin	I _{IO} = 20 mA	-	1.3	
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin	V _{DDIOx} ≥ 2.7 V	V _{DDIOx} -1.3	-	
V _{OL} ⁽³⁾	Output low level voltage for an I/O pin	I _{IO} = 4 mA	-	0.45	
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin	V _{DDIOx} ≥ 1.62 V	V _{DDIOx} -0.45	-	V
V _{OL} ⁽³⁾	Output low level voltage for an I/O pin	I _{IO} = 2 mA	-	0.35 _x V _{DDIOx}	
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin	1.62 V ≥ V _{DDIOx} ≥ 1.08 V	0.65 _x V _{DDIOx}	-	
		I _{IO} = 20 mA V _{DDIOx} ≥ 2.7 V	-	0.4	
V _{OLFM+}	Output low level voltage for an FT I/O pin in FM+ mode (FT I/O with "f" option)	I _{IO} = 10 mA V _{DDIOx} ≥ 1.62 V	-	0.4	
	. ,	I _{IO} = 2 mA 1.62 V ≥ V _{DDIOx} ≥ 1.08 V	-	0.4	

Table 72. Output voltage characteristics⁽¹⁾

 The I_{IO} current sourced or sunk by the device must always respect the absolute maximum rating specified in *Table 20:* Voltage characteristics, and the sum of the currents sourced or sunk by all the I/Os (I/O ports and control pins) must always respect the absolute maximum ratings ΣI_{IO}.

2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.

3. Guaranteed by design.

Input/output AC characteristics

The definition and values of input/output AC characteristics are given in *Figure 27* and *Table 73*, respectively.

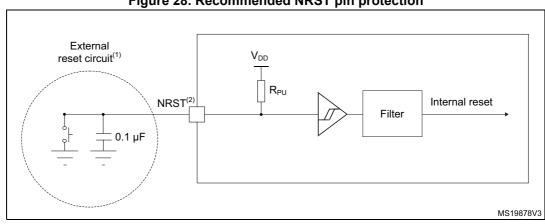


Figure 28. Recommended NRST pin protection

- 1. The reset network protects the device against parasitic resets.
- The user must ensure that the level on the NRST pin can go below the $V_{IL(NRST)}$ max level specified in Table 74: NRST pin characteristics. Otherwise the reset will not be taken into account by the device. 2.
- 3. The external capacitor on NRST must be placed as close as possible to the device.

6.3.16 Extended interrupt and event controller input (EXTI) characteristics

The pulse on the interrupt input must have a minimal length in order to guarantee that it is detected by the event controller.

Table 75. EXTI Input Characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
PLEC	Pulse length to event controller	-	20	-	-	ns

1. Guaranteed by design.

6.3.17 Analog switches booster

Table 76. Analog switches booster characteristics⁽¹⁾

Symbol	Parameter	Min	Тур	Мах	Unit	
V _{DD}	Supply voltage	1.62	-	3.6	V	
t _{SU(BOOST)}	Booster startup time	-	-	240	μs	
I _{DD(BOOST)}	Booster consumption for 1.62 V \leq V _{DD} \leq 2.0 V	-	-	250		
	Booster consumption for $2.0 \vee \leq V_{DD} \leq 2.7 \vee$	-	-	500	μA	
	Booster consumption for $2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$	-	-	900		

1. Guaranteed by design.

	Table 60. Abo accuracy - Innited test conditions 2.4.4.4. (continued)										
Sym- bol	Parameter	C	Min	Тур	Max	Unit					
		Total 80 MHz, narmonic Sampling rate ≤ 5.33 Msps,	Single	Fast channel (max speed)	-	-74	-65				
THD	Total		ended	Slow channel (max speed)	-	-74	-67	dB			
	distortion		Differential	Fast channel (max speed)	-	-79	-70	uВ			
2	$2 V \leq V_{DDA}$	Dinerential	Slow channel (max speed)	-	-79	-71					

Table 80. ADC accuracy - limited test conditions $2^{(1)(2)(3)}$ (continued)

1. Guaranteed by design.

2. ADC DC accuracy values are measured after internal calibration.

- 3. ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative current.
- 4. The I/O analog switch voltage booster is enable when V_{DDA} < 2.4 V (BOOSTEN = 1 in the SYSCFG_CFGR1 when V_{DDA} < 2.4 V). It is disable when V_{DDA} \geq 2.4 V. No oversampling.

6.3.19 Digital-to-Analog converter characteristics

Symbol	Parameter	Co	Min	Тур	Max	Unit	
V _{DDA}	Analog supply voltage for DAC ON	DAC output buffer OFF (no resistive load on DAC1_OUT1 pin or internal connection)		1.71	-	3.6	
		Other modes		1.80	_		
V _{REF+}	Positive reference voltage		ffer OFF (no resistive OUT1 pin or internal	1.71	-	V _{DDA}	V
		Other modes		1.80	-		
V _{REF-}	Negative reference voltage		-		V_{SSA}		
RL	Resistive load	DAC output	connected to $V_{\mbox{SSA}}$	5	-	-	- kΩ
ι.	I Cesistive Ioau	buffer ON connected to V _{DDA}		25	-	-	N32
R _O	Output Impedance	DAC output bu	ffer OFF	9.6	11.7	13.8	kΩ
	Output impedance sample	V _{DD} = 2.7 V		-	-	2	
R _{BON}	and hold mode, output buffer ON	V _{DD} = 2.0 V		-	-	3.5	kΩ
P	Output impedance sample	V _{DD} = 2.7 V		-	-	16.5	kΩ
R _{BOFF}	and hold mode, output buffer OFF	V _{DD} = 2.0 V		-	-	18.0	
CL	O an a siti us la sal	DAC output buffer ON		-	-	50	pF
C _{SH}	Capacitive load	Sample and ho	old mode	-	0.1	1	μF
V _{DAC_OUT}	Voltage on DAC1_OUT1	DAC output bu	ffer ON	0.2	-	V _{REF+} – 0.2	V
	output	DAC output bu	0	-	V _{REF+}		
				-	1.7	3	
	Settling time (full scale: for a 12-bit code transition	Normal mode DAC output	±1 LSB	-	1.6	2.9	
	between the lowest and the highest input codes	buffer ON	±2 LSB	-	1.55	2.85	1
t _{SETTLING}	when DAC1_OUT1	CL ≤ 50 pF, RL ≥ 5 kΩ	±4 LSB	-	1.48	2.8	μs
	reaches final value ±0.5LSB, ±1 LSB, ±2 LSB,		±8 LSB	-	1.4	2.75	
	±4 LSB, ±8 LSB)	Normal mode DAC output buffer OFF, ±1LSB, CL = 10 pF		-	2	2.5	
t (2)	Wakeup time from off state (setting the ENx bit in the	Normal mode DAC output buffer ON CL \leq 50 pF, RL \geq 5 k Ω		-	4.2	7.5	110
t _{WAKEUP} ⁽²⁾	DAC Control register) until final value ±1 LSB	Normal mode DAC output buffer OFF, CL ≤ 10 pF		-	2	5	μs
PSRR	V _{DDA} supply rejection ratio	Normal mode [CL ≤ 50 pF, RL	DAC output buffer ON . = 5 kΩ, DC	-	-80	-28	dB

Table	83.	DAC	characteristics ⁽¹⁾
-------	-----	-----	--------------------------------

Voltage reference buffer characteristics 6.3.20

		Table 85. VRE	BUF characte	eristics ⁽¹⁾			
Symbol	Parameter	Conditio	ons	Min	Тур	Max	Unit
			V _{RS} = 0	2.4	-	3.6	
M	Analog supply voltage	Normal mode	V _{RS} = 1	2.8	-	3.6	
V _{DDA}		Degraded mode ⁽²⁾	V _{RS} = 0	1.65	-	2.4	
			V _{RS} = 1	1.65	-	2.8	V
		Normal mode	V _{RS} = 0	2.046 ⁽³⁾	2.048	2.049 ⁽³⁾	V
V _{REFBUF} _	Voltage reference	Normai mode	V _{RS} = 1	2.498 ⁽³⁾	2.5	2.502 ⁽³⁾	
	output	Degraded mode ⁽²⁾	V _{RS} = 0	V_{DDA} -150 mV	-	V _{DDA}	
			V _{RS} = 1	V _{DDA} -150 mV	-	V _{DDA}	
TRIM	Trim step resolution	-	-	-	±0.05	±0.1	%
CL	Load capacitor	-	-	0.5	1	1.5	μF
esr	Equivalent Serial Resistor of Cload	-	-	-	-	2	Ω
I _{load}	Static load current	-	-	-	-	4	mA
	Line regulation	2.8 V ≤ V _{DDA} ≤ 3.6 V	I _{load} = 500 μA	-	200	1000	nnm//
I _{line_reg}	Line regulation	$2.0 V \leq V_{\text{DDA}} \leq 3.0 V$	I _{load} = 4 mA	-	100	500	ppm/V
I _{load_reg}	Load regulation	500 µA ≤ I _{load} ≤4 mA	Normal mode	-	50	500	ppm/mA
To r	Temperature	-40 °C < T _J < +125 °C		-	-	T _{coeff} vrefint + 50	ppm/ °C
T _{Coeff}	coefficient	0 °C < T _J < +50 °C		-	-	T _{coeff} vrefint ⁺ 50	ppn/ C
PSRR	Power supply	DC		40	60	-	dB
FORM	rejection	100 kHz		25	40	-	uв
		CL = $0.5 \ \mu F^{(4)}$ CL = $1.1 \ \mu F^{(4)}$		-	300	350	μs
t _{START}	Start-up time			-	500	650	
		CL = 1.5 µF ⁽⁴⁾		-	650	800	
I _{INRUSH}	Control of maximum DC current drive on VREFBUF_ OUT during start-up phase (5)	-	-	-	8	-	mA

(1)

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit		
	consumption	I _{load} = 0 μA	-	16	25			
		I _{load} = 500 μA	-	18	30	μA		
,	from V _{DDA}	I _{load} = 4 mA	-	35	50			

Table 85. VREFBUF characteristics⁽¹⁾ (continued)

1. Guaranteed by design, unless otherwise specified.

2. In degraded mode, the voltage reference buffer can not maintain accurately the output voltage which will follow (V_{DDA} - drop voltage).

3. Guaranteed by test in production.

4. The capacitive load must include a 100 nF capacitor in order to cut-off the high frequency noise.

5. To correctly control the VREFBUF inrush current during start-up phase and scaling change, the V_{DDA} voltage should be in the range [2.4 V to 3.6 V] and [2.8 V to 3.6 V] respectively for V_{RS} = 0 and V_{RS} = 1.

6.3.21 Comparator characteristics

Symbol	Parameter	Co	Min	Тур	Мах	Unit	
V _{DDA}	Analog supply voltage	-		1.62	-	3.6	
V _{IN}	Comparator input voltage range	-		0	-	V _{DDA}	V
$V_{BG}^{(2)}$	Scaler input voltage		-		V _{REFINT}	Г	
V _{SC}	Scaler offset voltage		-	-	±5	±10	mV
I _{DDA} (SCALER)	Scaler static consumption	BRG_EN=0 (br	ridge disable)	-	200	300	nA
IDDA(SCALER)	from V _{DDA}	BRG_EN=1 (bi	ridge enable)	-	0.8	1	μA
t _{START_SCALER}	Scaler startup time		-	-	100	200	μs
	Comparator startup time to reach propagation delay specification	High-speed	V _{DDA} ≥ 2.7 V	-	-	5	
		mode	V _{DDA} < 2.7 V	-	-	7	
t _{START}		Medium mode	V _{DDA} ≥ 2.7 V	-	-	15	μs
		medium mode	V _{DDA} < 2.7 V	-	-	25	
		Ultra-low-powe	r mode	-	-	40	
	Propagation delay with	High-speed	V _{DDA} ≥ 2.7 V	-	55	80 100	20
t _D ⁽³⁾		mode	V _{DDA} < 2.7 V	-	65		ns
LD(-)	100 mV overdrive	Medium mode		-	0.55	0.9	
		Ultra-low-power mode		-	4	7	μs
V _{offset}	Comparator offset error	Full common mode range	-	-	±5	±20	mV
		No hysteresis		-	0	-	
14		Low hysteresis	-	8	-		
V _{hys}	Comparator hysteresis	Medium hyster	-	15	-	mV	
		High hysteresis	-	27	-		

Table 8	6. COMP	characteristics ⁽¹⁾
---------	---------	--------------------------------

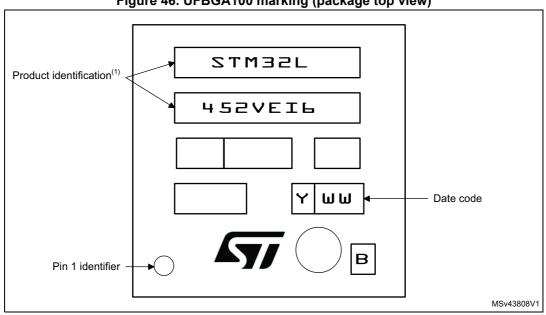
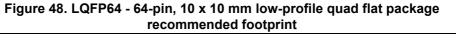
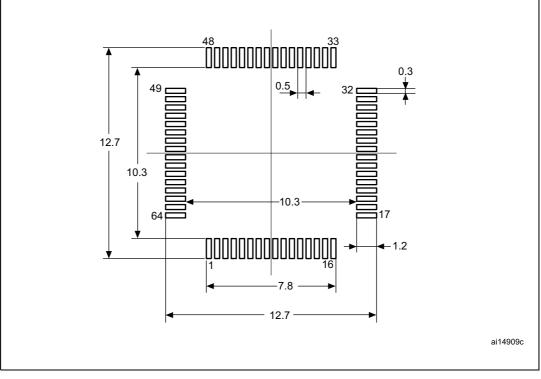


Figure 46. UFBGA100 marking (package top view)


Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity. 1.



Symbol		millimeters			inches ⁽¹⁾	
	Min	Тур	Мах	Min	Тур	Мах
E3	-	7.500	-	-	0.2953	-
е	-	0.500	-	-	0.0197	-
К	0°	3.5°	7°	0°	3.5°	7°
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
CCC	-	-	0.080	-	-	0.0031

Table 105. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package mechanical data (continued)

1. Values in inches are converted from mm and rounded to 4 decimal digits.

1. Dimensions are expressed in millimeters.

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

