
Microchip Technology - ATMEGA3250P-20AU Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor AVR

Core Size 8-Bit

Speed 20MHz

Connectivity SPI, UART/USART, USI

Peripherals Brown-out Detect/Reset, POR, PWM, WDT

Number of I/O 69

Program Memory Size 32KB (16K x 16)

Program Memory Type FLASH

EEPROM Size 1K x 8

RAM Size 2K x 8

Voltage - Supply (Vcc/Vdd) 2.7V ~ 5.5V

Data Converters A/D 8x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 100-TQFP

Supplier Device Package 100-TQFP (14x14)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/atmega3250p-20au

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/atmega3250p-20au-4378883
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

The next code examples show assembly and C functions for reading the EEPROM. The exam-
ples assume that interrupts are controlled so that no interrupts will occur during execution of
these functions.

Assembly Code Example

EEPROM_write:

; Wait for completion of previous write

sbic EECR,EEWE

rjmp EEPROM_write

; Set up address (r18:r17) in address register

out EEARH, r18

out EEARL, r17

; Write data (r16) to Data Register

out EEDR,r16

; Write logical one to EEMWE

sbi EECR,EEMWE

; Start eeprom write by setting EEWE

sbi EECR,EEWE

ret

C Code Example

void EEPROM_write(unsigned int uiAddress, unsigned char ucData)

{

/* Wait for completion of previous write */

while(EECR & (1<<EEWE))

;

/* Set up address and Data Registers */

EEAR = uiAddress;

EEDR = ucData;

/* Write logical one to EEMWE */

EECR |= (1<<EEMWE);

/* Start eeprom write by setting EEWE */

EECR |= (1<<EEWE);

}

26
8023F–AVR–07/09

ATmega325P/3250P

ATmega325P/3250P
symmetry around BOTTOM the OCn value at MAX must correspond to the result of an up-
counting Compare Match.

• The timer starts counting from a value higher than the one in OCR0A, and for that reason
misses the Compare Match and hence the OCn change that would have happened on the way
up.

14.8 Timer/Counter Timing Diagrams

The Timer/Counter is a synchronous design and the timer clock (clkT0) is therefore shown as a
clock enable signal in the following figures. The figures include information on when Interrupt
Flags are set. Figure 4 contains timing data for basic Timer/Counter operation. The figure shows
the count sequence close to the MAX value in all modes other than phase correct PWM mode.

Figure 4. Timer/Counter Timing Diagram, no Prescaling

Figure 5 shows the same timing data, but with the prescaler enabled.

Figure 5. Timer/Counter Timing Diagram, with Prescaler (fclk_I/O/8)

Figure 6 shows the setting of OCF0A in all modes except CTC mode.

Figure 6. Timer/Counter Timing Diagram, Setting of OCF0A, with Prescaler (fclk_I/O/8)

clkTn
(clkI/O/1)

TOVn

clkI/O

TCNTn MAX - 1 MAX BOTTOM BOTTOM + 1

TOVn

TCNTn MAX - 1 MAX BOTTOM BOTTOM + 1

clkI/O

clkTn
(clkI/O/8)

OCFnx

OCRnx

TCNTn

OCRnx Value

OCRnx - 1 OCRnx OCRnx + 1 OCRnx + 2

clkI/O

clkTn
(clkI/O/8)
99
8023F–AVR–07/09

ATmega325P/3250P
15. 16-bit Timer/Counter1

15.1 Features

• True 16-bit Design (i.e., Allows 16-bit PWM)
• Two independent Output Compare Units
• Double Buffered Output Compare Registers
• One Input Capture Unit
• Input Capture Noise Canceler
• Clear Timer on Compare Match (Auto Reload)
• Glitch-free, Phase Correct Pulse Width Modulator (PWM)
• Variable PWM Period
• Frequency Generator
• External Event Counter
• Four independent interrupt Sources (TOV1, OCF1A, OCF1B, and ICF1)

15.2 Overview

The 16-bit Timer/Counter unit allows accurate program execution timing (event management),
wave generation, and signal timing measurement. Most register and bit references in this sec-
tion are written in general form. A lower case “n” replaces the Timer/Counter number, and a
lower case “x” replaces the Output Compare unit. However, when using the register or bit
defines in a program, the precise form must be used, i.e., TCNT1 for accessing Timer/Counter1
counter value and so on.

A simplified block diagram of the 16-bit Timer/Counter is shown in Figure 15-1. For the actual
placement of I/O pins, refer to ”Pinout ATmega3250P” on page 2. CPU accessible I/O Registers,
including I/O bits and I/O pins, are shown in bold. The device-specific I/O Register and bit loca-
tions are listed in the ”Register Description” on page 128.

The PRTIM1 bit in ”PRR – Power Reduction Register” on page 44 must be written to zero to
enable the Timer/Counter1 module.
107
8023F–AVR–07/09

ATmega325P/3250P
the main code and the interrupt code update the temporary register, the main code must disable
the interrupts during the 16-bit access.

The following code examples show how to do an atomic read of the TCNT1 Register contents.
Reading any of the OCR1A/B or ICR1 Registers can be done by using the same principle.

Note: 1. See Section “5.” on page 10.

The assembly code example returns the TCNT1 value in the r17:r16 register pair.

Assembly Code Example(1)

TIM16_ReadTCNT1:
; Save global interrupt flag

in r18,SREG

; Disable interrupts

cli

; Read TCNT1 into r17:r16
in r16,TCNT1L
in r17,TCNT1H
; Restore global interrupt flag

out SREG,r18

ret

C Code Example(1)

unsigned int TIM16_ReadTCNT1(void)
{

unsigned char sreg;

unsigned int i;

/* Save global interrupt flag */

sreg = SREG;

/* Disable interrupts */

__disable_interrupt();

/* Read TCNT1 into i */
i = TCNT1;
/* Restore global interrupt flag */

SREG = sreg;

return i;

}

111
8023F–AVR–07/09

implies that the length of the falling slope is determined by the previous TOP value, while the
length of the rising slope is determined by the new TOP value. When these two values differ the
two slopes of the period will differ in length. The difference in length gives the unsymmetrical
result on the output.

It is recommended to use the phase and frequency correct mode instead of the phase correct
mode when changing the TOP value while the Timer/Counter is running. When using a static
TOP value there are practically no differences between the two modes of operation.

In phase correct PWM mode, the compare units allow generation of PWM waveforms on the
OC1x pins. Setting the COM1x1:0 bits to two will produce a non-inverted PWM and an inverted
PWM output can be generated by setting the COM1x1:0 to three (See Table 1 on page 129).
The actual OC1x value will only be visible on the port pin if the data direction for the port pin is
set as output (DDR_OC1x). The PWM waveform is generated by setting (or clearing) the OC1x
Register at the compare match between OCR1x and TCNT1 when the counter increments, and
clearing (or setting) the OC1x Register at compare match between OCR1x and TCNT1 when
the counter decrements. The PWM frequency for the output when using phase correct PWM can
be calculated by the following equation:

The N variable represents the prescaler divider (1, 8, 64, 256, or 1024).

The extreme values for the OCR1x Register represent special cases when generating a PWM
waveform output in the phase correct PWM mode. If the OCR1x is set equal to BOTTOM the
output will be continuously low and if set equal to TOP the output will be continuously high for
non-inverted PWM mode. For inverted PWM the output will have the opposite logic values. If
OCR1A is used to define the TOP value (WGM13:0 = 11) and COM1A1:0 = 1, the OC1A output
will toggle with a 50% duty cycle.

15.9.5 Phase and Frequency Correct PWM Mode

The phase and frequency correct Pulse Width Modulation, or phase and frequency correct PWM
mode (WGM13:0 = 8 or 9) provides a high resolution phase and frequency correct PWM wave-
form generation option. The phase and frequency correct PWM mode is, like the phase correct
PWM mode, based on a dual-slope operation. The counter counts repeatedly from BOTTOM
(0x0000) to TOP and then from TOP to BOTTOM. In non-inverting Compare Output mode, the
Output Compare (OC1x) is cleared on the compare match between TCNT1 and OCR1x while
counting up, and set on the compare match while counting down. In inverting Compare Output
mode, the operation is inverted. The dual-slope operation gives a lower maximum operation fre-
quency compared to the single-slope operation. However, due to the symmetric feature of the
dual-slope PWM modes, these modes are preferred for motor control applications.

The main difference between the phase correct, and the phase and frequency correct PWM
mode is the time the OCR1x Register is updated by the OCR1x Buffer Register, (see Figure 15-
8 and Figure 15-9).

The PWM resolution for the phase and frequency correct PWM mode can be defined by either
ICR1 or OCR1A. The minimum resolution allowed is 2-bit (ICR1 or OCR1A set to 0x0003), and

fOCnxPCPWM
fclk_I/O

2 N TOP⋅ ⋅
----------------------------=
124
8023F–AVR–07/09

ATmega325P/3250P

Using the ICR1 Register for defining TOP works well when using fixed TOP values. By using
ICR1, the OCR1A Register is free to be used for generating a PWM output on OC1A. However,
if the base PWM frequency is actively changed by changing the TOP value, using the OCR1A as
TOP is clearly a better choice due to its double buffer feature.

In phase and frequency correct PWM mode, the compare units allow generation of PWM wave-
forms on the OC1x pins. Setting the COM1x1:0 bits to two will produce a non-inverted PWM and
an inverted PWM output can be generated by setting the COM1x1:0 to three (See Table 1 on
page 129). The actual OC1x value will only be visible on the port pin if the data direction for the
port pin is set as output (DDR_OC1x). The PWM waveform is generated by setting (or clearing)
the OC1x Register at the compare match between OCR1x and TCNT1 when the counter incre-
ments, and clearing (or setting) the OC1x Register at compare match between OCR1x and
TCNT1 when the counter decrements. The PWM frequency for the output when using phase
and frequency correct PWM can be calculated by the following equation:

The N variable represents the prescaler divider (1, 8, 64, 256, or 1024).

The extreme values for the OCR1x Register represents special cases when generating a PWM
waveform output in the phase correct PWM mode. If the OCR1x is set equal to BOTTOM the
output will be continuously low and if set equal to TOP the output will be set to high for non-
inverted PWM mode. For inverted PWM the output will have the opposite logic values. If OCR1A
is used to define the TOP value (WGM13:0 = 9) and COM1A1:0 = 1, the OC1A output will toggle
with a 50% duty cycle.

15.10 Timer/Counter Timing Diagrams

The Timer/Counter is a synchronous design and the timer clock (clkT1) is therefore shown as a
clock enable signal in the following figures. The figures include information on when Interrupt
Flags are set, and when the OCR1x Register is updated with the OCR1x buffer value (only for
modes utilizing double buffering). Figure 15-10 shows a timing diagram for the setting of OCF1x.

Figure 15-10. Timer/Counter Timing Diagram, Setting of OCF1x, no Prescaling

Figure 15-11 shows the same timing data, but with the prescaler enabled.

fOCnxPFCPWM
fclk_I/O

2 N TOP⋅ ⋅
----------------------------=

clkTn
(clkI/O/1)

OCFnx

clkI/O

OCRnx

TCNTn

OCRnx Value

OCRnx - 1 OCRnx OCRnx + 1 OCRnx + 2
126
8023F–AVR–07/09

ATmega325P/3250P

ATmega325P/3250P
16. 8-bit Timer/Counter2 with PWM and Asynchronous Operation

16.1 Features

• Single Compare Unit Counter
• Clear Timer on Compare Match (Auto Reload)
• Glitch-free, Phase Correct Pulse Width Modulator (PWM)
• Frequency Generator
• 10-bit Clock Prescaler
• Overflow and Compare Match Interrupt Sources (TOV2 and OCF2A)
• Allows Clocking from External 32 kHz Watch Crystal Independent of the I/O Clock

16.2 Overview

Timer/Counter2 is a general purpose, single compare unit, 8-bit Timer/Counter module. A simpli-
fied block diagram of the 8-bit Timer/Counter is shown in Figure 16-1. For the actual placement
of I/O pins, refer to ”Pinout ATmega3250P” on page 2. CPU accessible I/O Registers, including
I/O bits and I/O pins, are shown in bold. The device-specific I/O Register and bit locations are
listed in the ”Register Description” on page 149.

Figure 16-1. 8-bit Timer/Counter Block Diagram

Timer/Counter

D
AT

A
 B

U
S

=

TCNTn

Waveform
Generation

OCnx

= 0

Control Logic

= 0xFF

TOPBOTTOM

count

clear

direction

TOVn
(Int.Req.)

OCnx
(Int.Req.)

Synchronization Unit

OCRnx

TCCRnx

ASSRn
Status flags

clkI/O

clkASY

Synchronized Status flags

asynchronous mode
select (ASn)

TOSC1

T/C
Oscillator

TOSC2

Prescaler

clkTn

clkI/O
135
8023F–AVR–07/09

16.2.1 Registers

The Timer/Counter (TCNT2) and Output Compare Register (OCR2A) are 8-bit registers. Inter-
rupt request (shorten as Int.Req.) signals are all visible in the Timer Interrupt Flag Register
(TIFR2). All interrupts are individually masked with the Timer Interrupt Mask Register (TIMSK2).
TIFR2 and TIMSK2 are not shown in the figure.

The Timer/Counter can be clocked internally, via the prescaler, or asynchronously clocked from
the TOSC1/2 pins, as detailed later in this section. The asynchronous operation is controlled by
the Asynchronous Status Register (ASSR). The Clock Select logic block controls which clock
source the Timer/Counter uses to increment (or decrement) its value. The Timer/Counter is inac-
tive when no clock source is selected. The output from the Clock Select logic is referred to as the
timer clock (clkT2).

The double buffered Output Compare Register (OCR2A) is compared with the Timer/Counter
value at all times. The result of the compare can be used by the Waveform Generator to gener-
ate a PWM or variable frequency output on the Output Compare pin (OC2A). See Section “16.5”
on page 137. for details. The compare match event will also set the Compare Flag (OCF2A)
which can be used to generate an Output Compare interrupt request.

16.2.2 Definitions

Many register and bit references in this document are written in general form. A lower case “n”
replaces the Timer/Counter number, in this case 2. However, when using the register or bit
defines in a program, the precise form must be used, i.e., TCNT2 for accessing Timer/Counter2
counter value and so on.

The definitions in Table 16-1 are also used extensively throughout the section.

16.3 Timer/Counter Clock Sources

The Timer/Counter can be clocked by an internal synchronous or an external asynchronous
clock source. The clock source clkT2 is by default equal to the MCU clock, clkI/O. When the AS2
bit in the ASSR Register is written to logic one, the clock source is taken from the Timer/Counter
Oscillator connected to TOSC1 and TOSC2. For details on asynchronous operation, see ”ASSR
– Asynchronous Status Register” on page 151. For details on clock sources and prescaler, see
”Timer/Counter Prescaler” on page 148.

Table 16-1. Definitions of Timer/Counter values.

BOTTOM The counter reaches the BOTTOM when it becomes zero (0x00).
MAX The counter reaches its MAXimum when it becomes 0xFF (decimal 255).
TOP The counter reaches the TOP when it becomes equal to the highest value in the

count sequence. The TOP value can be assigned to be the fixed value 0xFF
(MAX) or the value stored in the OCR2A Register. The assignment is depen-
dent on the mode of operation.
136
8023F–AVR–07/09

ATmega325P/3250P

ATmega325P/3250P
symmetry around BOTTOM the OCn value at MAX must correspond to the result of an up-
counting Compare Match.

• The timer starts counting from a value higher than the one in OCR2A, and for that reason
misses the Compare Match and hence the OCn change that would have happened on the way
up.

16.8 Timer/Counter Timing Diagrams

The following figures show the Timer/Counter in synchronous mode, and the timer clock (clkT2)
is therefore shown as a clock enable signal. In asynchronous mode, clkI/O should be replaced by
the Timer/Counter Oscillator clock. The figures include information on when Interrupt Flags are
set. Figure 16-8 contains timing data for basic Timer/Counter operation. The figure shows the
count sequence close to the MAX value in all modes other than phase correct PWM mode.

Figure 16-8. Timer/Counter Timing Diagram, no Prescaling

Figure 16-9 shows the same timing data, but with the prescaler enabled.

Figure 16-9. Timer/Counter Timing Diagram, with Prescaler (fclk_I/O/8)

Figure 16-10 shows the setting of OCF2A in all modes except CTC mode.

clkTn
(clkI/O/1)

TOVn

clkI/O

TCNTn MAX - 1 MAX BOTTOM BOTTOM + 1

TOVn

TCNTn MAX - 1 MAX BOTTOM BOTTOM + 1

clkI/O

clkTn
(clkI/O/8)
145
8023F–AVR–07/09

ATmega325P/3250P
Figure 19-5. Two-wire Mode, Typical Timing Diagram

Referring to the timing diagram (Figure 19-5.), a bus transfer involves the following steps:

1. The a start condition is generated by the Master by forcing the SDA low line while the
SCL line is high (A). SDA can be forced low either by writing a zero to bit 7 of the Shift
Register, or by setting the corresponding bit in the PORT Register to zero. Note that the
Data Direction Register bit must be set to one for the output to be enabled. The slave
device’s start detector logic (Figure 19-6) detects the start condition and sets the USISIF
Flag. The flag can generate an interrupt if necessary.

2. In addition, the start detector will hold the SCL line low after the Master has forced an
negative edge on this line (B). This allows the Slave to wake up from sleep or complete
its other tasks before setting up the Shift Register to receive the address. This is done by
clearing the start condition flag and reset the counter.

3. The Master set the first bit to be transferred and releases the SCL line (C). The Slave
samples the data and shift it into the Serial Register at the positive edge of the SCL
clock.

4. After eight bits are transferred containing slave address and data direction (read or
write), the Slave counter overflows and the SCL line is forced low (D). If the slave is not
the one the Master has addressed, it releases the SCL line and waits for a new start
condition.

5. If the Slave is addressed it holds the SDA line low during the acknowledgment cycle
before holding the SCL line low again (i.e., the Counter Register must be set to 14 before
releasing SCL at (D)). Depending of the R/W bit the Master or Slave enables its output. If
the bit is set, a master read operation is in progress (i.e., the slave drives the SDA line)
The slave can hold the SCL line low after the acknowledge (E).

6. Multiple bytes can now be transmitted, all in same direction, until a stop condition is given
by the Master (F). Or a new start condition is given.

If the Slave is not able to receive more data it does not acknowledge the data byte it has last
received. When the Master does a read operation it must terminate the operation by force the
acknowledge bit low after the last byte transmitted.

Figure 19-6. Start Condition Detector, Logic Diagram

PS ADDRESS

1 - 7 8 9

R/W ACK ACK

1 - 8 9

DATA ACK

1 - 8 9

DATA

SDA

SCL

A B D EC F

SDA

SCL
Write(USISIF)

CLOCK
HOLD

USISIF

D Q

CLR

D Q

CLR
197
8023F–AVR–07/09

ATmega325P/3250P
• Bit 4 – ACI: Analog Comparator Interrupt Flag
This bit is set by hardware when a comparator output event triggers the interrupt mode defined
by ACIS1 and ACIS0. The Analog Comparator interrupt routine is executed if the ACIE bit is set
and the I-bit in SREG is set. ACI is cleared by hardware when executing the corresponding inter-
rupt handling vector. Alternatively, ACI is cleared by writing a logic one to the flag.

• Bit 3 – ACIE: Analog Comparator Interrupt Enable
When the ACIE bit is written logic one and the I-bit in the Status Register is set, the Analog Com-
parator interrupt is activated. When written logic zero, the interrupt is disabled.

• Bit 2 – ACIC: Analog Comparator Input Capture Enable
When written logic one, this bit enables the Input Capture function in Timer/Counter1 to be trig-
gered by the Analog Comparator. The comparator output is in this case directly connected to the
Input Capture front-end logic, making the comparator utilize the noise canceler and edge select
features of the Timer/Counter1 Input Capture interrupt. When written logic zero, no connection
between the Analog Comparator and the Input Capture function exists. To make the comparator
trigger the Timer/Counter1 Input Capture interrupt, the ICIE1 bit in the Timer Interrupt Mask
Register (TIMSK1) must be set.

• Bits 1, 0 – ACIS1, ACIS0: Analog Comparator Interrupt Mode Select
These bits determine which comparator events that trigger the Analog Comparator interrupt. The
different settings are shown in Table 20-2.

When changing the ACIS1/ACIS0 bits, the Analog Comparator Interrupt must be disabled by
clearing its Interrupt Enable bit in the ACSR Register. Otherwise an interrupt can occur when the
bits are changed.

20.3.3 DIDR1 – Digital Input Disable Register 1

• Bit 1, 0 – AIN1D, AIN0D: AIN1, AIN0 Digital Input Disable
When this bit is written logic one, the digital input buffer on the AIN1/0 pin is disabled. The corre-
sponding PIN Register bit will always read as zero when this bit is set. When an analog signal is
applied to the AIN1/0 pin and the digital input from this pin is not needed, this bit should be writ-
ten logic one to reduce power consumption in the digital input buffer.

Table 20-2. ACIS1/ACIS0 Settings

ACIS1 ACIS0 Interrupt Mode

0 0 Comparator Interrupt on Output Toggle.

0 1 Reserved

1 0 Comparator Interrupt on Falling Output Edge.

1 1 Comparator Interrupt on Rising Output Edge.

Bit 7 6 5 4 3 2 1 0

(0x7F) – – – – – – AIN1D AIN0D DIDR1

Read/Write R R R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0
205
8023F–AVR–07/09

ATmega325P/3250P
157 PE0.Data

Port E

156 PE0.Control

155 PE0.Pull-up_Enable

154 PE1.Data

153 PE1.Control

152 PE1.Pull-up_Enable

151 PE2.Data

150 PE2.Control

149 PE2.Pull-up_Enable

148 PE3.Data

147 PE3.Control

146 PE3.Pull-up_Enable

145 PE4.Data

144 PE4.Control

143 PE4.Pull-up_Enable

142 PE5.Data

141 PE5.Control

140 PE5.Pull-up_Enable

139 PE6.Data

138 PE6.Control

137 PE6.Pull-up_Enable

136 PE7.Data

135 PE7.Control

134 PE7.Pull-up_Enable

Table 23-6. ATmega325P Boundary-scan Order, 64-pin (Continued)

Bit Number Signal Name Module
243
8023F–AVR–07/09

ATmega325P/3250P
Serial Programming
Instruction set

Table 25-16 and Figure 25-12 on page 290 describes the Instruction set.

Table 25-16. Serial Programming Instruction Set

Instruction/Operation

Instruction Format

Byte 1 Byte 2 Byte 3 Byte4

Programming Enable $AC $53 $00 $00

Chip Erase (Program Memory/EEPROM) $AC $80 $00 $00

Poll RDY/BSY $F0 $00 $00 data byte out

Load Instructions

Load Extended Address byte(1) $4D $00 Extended adr $00

Load Program Memory Page, High byte $48 $00 adr LSB high data byte in

Load Program Memory Page, Low byte $40 $00 adr LSB low data byte in

Load EEPROM Memory Page (page access) $C1 $00
0000 00aa

/
0000 0aaa

data byte in

Read Instructions

Read Program Memory, High byte $28 adr MSB adr LSB high data byte out

Read Program Memory, Low byte $20 adr MSB adr LSB low data byte out

Read EEPROM Memory $A0
0000 00aa

/
0000 0aaa

aaaa aaaa data byte out

Read Lock bits $58 $00 $00 data byte out

Read Signature Byte $30 $00 0000 000aa data byte out

Read Fuse bits $50 $00 $00 data byte out

Read Fuse High bits $58 $08 $00 data byte out

Read Extended Fuse Bits $50 $08 $00 data byte out

Read Calibration Byte $38 $00 $00 data byte out

Write Instructions(6)

Write Program Memory Page $4C adr MSB adr LSB $00

Write EEPROM Memory $C0
0000 00aa

/
0000 0aaa

aaaa aaaa data byte in

Write EEPROM Memory Page (page access) $C2
0000 00aa

/
0000 0aaa

aaaa aa00
/

aaaa a000
$00

Write Lock bits $AC $E0 $00 data byte in

Write Fuse bits $AC $A0 $00 data byte in

Write Fuse High bits $AC $A8 $00 data byte in

Write Extended Fuse Bits $AC $A4 $00 data byte in
289
8023F–AVR–07/09

Table 25-17. JTAG Programming Instruction Set
a = address high bits, b = address low bits, H = 0 - Low byte, 1 - High Byte, o = data out, i = data in, x = don’t care

Instruction TDI Sequence TDO Sequence Notes

1a. Chip Erase

0100011_10000000

0110001_10000000

0110011_10000000

0110011_10000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

1b. Poll for Chip Erase Complete 0110011_10000000 xxxxxox_xxxxxxxx (2)

2a. Enter Flash Write 0100011_00010000 xxxxxxx_xxxxxxxx

2b. Load Address High Byte 0000111_aaaaaaaa xxxxxxx_xxxxxxxx (9)

2c. Load Address Low Byte 0000011_bbbbbbbb xxxxxxx_xxxxxxxx

2d. Load Data Low Byte 0010011_iiiiiiii xxxxxxx_xxxxxxxx

2e. Load Data High Byte 0010111_iiiiiiii xxxxxxx_xxxxxxxx

2f. Latch Data

0110111_00000000

1110111_00000000
0110111_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx
xxxxxxx_xxxxxxxx

(1)

2g. Write Flash Page

0110111_00000000
0110101_00000000

0110111_00000000

0110111_00000000

xxxxxxx_xxxxxxxx
xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

(1)

2h. Poll for Page Write Complete 0110111_00000000 xxxxxox_xxxxxxxx (2)

3a. Enter Flash Read 0100011_00000010 xxxxxxx_xxxxxxxx

3b. Load Address High Byte 0000111_aaaaaaaa xxxxxxx_xxxxxxxx (9)

3c. Load Address Low Byte 0000011_bbbbbbbb xxxxxxx_xxxxxxxx

3d. Read Data Low and High Byte

0110010_00000000

0110110_00000000

0110111_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_oooooooo
xxxxxxx_oooooooo

Low byte

High byte

4a. Enter EEPROM Write 0100011_00010001 xxxxxxx_xxxxxxxx

4b. Load Address High Byte 0000111_aaaaaaaa xxxxxxx_xxxxxxxx (9)

4c. Load Address Low Byte 0000011_bbbbbbbb xxxxxxx_xxxxxxxx

4d. Load Data Byte 0010011_iiiiiiii xxxxxxx_xxxxxxxx

4e. Latch Data

0110111_00000000

1110111_00000000

0110111_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

(1)

4f. Write EEPROM Page

0110011_00000000

0110001_00000000
0110011_00000000

0110011_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx
xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

(1)

4g. Poll for Page Write Complete 0110011_00000000 xxxxxox_xxxxxxxx (2)

5a. Enter EEPROM Read 0100011_00000011 xxxxxxx_xxxxxxxx

5b. Load Address High Byte 0000111_aaaaaaaa xxxxxxx_xxxxxxxx (9)
296
8023F–AVR–07/09

ATmega325P/3250P

Notes: 1. This command sequence is not required if the seven MSB are correctly set by the previous command sequence (which is
normally the case).

2. Repeat until o = “1”.
3. Set bits to “0” to program the corresponding Fuse, “1” to unprogram the Fuse.
4. Set bits to “0” to program the corresponding Lock bit, “1” to leave the Lock bit unchanged.
5. “0” = programmed, “1” = unprogrammed.
6. The bit mapping for Fuses Extended byte is listed in Table 25-3 on page 272
7. The bit mapping for Fuses High byte is listed in Table 25-4 on page 273
8. The bit mapping for Fuses Low byte is listed in Table 25-5 on page 273
9. The bit mapping for Lock bits byte is listed in Table 25-1 on page 271
10. Address bits exceeding PCMSB and EEAMSB (Table 25-11 and Table 25-12) are don’t care
11. All TDI and TDO sequences are represented by binary digits (0b...).

8f. Read Fuses and Lock Bits

0111010_00000000

0111110_00000000
0110010_00000000

0110110_00000000

0110111_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_oooooooo
xxxxxxx_oooooooo
xxxxxxx_oooooooo
xxxxxxx_oooooooo

(5)

Fuse Ext. byte
Fuse High byte

Fuse Low byte

Lock bits

9a. Enter Signature Byte Read 0100011_00001000 xxxxxxx_xxxxxxxx

9b. Load Address Byte 0000011_bbbbbbbb xxxxxxx_xxxxxxxx

9c. Read Signature Byte
0110010_00000000

0110011_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_oooooooo

10a. Enter Calibration Byte Read 0100011_00001000 xxxxxxx_xxxxxxxx

10b. Load Address Byte 0000011_bbbbbbbb xxxxxxx_xxxxxxxx

10c. Read Calibration Byte
0110110_00000000
0110111_00000000

xxxxxxx_xxxxxxxx
xxxxxxx_oooooooo

11a. Load No Operation Command
0100011_00000000
0110011_00000000

xxxxxxx_xxxxxxxx
xxxxxxx_xxxxxxxx

Table 25-17. JTAG Programming Instruction Set (Continued)
a = address high bits, b = address low bits, H = 0 - Low byte, 1 - High Byte, o = data out, i = data in, x = don’t care

Instruction TDI Sequence TDO Sequence Notes
298
8023F–AVR–07/09

ATmega325P/3250P

3. Load the page address using programming instructions 3b and 3c. PCWORD (refer to
Table 25-11 on page 276) is used to address within one page and must be written as 0.

4. Enter JTAG instruction PROG_PAGEREAD.

5. Read the entire page (or Flash) by shifting out all instruction words in the page (or Flash),
starting with the LSB of the first instruction in the page (Flash) and ending with the MSB
of the last instruction in the page (Flash). The Capture-DR state both captures the data
from the Flash, and also auto-increments the program counter after each word is read.
Note that Capture-DR comes before the shift-DR state. Hence, the first byte which is
shifted out contains valid data.

6. Enter JTAG instruction PROG_COMMANDS.

7. Repeat steps 3 to 6 until all data have been read.

25.8.18 Programming the EEPROM

Before programming the EEPROM a Chip Erase must be performed, see “Performing Chip
Erase” on page 301.

1. Enter JTAG instruction PROG_COMMANDS.

2. Enable EEPROM write using programming instruction 4a.

3. Load address High byte using programming instruction 4b.

4. Load address Low byte using programming instruction 4c.

5. Load data using programming instructions 4d and 4e.

6. Repeat steps 4 and 5 for all data bytes in the page.

7. Write the data using programming instruction 4f.

8. Poll for EEPROM write complete using programming instruction 4g, or wait for tWLRH
(refer to Table 25-13 on page 284).

9. Repeat steps 3 to 8 until all data have been programmed.

Note that the PROG_PAGELOAD instruction can not be used when programming the EEPROM.

25.8.19 Reading the EEPROM

1. Enter JTAG instruction PROG_COMMANDS.

2. Enable EEPROM read using programming instruction 5a.

3. Load address using programming instructions 5b and 5c.

4. Read data using programming instruction 5d.

5. Repeat steps 3 and 4 until all data have been read.

Note that the PROG_PAGEREAD instruction can not be used when reading the EEPROM.

25.8.20 Programming the Fuses

1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Fuse write using programming instruction 6a.

3. Load data high byte using programming instructions 6b. A bit value of “0” will program the
corresponding fuse, a “1” will unprogram the fuse.

4. Write Fuse High byte using programming instruction 6c.

5. Poll for Fuse write complete using programming instruction 6d, or wait for tWLRH (refer to
Table 25-13 on page 284).

6. Load data low byte using programming instructions 6e. A “0” will program the fuse, a “1”
will unprogram the fuse.

7. Write Fuse low byte using programming instruction 6f.
302
8023F–AVR–07/09

ATmega325P/3250P

26.4 Clock Characterizations

26.4.1 Calibrated Internal RC Oscillator Accuracy

Notes: 1. Voltage range for ATmega325PV/3250PV/645PV/6450PV.
2. Voltage range for ATmega325P/3250P.

26.4.2 External Clock Drive Waveforms

Figure 26-3. External Clock Drive Waveforms

26.4.3 External Clock Drive

Table 26-1. Calibration Accuracy of Internal RC Oscillator

Frequency VCC Temperature Calibration Accuracy

Factory
Calibration

8.0 MHz 3V 25⋅C ±10%

User
Calibration

7.3 - 8.1 MHz
1.8V - 5.5V(1)

2.7V - 5.5V(2) -40⋅C - 85⋅C ±1%

VIL1

VIH1

Table 26-2. External Clock Drive

Symbol Parameter

VCC=1.8-5.5V VCC=2.7-5.5V VCC=4.5-5.5V

UnitsMin. Max. Min. Max. Min. Max.

1/tCLCL
Oscillator
Frequency

0 4 0 10 0 20 MHz

tCLCL Clock Period 1000 100 50 ns

tCHCX High Time 400 40 20 ns

tCLCX Low Time 400 40 20 ns

tCLCH Rise Time 2.0 1.6 0.5 μs

tCHCL Fall Time 2.0 1.6 0.5 μs

ΔtCLCL

Change in period
from one clock
cycle to the next

2 2 2 %
307
8023F–AVR–07/09

ATmega325P/3250P

ATmega325P/3250P
Notes: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information
and minimum quantities.

2. Pb-free packaging complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also
Halide free and fully Green.

3. For Speed vs. VCC see Figure 26-1 on page 306 and Figure 26-2 on page 306.

30.2 ATmega3250P
Speed (MHz)(3) Power Supply Ordering Code(2) Package Type(1) Operational Range

10 1.8 - 5.5V ATmega3250PV-10AU 100A
Industrial

(-40⋅C to 85⋅C)

20 2.7 - 5.5V ATmega3250P-20AU 100A
Industrial

(-40⋅C to 85⋅C)

Package Type

100A 100-lead, 14 x 14 x 1.0 mm, 0.5 mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP)
350
8023F–AVR–07/09

16.9Asynchronous Operation of Timer/Counter2 ...147

16.10Register Description ..149

17 SPI – Serial Peripheral Interface ... 154

17.1Features ..154

17.2Overview ...154

17.3SS Pin Functionality ..159

17.4Data Modes ...159

17.5Register Description ..160

18 USART0 ... 163

18.1Features ..163

18.2Overview ...163

18.3Clock Generation ...165

18.4Frame Formats ..168

18.5USART Initialization ..169

18.6Data Transmission – The USART Transmitter ..171

18.7Data Reception – The USART Receiver ...173

18.8Asynchronous Data Reception ..177

18.9Multi-processor Communication Mode ..180

18.10Register Description ..182

18.11Examples of Baud Rate Setting ..186

19 USI – Universal Serial Interface .. 191

19.1Features ..191

19.2Overview ...191

19.3Functional Descriptions ...192

19.4Alternative USI Usage ...198

19.5Register Descriptions ..199

20 Analog Comparator ... 203

20.1Overview ...203

20.2Analog Comparator Multiplexed Input ...203

20.3Register Description ..204

21 Analog to Digital Converter .. 206

21.1Features ..206

21.2Overview ...206

21.3Operation ...207
iv
8023F–AVR–07/09

ATmega325P/3250P

ATmega325P/3250P
21.4Starting a Conversion ..208

21.5Prescaling and Conversion Timing ..209

21.6Changing Channel or Reference Selection ...211

21.7ADC Noise Canceler ...212

21.8ADC Conversion Result ..216

21.9Register Description ..218

22 JTAG Interface and On-chip Debug System 223

22.1Features ..223

22.2Overview ...223

22.3TAP – Test Access Port ..223

22.4TAP Controller ...225

22.5Using the Boundary-scan Chain ..226

22.6Using the On-chip Debug System ...226

22.7On-chip Debug Specific JTAG Instructions ...227

22.8Using the JTAG Programming Capabilities ...227

22.9Bibliography ...228

22.10Register Description ..228

23 IEEE 1149.1 (JTAG) Boundary-scan ... 229

23.1Features ..229

23.2Overview ...229

23.3Data Registers ...229

23.4Boundary-scan Specific JTAG Instructions ...231

23.5Boundary-scan Chain ..232

23.6ATmega325P/3250P Boundary-scan Order ..241

23.7Boundary-scan Description Language Files ..254

23.8Register Description ..255

24 Boot Loader Support – Read-While-Write Self-Programming 256

24.1Features ..256

24.2Overview ...256

24.3Application and Boot Loader Flash Sections ...256

24.4Read-While-Write and No Read-While-Write Flash Sections257

24.5Boot Loader Lock Bits ...259

24.6Entering the Boot Loader Program ..261

24.7Addressing the Flash During Self-Programming ...261

24.8Self-Programming the Flash ..262
v
8023F–AVR–07/09

