

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, MMC/SD, QSPI, SAI, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, PWM, WDT
Number of I/O	83
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	160K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 16x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-UFBGA
Supplier Device Package	100-UFBGA (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l452vei6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

			Ionantie			o 0/1		p 2	Stan		Shut	down	
Peripheral	Run	Sleep	Low- power run	Low- power sleep	-	Wakeup capability	-	Wakeup capability	-	Wakeup capability	-	Wakeup capability	VBAT
CPU	Y	-	Y	-	-	-	-	-	-	-	-	-	-
Flash memory (up to 512 KB)	O ⁽²⁾	O ⁽²⁾	O ⁽²⁾	O ⁽²⁾	-	-	-	-	-	-	-	-	-
SRAM1 (128 KB)	Y	Y ⁽³⁾	Y	Y ⁽³⁾	Y	-	Y	-	-	-	-	-	-
SRAM2 (32 KB)	Y	Y ⁽³⁾	Y	Y ⁽³⁾	Y	-	Y	-	O ⁽⁴⁾	-	-	-	-
Quad SPI	0	0	0	0	-	-	-	-	-	-	-	-	-
Backup Registers	Y	Y	Y	Y	Y	-	Y	-	Y	-	Y	-	Y
Brown-out reset (BOR)	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	-	-	-
Programmable Voltage Detector (PVD)	0	0	0	0	0	0	0	0	-	-	-	-	-
Peripheral Voltage Monitor (PVMx; x=1,3,4)	0	0	0	0	0	0	0	0	-	-	-	-	-
DMA	0	0	0	0	-	-	-	-	-	-	-	-	-
High Speed Internal (HSI16)	0	0	0	0	(5)	-	(5)	-	-	-	-	-	-
Oscillator RC48	0	0	-	-	-	-	-	-	-	-	-	-	-
High Speed External (HSE)	0	0	0	0	-	-	-	-	-	-	-	-	-
Low Speed Internal (LSI)	0	0	0	0	0	-	0	-	0	-	-	-	-
Low Speed External (LSE)	0	0	0	0	0	-	0	-	0	-	0	-	0
Multi-Speed Internal (MSI)	0	0	0	0	-	-	-	-	-	-	-	-	-
Clock Security System (CSS)	0	0	0	0	-	-	-	-	-	-	-	-	-
Clock Security System on LSE	0	0	0	0	0	0	0	0	0	0	-	-	-
RTC / Auto wakeup	0	0	0	0	0	0	0	0	0	0	0	0	0
Number of RTC Tamper pins	3	3	3	3	3	0	3	0	3	0	3	0	3

Table 5. Functionalities depending on the working mode⁽¹⁾

3.14 Interrupts and events

3.14.1 Nested vectored interrupt controller (NVIC)

The devices embed a nested vectored interrupt controller able to manage 16 priority levels, and handle up to 67 maskable interrupt channels plus the 16 interrupt lines of the $Cortex^{\mathbb{B}}$ -M4.

The NVIC benefits are the following:

- Closely coupled NVIC gives low latency interrupt processing
- Interrupt entry vector table address passed directly to the core
- Allows early processing of interrupts
- Processing of late arriving higher priority interrupts
- Support for tail chaining
- Processor state automatically saved on interrupt entry, and restored on interrupt exit, with no instruction overhead

The NVIC hardware block provides flexible interrupt management features with minimal interrupt latency.

3.14.2 Extended interrupt/event controller (EXTI)

The extended interrupt/event controller consists of 37 edge detector lines used to generate interrupt/event requests and wake-up the system from Stop mode. Each external line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The internal lines are connected to peripherals with wakeup from Stop mode capability. The EXTI can detect an external line with a pulse width shorter than the internal clock period. Up to 83 GPIOs can be connected to the 16 external interrupt lines.

3.15 Analog to digital converter (ADC)

The device embeds a successive approximation analog-to-digital converter with the following features:

- 12-bit native resolution, with built-in calibration
- 5.33 Msps maximum conversion rate with full resolution
 - Down to 18.75 ns sampling time
 - Increased conversion rate for lower resolution (up to 8.88 Msps for 6-bit resolution)
- Up to 16 external channels.
- 4 internal channels: internal reference voltage, temperature sensor, VBAT/3 and DAC1_OUT1.
- One external reference pin is available on some package, allowing the input voltage range to be independent from the power supply
- Single-ended and differential mode inputs
- Low-power design
 - Capable of low-current operation at low conversion rate (consumption decreases linearly with speed)
 - Dual clock domain architecture: ADC speed independent from CPU frequency
- Highly versatile digital interface
 - Single-shot or continuous/discontinuous sequencer-based scan mode: 2 groups of analog signals conversions can be programmed to differentiate background and high-priority real-time conversions
 - ADC supports multiple trigger inputs for synchronization with on-chip timers and external signals
 - Results stored into data register or in RAM with DMA controller support
 - Data pre-processing: left/right alignment and per channel offset compensation
 - Built-in oversampling unit for enhanced SNR
 - Channel-wise programmable sampling time
 - Three analog watchdog for automatic voltage monitoring, generating interrupts and trigger for selected timers
 - Hardware assistant to prepare the context of the injected channels to allow fast context switching

3.15.1 Temperature sensor

The temperature sensor (TS) generates a voltage V_{TS} that varies linearly with temperature.

The temperature sensor is internally connected to the ADC1_IN17 input channel which is used to convert the sensor output voltage into a digital value.

The sensor provides good linearity but it has to be calibrated to obtain good overall accuracy of the temperature measurement. As the offset of the temperature sensor varies from chip to chip due to process variation, the uncalibrated internal temperature sensor is suitable for applications that detect temperature changes only.

To improve the accuracy of the temperature sensor measurement, each device is individually factory-calibrated by ST. The temperature sensor factory calibration data are stored by ST in the system memory area, accessible in read-only mode.

			-									
	1	2	3	4	5	6	7	8	9	10	11	12
A	PE3	PE1	PB8	PH3-BOOT0 (BOOT0)	PD7	PD5	PB4 (NJTRST)	PB3 (JTDO/ TRACESWO)	PA15 (JTDI)	PA14 (JTCK/ SWCLK)	PA13 (JTMS/ SWDIO)	PA12
В	PE4	PE2	PB9	PB7	PB6	PD6	PD4	PD3	PD1	PC12	PC10	PA11
с	PC13	PE5	PE0	VDD	PB5 PD2 PD0					PC11	VDDUSB	PA10
D	PC14- OSC32_IN (PC14)	PE6	VSS			PA9	PA8	PC9				
E	PC15- OSC32_OUT (PC15)	VBAT	vss			PC7	PC6					
F	PH0-OSC_IN (PH0)	VSS		-	l		VSS	VSS				
G	PH1- OSC_OUT (PH1)	VDD		_			VDD	VDD				
н	PC0	NRST	VDD							PD15	PD14	PD13
J	VSSA	PC1	PC2			_				PD12	PD11	PD10
к	VREF-	PC3	PA2	PA5	PC4			PD9	PD8	PB15	PB14	PB13
L	VREF+	PA0	PA3	PA6 PC5 PB2 PE8 PE10 PE12						PB10	PB11	PB12
м	VDDA	PA1	PA4	PA7	PB0	PB1	PE7	PE9	PE11	PE13	PE14	PE15
												MSv4

Figure 7. STM32L452Vx UFBGA100 ballout⁽¹⁾

1. The above figure shows the package top view.

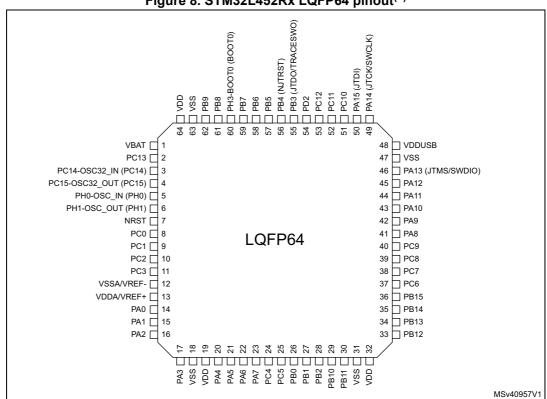


Figure 8. STM32L452Rx LQFP64 pinout⁽¹⁾

1. The above figure shows the package top view.

		Pi	n Nu	ımbe	r				•		Pin fund	ctions
UFQFPN48	WLCSP64	LQFP64	LQFP64 SMPS	UFBGA64	LQFP100	UFBGA100	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
20	G4	28	27	G6	37	L6	PB2	I/O	FT_a	-	RTC_OUT, LPTIM1_OUT, I2C3_SMBA, DFSDM1_CKIN0, EVENTOUT	COMP1_INP
-	-	-	-	-	38	M7	PE7	I/O	FT	-	TIM1_ETR, DFSDM1_DATIN2, SAI1_SD_B, EVENTOUT	-
-	-	-	-	-	39	L7	PE8	I/O	FT	-	TIM1_CH1N, DFSDM1_CKIN2, SAI1_SCK_B, EVENTOUT	-
-	-	-	-	-	40	M8	PE9	I/O	FT	-	TIM1_CH1, DFSDM1_CKOUT, SAI1_FS_B, EVENTOUT	-
-	-	-	-	-	41	L8	PE10	I/O	FT	-	TIM1_CH2N, TSC_G5_IO1, QUADSPI_CLK, SAI1_MCLK_B, EVENTOUT	-
-	-	-	-	-	42	M9	PE11	I/O	FT	-	TIM1_CH2, TSC_G5_IO2, QUADSPI_BK1_NCS, EVENTOUT	-
-	-	-	-	-	43	L9	PE12	I/O	FT	I	TIM1_CH3N, SPI1_NSS, TSC_G5_IO3, QUADSPI_BK1_IO0, EVENTOUT	-
-	-	-	-	_	44	M10	PE13	I/O	FT	I	TIM1_CH3, SPI1_SCK, TSC_G5_IO4, QUADSPI_BK1_IO1, EVENTOUT	-
-	-	-	-	-	45	M11	PE14	I/O	FT	-	TIM1_CH4, TIM1_BKIN2, TIM1_BKIN2_COMP2, SPI1_MISO, QUADSPI_BK1_IO2, EVENTOUT	-
-	-	-	-	-	46	M12	PE15	I/O	FT	-	TIM1_BKIN, TIM1_BKIN_COMP1, SPI1_MOSI, QUADSPI_BK1_IO3, EVENTOUT	-

Table 16. STM32L452xx pin definitions (continued)

		Pir	n Nu	ımbe	r						Pin fund	ctions
UFQFPN48	WLCSP64	LQFP64	LQFP64 SMPS	UFBGA64	LQFP100	UFBGA100	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
42	B5	58	57	D3	92	B5	PB6	I/O	FT_fa	-	LPTIM1_ETR, I2C1_SCL, I2C4_SCL, USART1_TX, CAN1_TX, TSC_G2_IO3, SAI1_FS_B, TIM16_CH1N, EVENTOUT	COMP2_INP
43	A5	59	58	C3	93	B4	PB7	I/O	FT_fa	-	LPTIM1_IN2, I2C1_SDA, I2C4_SDA, USART1_RX, UART4_CTS, TSC_G2_IO4, EVENTOUT	COMP2_INM, PVD_IN
44	B6	60	59	B4	94	A4	PH3- BOOT0 (BOOT0)	I/O	FT	-	EVENTOUT	-
45	A6	61	60	В3	95	A3	PB8	I/O	FT_f	-	I2C1_SCL, CAN1_RX, SDMMC1_D4, SAI1_MCLK_A, TIM16_CH1, EVENTOUT	-
46	C6	62	61	A3	96	В3	PB9	I/O	FT_f	-	IR_OUT, I2C1_SDA, SPI2_NSS, CAN1_TX, SDMMC1_D5, SAI1_FS_A, EVENTOUT	-
-	-	-	62	-	-	-	VDD12	S	-	-	-	-
-	-	-	-	-	97	C3	PE0	I/O	FT	-	TIM16_CH1, EVENTOUT	-
-	-	-	-	-	98	A2	PE1	I/O	FT	-	EVENTOUT	-
47	A7	63	63	D4	99	D3	VSS	S	-	-	-	-
48	A8	64	64	E4	100	C4	VDD	S	-	-	-	-

Table 16. STM32L452xx pin definitions (continued)

PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 in output mode is limited:
 The speed should not exceed 2 MHz with a maximum load of 30 pF
 These GPIOs must not be used as current sources (e.g. to drive an LED).

After a Backup domain power-up, PC13, PC14 and PC15 operate as GPIOs. Their function then depends on the content of the RTC registers which are not reset by the system reset. For details on how to manage these GPIOs, refer to the Backup domain and RTC register descriptions in the RM0394 reference manual.

3. After reset, these pins are configured as JTAG/SW debug alternate functions, and the internal pull-up on PA15, PA13, PB4 pins and the internal pull-down on PA14 pin are activated.

			Table	e 18. Alternate	function AF8	to AF15 ⁽¹⁾ (conti	nued)		
		AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
P	ort	UART4/ LPUART1/ CAN1	CAN1/TSC	CAN1/USB/ QUADSPI	-	SDMMC1/ COMP1/ COMP2	SAI1	TIM2/TIM15/ TIM16/LPTIM2	EVENTOUT
	PC0	LPUART1_RX	-	-	-	-	-	LPTIM2_IN1	EVENTOUT
	PC1	LPUART1_TX	-	-	-	-	-	-	EVENTOUT
	PC2	-	-	-	-	-	-	-	EVENTOUT
	PC3	-	-	-	-	-	SAI1_SD_A	LPTIM2_ETR	EVENTOUT
	PC4	-	-	-	-	-	-	-	EVENTOUT
	PC5	-	-	-	-	-	-	-	EVENTOUT
	PC6	-	TSC_G4_IO1	-	-	SDMMC1_D6	-	-	EVENTOUT
Dent	PC7	-	TSC_G4_IO2	-	-	SDMMC1_D7	-	-	EVENTOUT
Port C	PC8	-	TSC_G4_IO3	-	-	SDMMC1_D0	-	-	EVENTOUT
	PC9	-	TSC_G4_IO4	USBNOE	-	SDMMC1_D1	-	-	EVENTOUT
	PC10	UART4_TX	TSC_G3_IO2	-	-	SDMMC1_D2	-	-	EVENTOUT
	PC11	UART4_RX	TSC_G3_IO3	-	-	SDMMC1_D3	-	-	EVENTOUT
	PC12	-	TSC_G3_IO4	-	-	SDMMC1_CK	-	-	EVENTOUT
	PC13	-	-	-	-	-	-	-	EVENTOUT
	PC14	-	-	-	-	-	-	-	EVENTOUT
	PC15	-	-	-	-	-	-	-	EVENTOUT

DS11912 Rev 4

80/212

(4)

Symbol	Parameter	Conditions ⁽¹⁾	Min	Тур	Max	Unit
V	V _{DDA} peripheral voltage	Rising edge	1.78	1.82	1.86	V
V _{PVM4}	monitoring	Falling edge	1.77	1.81	1.85	v
V _{hyst_PVM3}	PVM3 hysteresis	-	-	10	-	mV
V _{hyst_PVM4}	PVM4 hysteresis	-	-	10	-	mV
I _{DD} (PVM1) (2)	PVM1 consumption from V_{DD}	-	-	0.2	-	μA
I _{DD} (PVM3/PVM4) (2)	PVM3 and PVM4 consumption from V _{DD}	-	-	2	-	μA

 Table 25. Embedded reset and power control block characteristics (continued)

1. Continuous mode means Run/Sleep modes, or temperature sensor enable in Low-power run/Low-power sleep modes.

2. Guaranteed by design.

3. BOR0 is enabled in all modes (except shutdown) and its consumption is therefore included in the supply current characteristics tables.

			Conditio	ons	ТҮР		ТҮР																
Symbol	Parameter	-	Voltage scaling	Code	25 °C	Unit	25 °C	Unit															
			Z	Reduced code ⁽¹⁾	2.35		90																
			Range 2 _{:LK} = 26 MHz	Coremark	2.65		102																
		6 - 6	ange = 26	Dhrystone 2.1	2.75	mA	106	µA/MHz															
		f _{HCLK} = f _{HSE} up to 48 MHz	Ra fHCLK	Fibonacci	2.60		100																
I _{DD_ALL} Supply (Run) Run mode		included, bypass mode PLL ON	ι,Ξ	While(1)	2.35		90																
		above 48 MHz all peripherals disable	N	Reduced code ⁽¹⁾	8.45		106	µA/MHz															
			1 MHz	Coremark	9.45		118																
			Range 1 _{LK} = 80 N	Dhrystone 2.1	9.85	mA	123																
			Ra cLK	ICLK	Râ	ICLK	ICLK	Re	CLK CLK	Re	Re	ICLK	ICLK	Râ	ACLK R	ACLK R	HCLK	Ra fнськ	Fibonacci	9.25		116	
			Ę.	While(1)	8.45		106																
				Reduced code ⁽¹⁾	225		113																
	Supply			Coremark	260		130	µA/MHz															
I _{DD_ALL} (LPRun)	current in Low-power	f _{HCLK} = f _{MSI} = 2 M all peripherals dis		Dhrystone 2.1	270	μA	135																
	run			Fibonacci	245		123																
				While(1)	285		143																

Table 33. Typical current consumption in Run and Low-power run modes, with different codesrunning from Flash, ART enable (Cache ON Prefetch OFF)

1. Reduced code used for characterization results provided in *Table 27*, *Table 29*, *Table 31*.

Table 34. Typical current consumption in Run, with different codes running from Flash, ART enable (Cache ON Prefetch OFF) and power supplied by external SMPS $(V_{DD12} = 1.10 \text{ V})$

		Co	onditions ⁽	1)	ТҮР		TYP	
Symbol	Parameter	-	Voltage scaling	Code	25 °C	Unit	25 °C	Unit
			Ţ	Reduced code ⁽²⁾	1.01		39	
		f _{HCLK} = f _{HSE} up to 48 MHz included, bypass mode PLL ON above 48 MHz	MF	Coremark	1.14		44	
			80 MHz	Dhrystone 2.1	1.19		46	
				Fibonacci	1.12		43	
I _{DD_ALL}	Supply current in			While(1)	1.01	mA	39	µA/MHz
(Rūn)	Run mode			Reduced code ⁽²⁾	3.04	-	38	
		all peripherals		Coremark	3.40		42	
		disable	= 80	Dhrystone 2.1	3.54		44	
			fHCLK =	Fibonacci	3.33		42	
			fHo	While(1)	3.04		38	

DS11912 Rev 4

3. Wakeup with code execution from Flash. Average value given for a typical wakeup time as specified in *Table 52: Low-power mode wakeup timings*.

High-speed external clock generated from a crystal/ceramic resonator

The high-speed external (HSE) clock can be supplied with a 4 to 48 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on design simulation results obtained with typical external components specified in *Table 57*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

	Symbol Parameter Conditions ⁽²⁾ Min Typ Max Unit												
Symbol	Parameter	Conditions ⁽²⁾	Min	Тур	Мах	Unit							
f _{OSC_IN}	Oscillator frequency	-	4	8	48	MHz							
R _F	Feedback resistor	-	-	200	-	kΩ							
		During startup ⁽³⁾	-	-	5.5								
		V _{DD} = 3 V, Rm = 30 Ω, CL = 10 pF@8 MHz	-	0.44	-								
	HSE current consumption	V _{DD} = 3 V, Rm = 45 Ω, CL = 10 pF@8 MHz	-	0.45	-								
I _{DD(HSE)}		V _{DD} = 3 V, Rm = 30 Ω, CL = 5 pF@48 MHz	-	0.68	-	mA							
		V _{DD} = 3 V, Rm = 30 Ω, CL = 10 pF@48 MHz	-	0.94	-								
		V _{DD} = 3 V, Rm = 30 Ω, CL = 20 pF@48 MHz	-	1.77	-								
G _m	Maximum critical crystal transconductance	Startup	-	-	1.5	mA/V							
t _{SU(HSE)} ⁽⁴⁾	Startup time	V _{DD} is stabilized	-	2	-	ms							

Table 57. HS	E oscillator	characteristics ⁽¹⁾
--------------	--------------	--------------------------------

1. Guaranteed by design.

2. Resonator characteristics given by the crystal/ceramic resonator manufacturer.

3. This consumption level occurs during the first 2/3 of the $t_{SU(\text{HSE})}$ startup time

4. t_{SU(HSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer

For C_{L1} and C_{L2}, it is recommended to use high-quality external ceramic capacitors in the 5 pF to 20 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see *Figure 21*). C_{L1} and C_{L2} are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C_{L1} and C_{L2}. PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing C_{L1} and C_{L2}.

6.3.10 Flash memory characteristics

Symbol	Parameter	Conditions	Тур	Max	Unit								
t _{prog}	64-bit programming time	-	81.69	90.76	μs								
+	one row (32 double	normal programming	2.61	2.90									
^t prog_row	word) programming time	fast programming	1.91	2.12									
+	one page (2 Kbyte)	normal programming	20.91	23.24	ms								
t _{prog_page}	programming time	fast programming	15.29	16.98									
t _{ERASE}	Page (2 KB) erase time	-	22.02	24.47									
+	one bank (512 Kbyte)	normal programming	5.35	5.95	s								
t _{prog_bank}	programming time	fast programming	3.91	4.35	5								
t _{ME}	Mass erase time (one or two banks)	-	22.13	24.59	ms								
	Average consumption	Write mode	3.4	-									
	from V _{DD}	Erase mode	3.4	-	mA								
I _{DD}	Maximum aurrant (naak)	Write mode	7 (for 2 µs)	-									
	Maximum current (peak)	Erase mode	7 (for 41 µs)	-									

1. Guaranteed by design.

Symbol	Parameter	Conditions	Min ⁽¹⁾	Unit
N _{END}	Endurance	T _A = -40 to +105 °C	10	kcycles
		1 kcycle ⁽²⁾ at T _A = 85 °C	30	
		1 kcycle ⁽²⁾ at T _A = 105 °C	15	
+	Data retention	1 kcycle ⁽²⁾ at T _A = 125 °C	7	Years
t _{RET}	Data retention	10 kcycles ⁽²⁾ at T _A = 55 °C	30	Tears
		10 kcycles ⁽²⁾ at T _A = 85 °C	15	
		10 kcycles ⁽²⁾ at T _A = 105 °C	10	

Table 65. Flash memory endurance and data retention

1. Guaranteed by characterization results.

2. Cycling performed over the whole temperature range.

6.3.18 Analog-to-Digital converter characteristics

Unless otherwise specified, the parameters given in *Table 77* are preliminary values derived from tests performed under ambient temperature, f_{PCLK} frequency and V_{DDA} supply voltage conditions summarized in *Table 23: General operating conditions*.

Note: It is recommended to perform a calibration after each power-up.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{DDA}	Analog supply voltage	-	1.62	-	3.6	V
N/		V _{DDA} ≥ 2 V	2	-	V _{DDA}	V
V _{REF+}	Positive reference voltage	V _{DDA} < 2 V		V _{DDA}		V
V _{REF-}	Negative reference voltage	-		V _{SSA}		V
f		Range 1	0.14	-	80	MHz
f _{ADC}	ADC clock frequency	Range 2	0.14	-	26	WIHZ
		Resolution = 12 bits	-	-	5.33	
	Sampling rate for FAST	Resolution = 10 bits	-	-	6.15	
	channels	Resolution = 8 bits	-	-	7.27	
£		Resolution = 6 bits	-	-	8.88	Mana
f _s	Sampling rate for SLOW channels	Resolution = 12 bits	-	-	4.21	Msps
		Resolution = 10 bits	-	-	4.71	
		Resolution = 8 bits	-	-	5.33	
		Resolution = 6 bits	-	-	6.15	
f _{TRIG}	External trigger frequency	f _{ADC} = 80 MHz Resolution = 12 bits	-	-	5.33	MHz
		Resolution = 12 bits	-	-	15	1/f _{ADC}
V _{CMIN}	Input common mode	Differential mode	(V _{REF+} + V _{REF-})/2 - 0.18	(V _{REF+} + V _{REF-})/2	(V _{REF+} + V _{REF-})/2 + 0.18	V
V _{AIN} ⁽³⁾	Conversion voltage range(2)	-	0	-	V _{REF+}	V
R _{AIN}	External input impedance	-	-	-	50	kΩ
C _{ADC}	Internal sample and hold capacitor	-	-	5	-	pF
t _{STAB}	Power-up time	-		1		conversion cycle
+	Calibration time	f _{ADC} = 80 MHz		1.45		μs
t _{CAL}		-		116		1/f _{ADC}

Table 77		characteristics	(1) (2)
Table 77.	ADC	characteristics	(1) (4)

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit	
SINAD	Signal-to-noise and distortion	DAC output buffer ON CL ≤ 50 pF, RL ≥ 5 kΩ, 1 kHz	-	70.4	-	- dB - bits	
	ratio	DAC output buffer OFF CL ≤ 50 pF, no RL, 1 kHz	-	71	-		
ENOB	Effective	DAC output buffer ON CL ≤ 50 pF, RL ≥ 5 kΩ, 1 kHz	-	11.4	-	bito	
	number of bits	DAC output buffer OFF CL ≤ 50 pF, no RL, 1 kHz	-	11.5	-	DILS	

Table 84. DAC accuracy⁽¹⁾ (continued)

1. Guaranteed by design.

2. Difference between two consecutive codes - 1 LSB.

3. Difference between measured value at Code i and the value at Code i on a line drawn between Code 0 and last Code 4095.

4. Difference between the value measured at Code (0x001) and the ideal value.

5. Difference between ideal slope of the transfer function and measured slope computed from code 0x000 and 0xFFF when buffer is OFF, and from code giving 0.2 V and ($V_{REF+} - 0.2$) V when buffer is ON.

Voltage reference buffer characteristics 6.3.20

Table 85. VREFBUF characteristics ⁽¹⁾								
Symbol	Parameter	Conditio	ons	Min	Тур	Max	Unit	
			V _{RS} = 0	2.4	-	3.6		
M	Analog supply	Normal mode	V _{RS} = 1	2.8	-	3.6		
V _{DDA}	voltage	Degraded mode ⁽²⁾	V _{RS} = 0	1.65	-	2.4		
			V _{RS} = 1	1.65	-	2.8	V	
		Normal mode	V _{RS} = 0	2.046 ⁽³⁾	2.048	2.049 ⁽³⁾	v	
V _{REFBUF} _	Voltage reference	Normai mode	V _{RS} = 1	2.498 ⁽³⁾	2.5	2.502 ⁽³⁾		
OUT	output	Degraded mode ⁽²⁾	V _{RS} = 0	V_{DDA} -150 mV	-	V _{DDA}		
			V _{RS} = 1	V _{DDA} -150 mV	-	V _{DDA}		
TRIM	Trim step resolution	-	-	-	±0.05	±0.1	%	
CL	Load capacitor	-	-	0.5	1	1.5	μF	
esr	Equivalent Serial Resistor of Cload	-	-	-	-	2	Ω	
I _{load}	Static load current	-	-	-	-	4	mA	
			2.8 V ≤ V _{DDA} ≤ 3.6 V	I _{load} = 500 μA	-	200	1000	nnm//
I _{line_reg}	Line regulation	$2.0 V \leq V_{\text{DDA}} \leq 3.0 V$	I _{load} = 4 mA	-	100	500	ppm/V	
I _{load_reg}	Load regulation	500 µA ≤ I _{load} ≤4 mA	Normal mode	-	50	500	ppm/mA	
To r	Temperature	-40 °C < T _J < +125 °C		-	-	T _{coeff} vrefint + 50	ppm/ °C	
T _{Coeff}	coefficient	0 °C < T _J < +50 °C		-	-	T _{coeff} vrefint ⁺ 50	ppm/ C	
PSRR	Power supply	DC		40	60	-	dB	
FORM	rejection	100 kHz		25	40	-	uв	
		$CL = 0.5 \ \mu F^{(4)}$		-	300	350		
t _{START}	Start-up time	$CL = 1.1 \ \mu F^{(4)}$		-	500	650	μs	
		CL = 1.5 µF ⁽⁴⁾		-	650	800		
I _{INRUSH}	Control of maximum DC current drive on VREFBUF_ OUT during start-up phase (5)	-	-	-	8	-	mA	

(1)

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit		
I _{DDA} (VREF BUF)		I _{load} = 0 μA	-	16	25			
	consumption	I _{load} = 500 μA	-	18	30	μA		
	from V _{DDA}	I _{load} = 4 mA	-	35	50			

Table 85. VREFBUF characteristics⁽¹⁾ (continued)

1. Guaranteed by design, unless otherwise specified.

2. In degraded mode, the voltage reference buffer can not maintain accurately the output voltage which will follow (V_{DDA} - drop voltage).

3. Guaranteed by test in production.

4. The capacitive load must include a 100 nF capacitor in order to cut-off the high frequency noise.

5. To correctly control the VREFBUF inrush current during start-up phase and scaling change, the V_{DDA} voltage should be in the range [2.4 V to 3.6 V] and [2.8 V to 3.6 V] respectively for V_{RS} = 0 and V_{RS} = 1.

Г

Т

Т

SPI characteristics

Unless otherwise specified, the parameters given in *Table 95* for SPI are derived from tests performed under the ambient temperature, f_{PCLKx} frequency and supply voltage conditions summarized in *Table 23: General operating conditions*.

- Output speed is set to OSPEEDRy[1:0] = 11
- Capacitive load C = 30 pF
- Measurement points are done at CMOS levels: 0.5 x V_{DD}

Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO for SPI).

Т

Т

Т

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
		Master mode receiver/full duplex 2.7 < V _{DD} < 3.6 V Voltage Range 1			40	
		Master mode receiver/full duplex 1.71 < V _{DD} < 3.6 V Voltage Range 1			16	
		Master mode transmitter 1.71 < V _{DD} < 3.6 V Voltage Range 1			40	
f _{SCK} 1/t _{c(SCK)}	SPI clock frequency	Slave mode receiver 1.71 < V _{DD} < 3.6 V Voltage Range 1	-	-	40	MHz
		Slave mode transmitter/full duplex 2.7 < V _{DD} < 3.6 V Voltage Range 1			37 ⁽²⁾	
		Slave mode transmitter/full duplex 1.71 < V _{DD} < 3.6 V Voltage Range 1			20 ⁽²⁾	
		Voltage Range 2			13	
t _{su(NSS)}	NSS setup time	Slave mode, SPI prescaler = 2	4 _x T _{PCLK}	-	-	ns
t _{h(NSS)}	NSS hold time	Slave mode, SPI prescaler = 2	2 _x T _{PCLK}	-	-	ns
t _{w(SCKH)} t _{w(SCKL)}	SCK high and low time	Master mode	T _{PCLK} -2	T _{PCLK}	T _{PCLK} +2	ns
t _{su(MI)}	Data input setup time	Master mode	4	-	-	ns
t _{su(SI)}		Slave mode	1.5	-	-	115
t _{h(MI)}	Data input hold time	Master mode	6.5	-	-	ns
t _{h(SI)}		Slave mode	1.5	-	-	115
t _{a(SO)}	Data output access time	Slave mode	9	-	36	ns
t _{dis(SO)}	Data output disable time	Slave mode	9	-	16	ns

Table 95. SP	characteristics ⁽¹⁾
--------------	--------------------------------

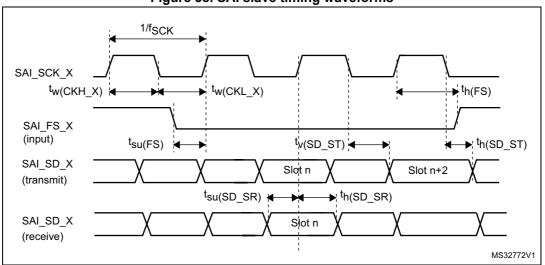


Figure 38. SAI slave timing waveforms

SDMMC characteristics

Unless otherwise specified, the parameters given in *Table 99* for SDIO are derived from tests performed under the ambient temperature, f_{PCLKx} frequency and V_{DD} supply voltage conditions summarized in *Table 23: General operating conditions*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 11
- Capacitive load C = 30 pF
- Measurement points are done at CMOS levels: 0.5 x V_{DD}

Refer to Section 6.3.14: I/O port characteristics for more details on the input/output characteristics.

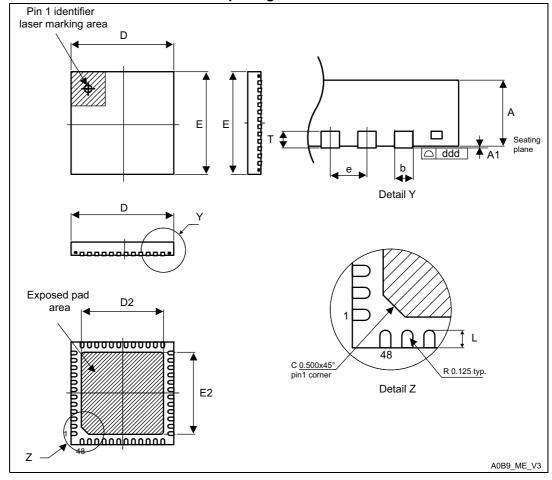

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
f _{PP}	Clock frequency in data transfer mode	-	0	-	50	MHz	
-	SDIO_CK/fPCLK2 frequency ratio	-	-	-	4/3	-	
t _{W(CKL)}	Clock low time	f _{PP} = 50 MHz	8	10	-	ns	
t _{W(CKH)}	Clock high time	f _{PP} = 50 MHz	8	10	-	ns	
CMD, D inpu	ts (referenced to CK) in MMC and SD H	S mode					
t _{ISU}	Input setup time HS	f _{PP} = 50 MHz	3.5	-	-	ns	
t _{IH}	Input hold time HS	f _{PP} = 50 MHz	2.5	-	-	ns	
CMD, D outp	uts (referenced to CK) in MMC and SD	HS mode					
t _{OV}	Output valid time HS	f _{PP} = 50 MHz	-	12	13	ns	
t _{ОН}	Output hold time HS	f _{PP} = 50 MHz	10	-	-	ns	
CMD, D inputs (referenced to CK) in SD default mode							
t _{ISUD}	Input setup time SD	f _{PP} = 50 MHz	3.5	-	-	ns	
t _{IHD}	Input hold time SD	f _{PP} = 50 MHz	3	-	-	ns	

Table 99. SD / MMC dynamic characteristics, V_{DD} =2.7 V to 3.6 V⁽¹⁾

7.6 UFQFPN48 package information

Figure 56. UFQFPN48 - 48-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package outline

1. Drawing is not to scale.

- 2. All leads/pads should also be soldered to the PCB to improve the lead/pad solder joint life.
- 3. There is an exposed die pad on the underside of the UFQFPN package. It is recommended to connect and solder this back-side pad to PCB ground.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2018 STMicroelectronics – All rights reserved

DS11912 Rev 4

