E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, MMC/SD, QSPI, SAI, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, PWM, WDT
Number of I/O	83
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	160K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 16x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l452vet3

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2 Description

The STM32L452xx devices are the ultra-low-power microcontrollers based on the highperformance Arm[®] Cortex[®]-M4 32-bit RISC core operating at a frequency of up to 80 MHz. The Cortex-M4 core features a Floating point unit (FPU) single precision which supports all Arm[®] single-precision data-processing instructions and data types. It also implements a full set of DSP instructions and a memory protection unit (MPU) which enhances application security.

The STM32L452xx devices embed high-speed memories (Flash memory up to 512 Kbyte, 160 Kbyte of SRAM), a Quad SPI flash memories interface (available on all packages) and an extensive range of enhanced I/Os and peripherals connected to two APB buses, two AHB buses and a 32-bit multi-AHB bus matrix.

The STM32L452xx devices embed several protection mechanisms for embedded Flash memory and SRAM: readout protection, write protection, proprietary code readout protection and Firewall.

The devices offer a fast 12-bit ADC (5 Msps), two comparators, one operational amplifier, one DAC channel, an internal voltage reference buffer, a low-power RTC, one general-purpose 32-bit timer, one 16-bit PWM timer dedicated to motor control, four general-purpose 16-bit timers, and two 16-bit low-power timers.

In addition, up to 21 capacitive sensing channels are available.

They also feature standard and advanced communication interfaces.

- Four I2Cs
- Three SPIs
- Three USARTs, one UART and one Low-Power UART.
- One SAI (Serial Audio Interfaces)
- One SDMMC
- One CAN
- One USB full-speed device crystal less

The STM32L452xx operates in the -40 to +85 °C (+105 °C junction) and -40 to +125 °C (+130 °C junction) temperature ranges from a 1.71 to 3.6 V V_{DD} power supply when using internal LDO regulator and a 1.05 to 1.32V V_{DD12} power supply when using external SMPS supply. A comprehensive set of power-saving modes allows the design of low-power applications.

Some independent power supplies are supported: analog independent supply input for ADC, DAC, OPAMP and comparators. A VBAT input allows to backup the RTC and backup registers. Dedicated V_{DD12} power supplies can be used to bypass the internal LDO regulator when connected to an external SMPS.

The STM32L452xx family offers six packages from 48 to 100-pin packages.

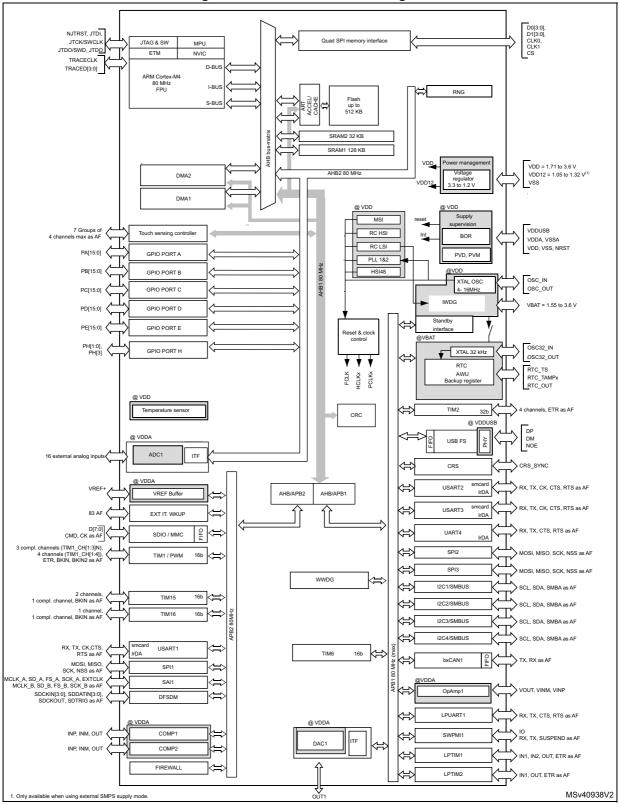
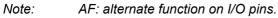
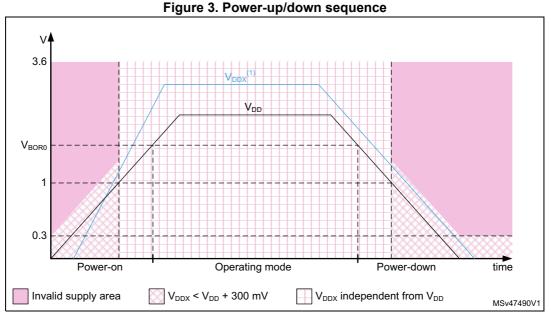




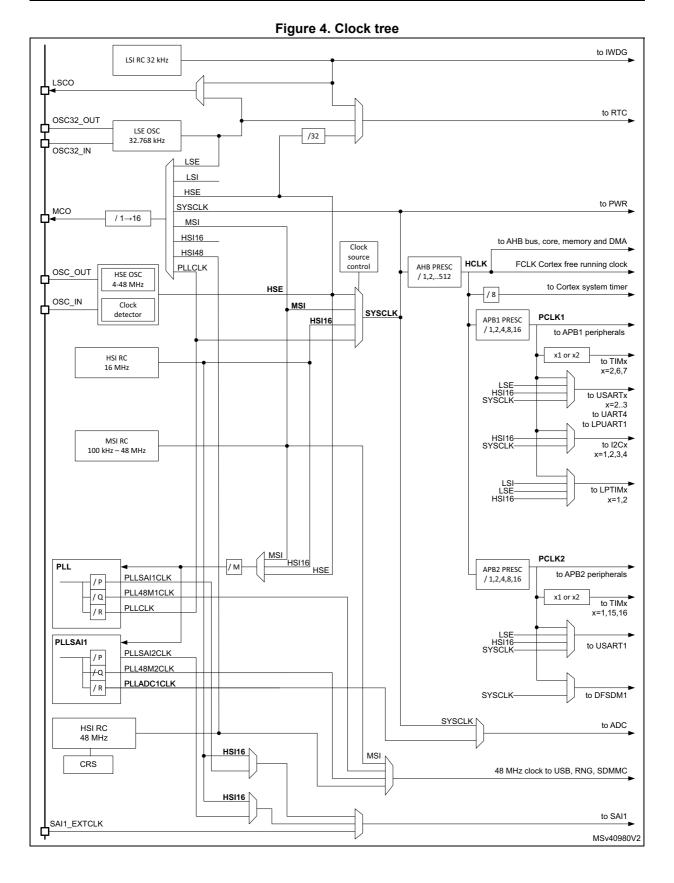
Figure 1. STM32L452xx block diagram

1. V_{DDX} refers to V_{DDA} .

3.9.2 Power supply supervisor

The device has an integrated ultra-low-power brown-out reset (BOR) active in all modes except Shutdown and ensuring proper operation after power-on and during power down. The device remains in reset mode when the monitored supply voltage V_{DD} is below a specified threshold, without the need for an external reset circuit.

The lowest BOR level is 1.71V at power on, and other higher thresholds can be selected through option bytes. The device features an embedded programmable voltage detector (PVD) that monitors the V_{DD} power supply and compares it to the VPVD threshold. An interrupt can be generated when V_{DD} drops below the VPVD threshold and/or when V_{DD} is higher than the VPVD threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software.


In addition, the device embeds a Peripheral Voltage Monitor which compares the independent supply voltage V_{DDA} with a fixed threshold in order to ensure that the peripheral is in its functional supply range.

			Ionantie			o 0/1		p 2	Stan		Shut	down	
Peripheral	Run	Sleep	Low- power run	Low- power sleep	-	Wakeup capability	-	Wakeup capability	-	Wakeup capability	-	Wakeup capability	VBAT
CPU	Y	-	Y	-	-	-	-	-	-	-	-	-	-
Flash memory (up to 512 KB)	O ⁽²⁾	O ⁽²⁾	O ⁽²⁾	O ⁽²⁾	-	-	-	-	-	-	-	-	-
SRAM1 (128 KB)	Y	Y ⁽³⁾	Y	Y ⁽³⁾	Y	-	Y	-	-	-	-	-	-
SRAM2 (32 KB)	Y	Y ⁽³⁾	Y	Y ⁽³⁾	Y	-	Y	-	O ⁽⁴⁾	-	-	-	-
Quad SPI	0	0	0	0	-	-	-	-	-	-	-	-	-
Backup Registers	Y	Y	Y	Y	Y	-	Y	-	Y	-	Y	-	Y
Brown-out reset (BOR)	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	-	-	-
Programmable Voltage Detector (PVD)	0	0	0	0	0	0	0	0	-	-	-	-	-
Peripheral Voltage Monitor (PVMx; x=1,3,4)	0	0	0	0	0	0	0	0	-	-	-	-	-
DMA	0	0	0	0	-	-	-	-	-	-	-	-	-
High Speed Internal (HSI16)	0	0	0	0	(5)	-	(5)	-	-	-	-	-	-
Oscillator RC48	0	0	-	-	-	-	-	-	-	-	-	-	-
High Speed External (HSE)	0	0	0	0	-	-	-	-	-	-	-	-	-
Low Speed Internal (LSI)	0	0	0	0	0	-	0	-	0	-	-	-	-
Low Speed External (LSE)	0	0	0	0	0	-	0	-	0	-	0	-	0
Multi-Speed Internal (MSI)	0	0	0	0	-	-	-	-	-	-	-	-	-
Clock Security System (CSS)	0	0	0	0	-	-	-	-	-	-	-	-	-
Clock Security System on LSE	0	0	0	0	0	0	0	0	0	0	-	-	-
RTC / Auto wakeup	0	0	0	0	0	0	0	0	0	0	0	0	0
Number of RTC Tamper pins	3	3	3	3	3	0	3	0	3	0	3	0	3

Table 5. Functionalities depending on the working mode⁽¹⁾

without having any impact on the timing of "injected" conversions

- "injected" conversions for precise timing and with high conversion priority

DFSDM features	DFSDM1
Number of channels	8
Number of filters	4
Input from internal ADC	-
Supported trigger sources	10
Pulses skipper	-
ID registers support	-

3.22 Random number generator (RNG)

All devices embed an RNG that delivers 32-bit random numbers generated by an integrated analog circuit.

3.23 Timers and watchdogs

The STM32L452xx includes one advanced control timers, up to five general-purpose timers, two basic timers, two low-power timers, two watchdog timers and a SysTick timer. The table below compares the features of the advanced control, general purpose and basic timers.

Timer type	Timer	Counter resolution	Counter type	Prescaler factor	request compare		Complementary outputs
Advanced control	TIM1	16-bit	Up, down, Up/down	Any integer between 1 and 65536	Yes	4	3
General- purpose	TIM2	32-bit	Up, down, Up/down	Any integer between 1 and 65536	Yes	4	No
General- purpose	TIM3	16-bit	Up, down, Up/down	Any integer between 1 and 65536	Yes	4	No
General- purpose	TIM15	16-bit	Up	Any integer between 1 and 65536	Yes	2	1
General- purpose	TIM16	16-bit	Up	Any integer between 1 and 65536	Yes	1	1
Basic	TIM6	16-bit	Up	Any integer between 1 and 65536	Yes	0	No

Table 11.	Timer	feature	comparison
-----------	-------	---------	------------

SAI features	Support ⁽¹⁾
I2S, LSB or MSB-justified, PCM/DSP, TDM, AC'97	Х
Mute mode	Х
Stereo/Mono audio frame capability.	Х
16 slots	Х
Data size configurable: 8-, 10-, 16-, 20-, 24-, 32-bit	Х
FIFO Size	X (8 Word)
SPDIF	Х

Table 14. SAI implementation

1. X: supported

3.30 Controller area network (CAN)

The CAN is compliant with specifications 2.0A and B (active) with a bit rate up to 1 Mbit/s. It can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. It has three transmit mailboxes, two receive FIFOs with 3 stages and 14 scalable filter banks.

The CAN peripheral supports:

- Supports CAN protocol version 2.0 A, B Active
- Bit rates up to 1 Mbit/s
- Transmission
 - Three transmit mailboxes
 - Configurable transmit priority
- Reception
 - Two receive FIFOs with three stages
 - 14 Scalable filter banks
 - Identifier list feature
 - Configurable FIFO overrun
- Time-triggered communication option
 - Disable automatic retransmission mode
 - 16-bit free running timer
 - Time Stamp sent in last two data bytes
- Management
 - Maskable interrupts
 - Software-efficient mailbox mapping at a unique address space

3.31 Secure digital input/output and MultiMediaCards Interface (SDMMC)

The card host interface (SDMMC) provides an interface between the APB peripheral bus and MultiMediaCards (MMCs), SD memory cards and SDIO cards.

DS11912 Rev 4

The Quad SPI interface supports:

- Three functional modes: indirect, status-polling, and memory-mapped
- Dual-flash mode, where 8 bits can be sent/received simultaneously by accessing two flash memories in parallel.
- SDR and DDR support
- Fully programmable opcode for both indirect and memory mapped mode
- Fully programmable frame format for both indirect and memory mapped mode
- Each of the 5 following phases can be configured independently (enable, length, single/dual/quad communication)
 - Instruction phase
 - Address phase
 - Alternate bytes phase
 - Dummy cycles phase
 - Data phase
- Integrated FIFO for reception and transmission
- 8, 16, and 32-bit data accesses are allowed
- DMA channel for indirect mode operations
- Programmable masking for external flash flag management
- Timeout management
- Interrupt generation on FIFO threshold, timeout, status match, operation complete, and access error

		AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
Po	ort	UART4/ LPUART1/ CAN1	CAN1/TSC	CAN1/USB/ QUADSPI			SAI1	TIM2/TIM15/ TIM16/LPTIM2	EVENTOUT
	PD0	-	CAN1_RX	-	-	-	-	-	EVENTOUT
	PD1	-	CAN1_TX	-	-	-	-	-	EVENTOUT
	PD2	-	TSC_SYNC	-	-	SDMMC1_ CMD	-	-	EVENTOUT
	PD3	-	-	QUADSPI_ BK2_NCS	-	-	-	-	EVENTOUT
	PD4	-	-	QUADSPI_ BK2_IO0	-	-	-	-	EVENTOUT
	PD5	-	-	QUADSPI_ BK2_IO1	-	-	-	-	EVENTOUT
Port D	PD6	-	-	QUADSPI_ BK2_IO2	-	-	SAI1_SD_A	-	EVENTOUT
	PD7	-	-	QUADSPI_ BK2_IO3	-	-	-	-	EVENTOUT
	PD8	-	-	-	-	-	-	-	EVENTOUT
	PD9	-	-	-	-	-	-	-	EVENTOUT
	PD10	-	TSC_G6_IO1	-	-	-	-	-	EVENTOUT
	PD11	-	TSC_G6_IO2	-	-	-	-	LPTIM2_ETR	EVENTOUT
	PD12	-	TSC_G6_IO3	-	-	-	-	LPTIM2_IN1	EVENTOUT
	PD13	-	TSC_G6_IO4	-	-	-	-	LPTIM2_OUT	EVENTOUT
	PD14	-	-	-	-	-	-	-	EVENTOUT
	PD15	-	-	-	-	-	-	-	EVENTOU

STM32L452xx

DS11912 Rev 4

577

81/212

Pinouts and pin description

(continued)								
Bus	Boundary address	Size(bytes)	Peripheral					
	0x4001 2C00 - 0x4001 2FFF	1 KB	TIM1					
	0x4001 2800 - 0x4001 2BFF	1 KB	SDMMC1					
	0x4001 2000 - 0x4001 27FF	2 KB	Reserved					
	0x4001 1C00 - 0x4001 1FFF	1 KB	FIREWALL					
APB2	0x4001 0800- 0x4001 1BFF	5 KB	Reserved					
	0x4001 0400 - 0x4001 07FF	1 KB	EXTI					
	0x4001 0200 - 0x4001 03FF		COMP					
	0x4001 0030 - 0x4001 01FF	1 KB	VREFBUF					
	0x4001 0000 - 0x4001 002F		SYSCFG					
	0x4000 9800 - 0x4000 FFFF	26 KB	Reserved					
	0x4000 9400 - 0x4000 97FF	1 KB	LPTIM2					
	0x4000 8800 - 0x4000 93FF	3 KB	Reserved					
	0x4000 8400 - 0x4000 87FF	1 KB	12C4					
	0x4000 8000 - 0x4000 83FF	1 KB	LPUART1					
	0x4000 7C00 - 0x4000 7FFF	1 KB	LPTIM1					
	0x4000 7800 - 0x4000 7BFF	1 KB	OPAMP					
	0x4000 7400 - 0x4000 77FF	1 KB	DAC1					
	0x4000 7000 - 0x4000 73FF	1 KB	PWR					
	0x4000 6C00 - 0x4000 6FFF	1 KB	USB SRAM					
	0x4000 6800 - 0x4000 6BFF	1 KB	USB FS					
APB1	0x4000 6400 - 0x4000 67FF	1 KB	CAN1					
APDI	0x4000 6000 - 0x4000 63FF	1 KB	CRS					
	0x4000 5C00- 0x4000 5FFF	1 KB	I2C3					
	0x4000 5800 - 0x4000 5BFF	1 KB	I2C2					
	0x4000 5400 - 0x4000 57FF	1 KB	I2C1					
	0x4000 5000 - 0x4000 53FF	1 KB	Reserved					
	0x4000 4C00 - 0x4000 4FFF	1 KB	UART4					
	0x4000 4800 - 0x4000 4BFF	1 KB	USART3					
	0x4000 4400 - 0x4000 47FF	1 KB	USART2					
	0x4000 4000 - 0x4000 43FF	1 KB	Reserved					
	0x4000 3C00 - 0x4000 3FFF	1 KB	SPI3					
	0x4000 3800 - 0x4000 3BFF	1 KB	SPI2					
	0x4000 3400 - 0x4000 37FF	1 KB	Reserved					

Table 19. STM32L452xx memory map and peripheral register boundary addresses⁽¹⁾(continued)

			<u> </u>		TYP		TVD				
			Conditions				TYP				
Symbol	Parameter	-	Voltage scaling	Code	le 25 °C		25 °C	Unit			
			Ηz	Reduced code ⁽¹⁾	2.75		106				
			Range 2 _{LK} = 26 MHz	Coremark	2.50		96				
		f _{HCLK} = f _{HSE} up to	ange = 2(Dhrystone 2.1	2.50	mA	96	µA/MHz			
		48 MHz included, bypass mode PLL ON above 48 MHz all peripherals disable	48 MHz included,	48 MHz included,	48 MHz included,	Ra fнськ	Fibonacci	2.30		88	
I _{DD_ALL}	Supply current in		fHo	While(1)	2.20		84.6				
(Run)	(Rūn) Run mode		러	Reduced code ⁽¹⁾	8.85		111	µA/MHz			
			inge 1 = 80 MHz	Coremark	8.15		102				
			Range f _{HCLK} = 80	Dhrystone 2.1	8.15	mA	102				
				Fibonacci	7.55		94				
				While(1)	7.95		99				
				Reduced code ⁽¹⁾	340		170				
1	Supply			Coremark	380		190				
I _{DD_ALL} (LPRun)	current in Low-power	f _{HCLK} = f _{MSI} = 2 MI all peripherals disa		Dhrystone 2.1	355	μA	178	µA/MHz			
()	run			Fibonacci	355		178				
				While(1)	405		203				

Table 36. Typical current consumption in Run and Low-power run modes, with different codesrunning from Flash, ART disable

1. Reduced code used for characterization results provided in *Table 27, Table 29, Table 31*.

Table 37. Typical current consumption in Run modes, with different codes running from	
Flash, ART disable and power supplied by external SMPS (V _{DD12} = 1.10 V)	

		C	onditions ⁽	1)	ΤΥΡ		ΤΥΡ					
Symbol	Parameter	-	Voltage scaling	Code	25 °C	Unit	25 °C	Unit				
			Р Н	Reduced code ⁽²⁾	1.19		46					
			26 MHz	Coremark	1.08	-	41	μA/MHz				
		f _{HCLK} = f _{HSE} up to 48 MHz included, bypass mode PLL ON above 48 MHz all peripherals disable	f _{HCLK} = 26	Dhrystone 2.1	1.08		41					
				Fibonacci	0.99		38					
I _{DD_ALL}	Supply current in			While(1)	0.95	mA	37					
(Rūn)	Run mode		48 MHz all peripherals	48 MHz all peripherals			٦٢	Reduced code ⁽²⁾	3.18	ШA	40	μΑντιντίτε
					80 MHz	Coremark	2.93		37			
			= 8(Dhrystone 2.1	2.93		37					
			- роск	Fibonacci	2.71		34	1				
			fHc	While(1)	2.86		36					

All values are obtained by calculation based on measurements done without SMPS and using following parameters: SMPS input = 3.3 V, SMPS efficiency = 85%, V_{DD12} = 1.10 V

2. Reduced code used for characterization results provided in *Table 27*, *Table 29*, *Table 31*.

- 1. Guaranteed by design.
- 2. Refer to the note and caution paragraphs below the table, and to the application note AN2867 "Oscillator design guide for ST microcontrollers".
- 3. t_{SU(LSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer

Note: For information on selecting the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website <u>www.st.com</u>.

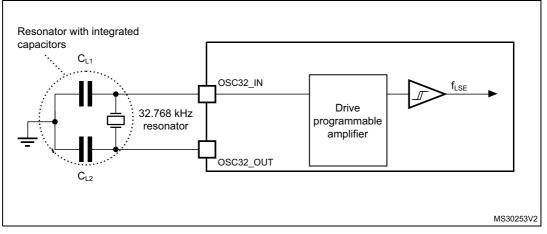


Figure 22. Typical application with a 32.768 kHz crystal

Note: An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden to add one.

6.3.8 Internal clock source characteristics

The parameters given in *Table 59* are derived from tests performed under ambient temperature and supply voltage conditions summarized in *Table 23: General operating conditions*. The provided curves are characterization results, not tested in production.

High-speed internal (HSI16) RC oscillator

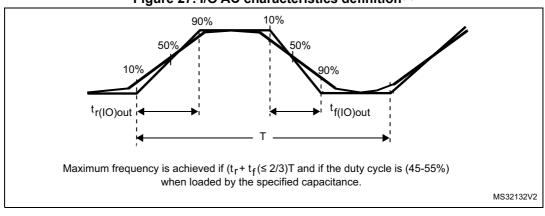
Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
f _{HSI16}	HSI16 Frequency	V _{DD} =3.0 V, T _A =30 °C	15.88	-	16.08	MHz
	HSI16 user trimming step	Trimming code is not a multiple of 64	0.2	0.3	0.4	%
TRIM	HSI to user trimming step	Trimming code is a multiple of 64	-4	-6	-8	%
DuCy(HSI16) ⁽²⁾	Duty Cycle	-	45	-	55	%
A (USI16)	HSI16 oscillator frequency drift over temperature	T _A = 0 to 85 °C	-1	-	1	%
∆ _{Temp} (HSI16)		T _A = -40 to 125 °C	-2	-	1.5	%
∆ _{VDD} (HSI16)	HSI16 oscillator frequency drift over V _{DD}	V _{DD} =1.62 V to 3.6 V	-0.1	-	0.05	%
t _{su} (HSI16) ⁽²⁾	HSI16 oscillator start-up time	-	-	0.8	1.2	μs
t _{stab} (HSI16) ⁽²⁾	HSI16 oscillator stabilization time	-	-	3	5	μs
I _{DD} (HSI16) ⁽²⁾	HSI16 oscillator power consumption	-	-	155	190	μA

Table 59. HSI16 oscillator characteristics⁽¹⁾

1. Guaranteed by characterization results.

2. Guaranteed by design.

Speed	Symbol	Parameter	Conditions	Min	Max	Unit
			C=50 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	50	
			C=50 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	25	
	Fmax		C=50 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	5	MHz
	Fillax	Maximum frequency	C=10 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	100 ⁽³⁾	IVINZ
			C=10 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	37.5	
10			C=10 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	5	
10			C=50 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	5.8	
			C=50 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	11	ns
	T=/Tf	Tr/Tf Output rise and fall time	C=50 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	28	
	11/11		C=10 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	2.5	
			C=10 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	5	
			C=10 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	12	
			C=30 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	120 ⁽³⁾	MHz
			C=30 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	50	
	Emay		C=30 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	10	
	Fmax	Maximum frequency	C=10 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	180 ⁽³⁾	
11			C=10 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	75	
		C=10 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	10		
			C=30 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	3.3	
Tr/Tf	r/Tf Output rise and fall time	C=30 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	6	ns	
			C=30 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	16	
[m]	Fmax	Maximum frequency		-	1	MHz
Fm+	Tf	Output fall time ⁽⁴⁾	C=50 pF, 1.6 V≤V _{DDIOx} ≤3.6 V	-	5	ns


 The I/O speed is configured using the OSPEEDRy[1:0] bits. The Fm+ mode is configured in the SYSCFG_CFGR1 register. Refer to the RM0394 reference manual for a description of GPIO Port configuration register.

2. Guaranteed by design.

3. This value represents the I/O capability but the maximum system frequency is limited to 80 MHz.

4. The fall time is defined between 70% and 30% of the output waveform accordingly to I²C specification.

1. Refer to Table 73: I/O AC characteristics.

6.3.15 NRST pin characteristics

The NRST pin input driver uses the CMOS technology. It is connected to a permanent pull-up resistor, $\mathsf{R}_{\mathsf{PU}}.$

Unless otherwise specified, the parameters given in the table below are derived from tests performed under the ambient temperature and supply voltage conditions summarized in *Table 23: General operating conditions*.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V _{IL(NRST)}	NRST input low level voltage	-	-	-	0.3 _x V _{DDIOx}	v
V _{IH(NRST)}	NRST input high level voltage	-	0.7 _x V _{DDIOx}	-	-	v
V _{hys(NRST)}	NRST Schmitt trigger voltage hysteresis	-	-	200	-	mV
R _{PU}	Weak pull-up equivalent resistor ⁽²⁾	V _{IN} = V _{SS}	25	40	55	kΩ
V _{F(NRST)}	NRST input filtered pulse	-	-	-	70	ns
V _{NF(NRST)}	NRST input not filtered pulse	1.71 V ≤ V _{DD} ≤ 3.6 V	350	-	-	ns

Table 74. NRST pin characteristics⁽¹⁾

1. Guaranteed by design.

2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance is minimal (~10% order).

6.3.18 Analog-to-Digital converter characteristics

Unless otherwise specified, the parameters given in *Table 77* are preliminary values derived from tests performed under ambient temperature, f_{PCLK} frequency and V_{DDA} supply voltage conditions summarized in *Table 23: General operating conditions*.

Note: It is recommended to perform a calibration after each power-up.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{DDA}	Analog supply voltage	-	1.62	-	3.6	V
		V _{DDA} ≥ 2 V	2	-	V _{DDA}	V
V _{REF+}	Positive reference voltage	V _{DDA} < 2 V		V _{DDA}	•	V
V _{REF-}	Negative reference voltage	-		V_{SSA}		V
f		Range 1	0.14	-	80	MHz
f _{ADC}	ADC clock frequency	Range 2	0.14	-	26	WIHZ
		Resolution = 12 bits	-	-	5.33	
	Sampling rate for FAST	Resolution = 10 bits	-	-	6.15	
	channels	Resolution = 8 bits	-	-	7.27	
£		Resolution = 6 bits	-	-	8.88	Maria
f _s	Sampling rate for SLOW channels	Resolution = 12 bits	-	-	4.21	Msps
		Resolution = 10 bits	-	-	4.71	
		Resolution = 8 bits	-	-	5.33	
		Resolution = 6 bits	-	-	6.15	
f _{TRIG}	External trigger frequency	f _{ADC} = 80 MHz Resolution = 12 bits	-	-	5.33	MHz
		Resolution = 12 bits	-	-	15	1/f _{ADC}
V _{CMIN}	Input common mode	Differential mode	(V _{REF+} + V _{REF-})/2 - 0.18	(V _{REF+} + V _{REF-})/2	(V _{REF+} + V _{REF-})/2 + 0.18	V
V _{AIN} ⁽³⁾	Conversion voltage range(2)	-	0	-	V _{REF+}	V
R _{AIN}	External input impedance	-	-	-	50	kΩ
C _{ADC}	Internal sample and hold capacitor	-	-	5	-	pF
t _{STAB}	Power-up time	-		1		conversion cycle
+	Calibration time	f _{ADC} = 80 MHz		1.45		μs
t _{CAL}		-		116		

Table 77		characteristics	(1) (2)
Table 77.	ADC	characteristics	(1) (4)

Prescaler divider	PR[2:0] bits	Min timeout RL[11:0]= 0x000	Max timeout RL[11:0]= 0xFFF	Unit		
/4	0	0.125	512			
/8	1	0.250	1024			
/16	2	0.500	2048			
/32	3	1.0	4096	ms		
/64	4	2.0	8192			
/128	5	4.0	16384			
/256	6 or 7	8.0	32768			

Table 92. IWDG min/max timeout period at 32 kHz (LSI)⁽¹⁾

1. The exact timings still depend on the phasing of the APB interface clock versus the LSI clock so that there is always a full RC period of uncertainty.

Prescaler	WDGTB	Min timeout value	Max timeout value	Unit
1	0	0.0512	3.2768	
2	1	0.1024	6.5536	m 0
4	2	0.2048	13.1072	ms
8	3	0.4096	26.2144	

6.3.26 Communication interfaces characteristics

I²C interface characteristics

The I2C interface meets the timings requirements of the I^2 C-bus specification and user manual rev. 03 for:

- Standard-mode (Sm): with a bit rate up to 100 kbit/s
- Fast-mode (Fm): with a bit rate up to 400 kbit/s
- Fast-mode Plus (Fm+): with a bit rate up to 1 Mbit/s.

The I2C timings requirements are guaranteed by design when the I2C peripheral is properly configured (refer to RM0394 reference manual).

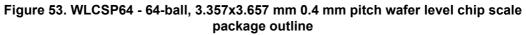
The SDA and SCL I/O requirements are met with the following restrictions: the SDA and SCL I/O pins are not "true" open-drain. When configured as open-drain, the PMOS connected between the I/O pin and V_{DDIOx} is disabled, but is still present. Only FT_f I/O pins support Fm+ low level output current maximum requirement. Refer to Section 6.3.14: I/O port characteristics for the I2C I/Os characteristics.

All I2C SDA and SCL I/Os embed an analog filter. Refer to the table below for the analog filter characteristics:

SAI characteristics

Unless otherwise specified, the parameters given in *Table 98* for SAI are derived from tests performed under the ambient temperature, f_{PCLKx} frequency and V_{DD} supply voltage conditions summarized in *Table 23: General operating conditions*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 10
- Capacitive load C = 30 pF
- Measurement points are done at CMOS levels: $0.5 \times V_{DD}$


Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate function characteristics (CK,SD,FS).

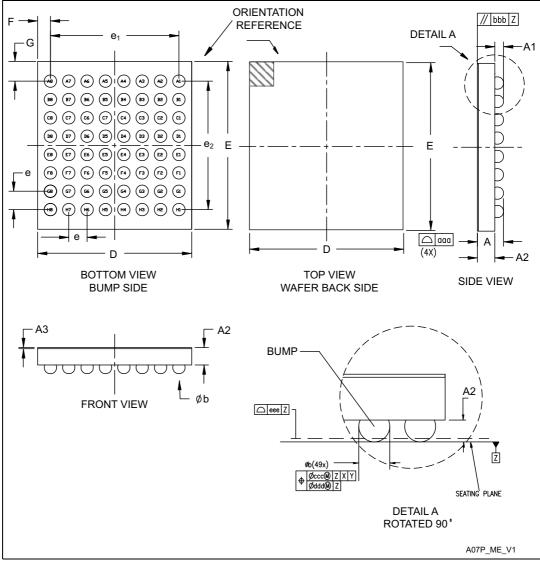

Symbol	Parameter	Conditions		Мах	Unit	
f _{MCLK}	SAI Main clock output	-	-	50	MHz	
		Master transmitter 2.7 ≤ V _{DD} ≤ 3.6 Voltage Range 1	-	18.5		
		Master transmitter 1.71 ≤ V _{DD} ≤ 3.6 Voltage Range 1	-	12.5		
		Master receiver Voltage Range 1	-	25		
f _{CK}	SAI clock frequency ⁽²⁾	Slave transmitter 2.7 ≤ V _{DD} ≤ 3.6 Voltage Range 1	-	22.5	MHz	
		Slave transmitter 1.71 ≤ V _{DD} ≤ 3.6 Voltage Range 1	-	14.5		
			Slave receiver Voltage Range 1	-	25	
		Voltage Range 2	-	12.5		
+	FS valid time	Master mode 2.7 \leq V _{DD} \leq 3.6	-	22	20	
t _{v(FS)}		Master mode $1.71 \le V_{DD} \le 3.6$	-	40	ns	
t _{h(FS)}	FS hold time	Master mode	10	-	ns	
t _{su(FS)}	FS setup time	Slave mode	1	-	ns	
t _{h(FS)}	FS hold time	Slave mode	2	-	ns	
t _{su(SD_A_MR)}	Data input setup time	Master receiver	2	-	200	
t _{su(SD_B_SR)}		Slave receiver	1.5	-	ns	
t _{h(SD_A_MR)}	Data input hold time	Master receiver	5	-	ns	
$t_{h(SD_B_SR)}$		Slave receiver	2.5	-	113	

Table 98. SAI characteristics⁽¹⁾

7.5 WLCSP64 package information

1. Dimensions are expressed in millimeters.

Date Revision		Changes
21-May-2018	4 (continued)	Updated Table 51: Peripheral current consumption. Added Section 6.3.16: Extended interrupt and event controller input (EXTI) characteristics. Updated Table 71: I/O static characteristics. Updated Table 83: DAC characteristics.

Table 113. Document revision history (continued)

