
Microchip Technology - ATMEGA3250P-20AUR Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor AVR

Core Size 8-Bit

Speed 20MHz

Connectivity SPI, UART/USART, USI

Peripherals Brown-out Detect/Reset, POR, PWM, WDT

Number of I/O 69

Program Memory Size 32KB (16K x 16)

Program Memory Type FLASH

EEPROM Size 1K x 8

RAM Size 2K x 8

Voltage - Supply (Vcc/Vdd) 2.7V ~ 5.5V

Data Converters A/D 8x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 100-TQFP

Supplier Device Package 100-TQFP (14x14)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/atmega3250p-20aur

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/atmega3250p-20aur-4410222
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

2.1 Block Diagram

Figure 2-1. Block Diagram

The AVR core combines a rich instruction set with 32 general purpose working registers. All the
32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent
registers to be accessed in one single instruction executed in one clock cycle. The resulting
architecture is more code efficient while achieving throughputs up to ten times faster than con-
ventional CISC microcontrollers.

PROGRAM
COUNTER

INTERNAL
OSCILLATOR

WATCHDOG
TIMER

STACK
POINTER

PROGRAM
FLASH

MCU CONTROL
REGISTER

SRAM

GENERAL
PURPOSE

REGISTERS

INSTRUCTION
REGISTER

TIMER/
COUNTERS

INSTRUCTION
DECODER

DATA DIR.
REG. PORTB

DATA DIR.
REG. PORTE

DATA DIR.
REG. PORTA

DATA DIR.
REG. PORTD

DATA REGISTER
PORTB

DATA REGISTER
PORTE

DATA REGISTER
PORTA

DATA REGISTER
PORTD

TIMING AND
CONTROL

OSCILLATOR

INTERRUPT
UNIT

EEPROM

SPIUSART

STATUS
REGISTER

Z

Y

X

ALU

PORTB DRIVERSPORTE DRIVERS

PORTA DRIVERSPORTF DRIVERS

PORTD DRIVERS

PORTC DRIVERS

PB0 - PB7PE0 - PE7

PA0 - PA7PF0 - PF7
VCCGND X

TA
L1

X
TA

L2

CONTROL
LINES

+ -

A
N

A
LO

G
C

O
M

PA
R

A
TO

R

PC0 - PC7

8-BIT DATA BUS

R
E

S
E

T

CALIB. OSC

DATA DIR.
REG. PORTC

DATA REGISTER
PORTC

ON-CHIP DEBUG

JTAG TAP

PROGRAMMING
LOGIC

BOUNDARY-
SCAN

DATA DIR.
REG. PORTF

DATA REGISTER
PORTF

ADC

PD0 - PD7

DATA DIR.
REG. PORTG

DATA REG.
PORTG

PORTG DRIVERS

PG0 - PG4

AGND

AREF

AVCC

UNIVERSAL
SERIAL INTERFACE

AVR CPU

P
O

R
T

H
 D

R
IV

E
R

S

P
H

0
-

P
H

7

D
A

TA
D

IR
.

R
E

G
.P

O
R

T
H

D
A

TA
R

E
G

IS
T

E
R

P
O

R
T

H

P
O

R
T

J
D

R
IV

E
R

S

P
J0

 -
 P

J6

D
A

TA
D

IR
.

R
E

G
.P

O
R

T
J

D
A

TA
R

E
G

IS
T

E
R

P
O

R
T

J

4
8023F–AVR–07/09

ATmega325P/3250P

The write access time for the EEPROM is given in Table 7-1. A self-timing function, however,
lets the user software detect when the next byte can be written. If the user code contains instruc-
tions that write the EEPROM, some precautions must be taken. In heavily filtered power
supplies, VCC is likely to rise or fall slowly on power-up/down. This causes the device for some
period of time to run at a voltage lower than specified as minimum for the clock frequency used.
See Section “7.4.3” on page 22. for details on how to avoid problems in these situations.

In order to prevent unintentional EEPROM writes, a specific write procedure must be followed.
Refer to the description of the EEPROM Control Register for details on this.

When the EEPROM is read, the CPU is halted for four clock cycles before the next instruction is
executed. When the EEPROM is written, the CPU is halted for two clock cycles before the next
instruction is executed.

7.4.2 EEPROM Write During Power-down Sleep Mode

When entering Power-down sleep mode while an EEPROM write operation is active, the
EEPROM write operation will continue, and will complete before the Write Access time has
passed. However, when the write operation is completed, the clock continues running, and as a
consequence, the device does not enter Power-down entirely. It is therefore recommended to
verify that the EEPROM write operation is completed before entering Power-down.

7.4.3 Preventing EEPROM Corruption

During periods of low VCC, the EEPROM data can be corrupted because the supply voltage is
too low for the CPU and the EEPROM to operate properly. These issues are the same as for
board level systems using EEPROM, and the same design solutions should be applied.

An EEPROM data corruption can be caused by two situations when the voltage is too low. First,
a regular write sequence to the EEPROM requires a minimum voltage to operate correctly. Sec-
ondly, the CPU itself can execute instructions incorrectly, if the supply voltage is too low.

EEPROM data corruption can easily be avoided by following this design recommendation:

Keep the AVR RESET active (low) during periods of insufficient power supply voltage. This can
be done by enabling the internal Brown-out Detector (BOD). If the detection level of the internal
BOD does not match the needed detection level, an external low VCC reset Protection circuit can
be used. If a reset occurs while a write operation is in progress, the write operation will be com-
pleted provided that the power supply voltage is sufficient.

7.5 I/O Memory

The I/O space definition of the ATmega325P/3250P is shown in ”Register Summary” on page
342.

All ATmega325P/3250P I/Os and peripherals are placed in the I/O space. All I/O locations may
be accessed by the LD/LDS/LDD and ST/STS/STD instructions, transferring data between the
32 general purpose working registers and the I/O space. I/O Registers within the address range
0x00 - 0x1F are directly bit-accessible using the SBI and CBI instructions. In these registers, the
value of single bits can be checked by using the SBIS and SBIC instructions. Refer to the
instruction set section for more details. When using the I/O specific commands IN and OUT, the
I/O addresses 0x00 - 0x3F must be used. When addressing I/O Registers as data space using
LD and ST instructions, 0x20 must be added to these addresses. The ATmega325P/3250P is a
complex microcontroller with more peripheral units than can be supported within the 64 location
22
8023F–AVR–07/09

ATmega325P/3250P

ATmega325P/3250P
When the BOOTRST Fuse is unprogrammed, the Boot section size set to 4K bytes and the
IVSEL bit in the MCUCR Register is set before any interrupts are enabled, the most typical and
general program setup for the Reset and Interrupt Vector Addresses is:

Address Labels Code Comments

0x0000 RESET: ldi r16,high(RAMEND); Main program start

0x0001 out SPH,r16 ; Set Stack Pointer to top of RAM

0x0002 ldi r16,low(RAMEND)

0x0003 out SPL,r16
0x0004 sei ; Enable interrupts

0x0005 <instr> xxx

;

.org 0x3802/0x7802

0x3804/0x7804 jmp EXT_INT0 ; IRQ0 Handler

0x3806/0x7806 jmp PCINT0 ; PCINT0 Handler

... ;

0x1C2C jmp SPM_RDY ; Store Program Memory Ready Handler

When the BOOTRST Fuse is programmed and the Boot section size set to 4K bytes, the most
typical and general program setup for the Reset and Interrupt Vector Addresses is:

Address Labels Code Comments

.org 0x0002

0x0002 jmp EXT_INT0 ; IRQ0 Handler

0x0004 jmp PCINT0 ; PCINT0 Handler

... ;

0x002C jmp SPM_RDY ; Store Program Memory Ready Handler

;

.org 0x3800/0x7800
0x3800/0x7801RESET:ldir16,high(RAMEND); Main program start

0x3801/0x7801 out SPH,r16 ; Set Stack Pointer to top of RAM

0x3802/0x7802 ldi r16,low(RAMEND)

0x3803/0x7803 out SPL,r16
0x3804/0x7804 sei ; Enable interrupts

0x3805/0x7805 <instr> xxx

When the BOOTRST Fuse is programmed, the Boot section size set to 4K bytes and the IVSEL
bit in the MCUCR Register is set before any interrupts are enabled, the most typical and general
program setup for the Reset and Interrupt Vector Addresses is:

0x0032 RESET: ldi r16, high(RAMEND) ; Main program start

0x0033 out SPH,r16 ; Set Stack Pointer to top of RAM

0x0034 ldi r16, low(RAMEND)

0x0035 out SPL,r16

0x0036 sei ; Enable interrupts

0x0037 <inst

r>

xxx

...
55
8023F–AVR–07/09

Address Labels Code Comments

;

.org 0x3800/0x7800
0x3800/0x7800 jmp RESET ; Reset handler
0x3802/0x7802 jmp EXT_INT0 ; IRQ0 Handler

0x3804/0x7804 jmp PCINT0 ; PCINT0 Handler

... ;

0x382C/0x782C jmp SPM_RDY ; Store Program Memory Ready Handler

;

0x382E/0x782ERESET:ldir16,high(RAMEND); Main program start

0x382F/0x782F out SPH,r16 ; Set Stack Pointer to top of RAM

0x3830/0x7830 ldi r16,low(RAMEND)

0x3831/0x7831 out SPL,r16
0x3832/0x7832 sei ; Enable interrupts

0x3833/0x7833 <instr> xxx

11.2.1 Moving Interrupts Between Application and Boot Space

The MCU Control Register controls the placement of the Interrupt Vector table.

11.3 Register Description

11.3.1 MCUCR – MCU Control Register

• Bit 1 – IVSEL: Interrupt Vector Select
When the IVSEL bit is cleared (zero), the Interrupt Vectors are placed at the start of the Flash
memory. When this bit is set (one), the Interrupt Vectors are moved to the beginning of the Boot
Loader section of the Flash. The actual address of the start of the Boot Flash Section is deter-
mined by the BOOTSZ Fuses. Refer to the section ”Boot Loader Support – Read-While-Write
Self-Programming” on page 256 for details. To avoid unintentional changes of Interrupt Vector
tables, a special write procedure must be followed to change the IVSEL bit:

1. Write the Interrupt Vector Change Enable (IVCE) bit to one.

2. Within four cycles, write the desired value to IVSEL while writing a zero to IVCE.

Interrupts will automatically be disabled while this sequence is executed. Interrupts are disabled
in the cycle IVCE is set, and they remain disabled until after the instruction following the write to
IVSEL. If IVSEL is not written, interrupts remain disabled for four cycles. The I-bit in the Status
Register is unaffected by the automatic disabling.

Note: If Interrupt Vectors are placed in the Boot Loader section and Boot Lock bit BLB02 is programmed,
interrupts are disabled while executing from the Application section. If Interrupt Vectors are placed
in the Application section and Boot Lock bit BLB12 is programed, interrupts are disabled while
executing from the Boot Loader section. Refer to the section ”Boot Loader Support – Read-While-
Write Self-Programming” on page 256 for details on Boot Lock bits.

Bit 7 6 5 4 3 2 1 0

0x35 (0x55) JTD BODS BODSE PUD – – IVSEL IVCE MCUCR

Read/Write R/W R R R/W R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0
56
8023F–AVR–07/09

ATmega325P/3250P

ATmega325P/3250P
In fast PWM mode, the compare unit allows generation of PWM waveforms on the OC0A pin.
Setting the COM0A1:0 bits to two will produce a non-inverted PWM and an inverted PWM output
can be generated by setting the COM0A1:0 to three (See Table 14-4 on page 103). The actual
OC0A value will only be visible on the port pin if the data direction for the port pin is set as out-
put. The PWM waveform is generated by setting (or clearing) the OC0A Register at the compare
match between OCR0A and TCNT0, and clearing (or setting) the OC0A Register at the timer
clock cycle the counter is cleared (changes from MAX to BOTTOM).

The PWM frequency for the output can be calculated by the following equation:

The N variable represents the prescale factor (1, 8, 64, 256, or 1024).

The extreme values for the OCR0A Register represents special cases when generating a PWM
waveform output in the fast PWM mode. If the OCR0A is set equal to BOTTOM, the output will
be a narrow spike for each MAX+1 timer clock cycle. Setting the OCR0A equal to MAX will result
in a constantly high or low output (depending on the polarity of the output set by the COM0A1:0
bits.)

A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved by set-
ting OC0A to toggle its logical level on each compare match (COM0A1:0 = 1). The waveform
generated will have a maximum frequency of fOC0 = fclk_I/O/2 when OCR0A is set to zero. This
feature is similar to the OC0A toggle in CTC mode, except the double buffer feature of the Out-
put Compare unit is enabled in the fast PWM mode.

14.7.4 Phase Correct PWM Mode

The phase correct PWM mode (WGM01:0 = 1) provides a high resolution phase correct PWM
waveform generation option. The phase correct PWM mode is based on a dual-slope operation.
The counter counts repeatedly from BOTTOM to MAX and then from MAX to BOTTOM. In non-
inverting Compare Output mode, the Output Compare (OC0A) is cleared on the compare match
between TCNT0 and OCR0A while counting up, and set on the compare match while counting
down. In inverting Output Compare mode, the operation is inverted. The dual-slope operation
has lower maximum operation frequency than single slope operation. However, due to the sym-
metric feature of the dual-slope PWM modes, these modes are preferred for motor control
applications.

The PWM resolution for the phase correct PWM mode is fixed to eight bits. In phase correct
PWM mode the counter is incremented until the counter value matches MAX. When the counter
reaches MAX, it changes the count direction. The TCNT0 value will be equal to MAX for one
timer clock cycle. The timing diagram for the phase correct PWM mode is shown on Figure 14-7.
The TCNT0 value is in the timing diagram shown as a histogram for illustrating the dual-slope
operation. The diagram includes non-inverted and inverted PWM outputs. The small horizontal
line marks on the TCNT0 slopes represent compare matches between OCR0A and TCNT0.

fOCnxPWM
fclk_I/O

N 256⋅
------------------=
97
8023F–AVR–07/09

ATmega325P/3250P
16.9 Asynchronous Operation of Timer/Counter2

When Timer/Counter2 operates asynchronously, some considerations must be taken.

• Warning: When switching between asynchronous and synchronous clocking of
Timer/Counter2, the Timer Registers TCNT2, OCR2A, and TCCR2A might be corrupted. A
safe procedure for switching clock source is:

1. Disable the Timer/Counter2 interrupts by clearing OCIE2A and TOIE2.

2. Select clock source by setting AS2 as appropriate.

3. Write new values to TCNT2, OCR2A, and TCCR2A.

4. To switch to asynchronous operation: Wait for TCN2UB, OCR2UB, and TCR2UB.

5. Clear the Timer/Counter2 Interrupt Flags.

6. Enable interrupts, if needed.

• The CPU main clock frequency must be more than four times the Oscillator frequency.

• When writing to one of the registers TCNT2, OCR2A, or TCCR2A, the value is transferred to a
temporary register, and latched after two positive edges on TOSC1. The user should not write
a new value before the contents of the temporary register have been transferred to its
destination. Each of the three mentioned registers have their individual temporary register,
which means that e.g. writing to TCNT2 does not disturb an OCR2A write in progress. To
detect that a transfer to the destination register has taken place, the Asynchronous Status
Register – ASSR has been implemented.

• When entering Power-save or ADC Noise Reduction mode after having written to TCNT2,
OCR2A, or TCCR2A, the user must wait until the written register has been updated if
Timer/Counter2 is used to wake up the device. Otherwise, the MCU will enter sleep mode
before the changes are effective. This is particularly important if the Output Compare2 interrupt
is used to wake up the device, since the Output Compare function is disabled during writing to
OCR2A or TCNT2. If the write cycle is not finished, and the MCU enters sleep mode before the
OCR2UB bit returns to zero, the device will never receive a compare match interrupt, and the
MCU will not wake up.

• If Timer/Counter2 is used to wake the device up from Power-save or ADC Noise Reduction
mode, precautions must be taken if the user wants to re-enter one of these modes: The
interrupt logic needs one TOSC1 cycle to be reset. If the time between wake-up and reentering
sleep mode is less than one TOSC1 cycle, correct interrupt handling is not guaranteed. If the
user is in doubt whether the time before re-entering Power-save or ADC Noise Reduction
mode is sufficient, the following algorithm can be used to ensure that one TOSC1 cycle has
elapsed:

1. Write a value to TCCR2A, TCNT2, or OCR2A.

2. Wait until the corresponding Update Busy Flag in ASSR returns to zero.

3. Enter Power-save or ADC Noise Reduction mode.

• When the asynchronous operation is selected, the 32.768 kHz Oscillator for Timer/Counter2 is
always running, except in Power-down and Standby modes. After a Power-up Reset or wake-
up from Power-down or Standby mode, the user should be aware of the fact that this Oscillator
might take as long as one second to stabilize. The user is advised to wait for at least one
second before using Timer/Counter2 after power-up or wake-up from Power-down or Standby
mode. The contents of all Timer/Counter2 Registers must be considered lost after a wake-up
from Power-down or Standby mode due to unstable clock signal upon start-up, no matter
whether the Oscillator is in use or a clock signal is applied to the TOSC1 pin.
147
8023F–AVR–07/09

• Bit 6 – SPE: SPI Enable
When the SPE bit is written to one, the SPI is enabled. This bit must be set to enable any SPI
operations.

• Bit 5 – DORD: Data Order
When the DORD bit is written to one, the LSB of the data word is transmitted first.

When the DORD bit is written to zero, the MSB of the data word is transmitted first.

• Bit 4 – MSTR: Master/Slave Select
This bit selects Master SPI mode when written to one, and Slave SPI mode when written logic
zero. If SS is configured as an input and is driven low while MSTR is set, MSTR will be cleared,
and SPIF in SPSR will become set. The user will then have to set MSTR to re-enable SPI Mas-
ter mode.

• Bit 3 – CPOL: Clock Polarity
When this bit is written to one, SCK is high when idle. When CPOL is written to zero, SCK is low
when idle. Refer to Figure 17-3 on page 160 and Figure 17-4 on page 160 for an example. The
CPOL functionality is summarized below:

• Bit 2 – CPHA: Clock Phase
The settings of the Clock Phase bit (CPHA) determine if data is sampled on the leading (first) or
trailing (last) edge of SCK. Refer to Figure 17-3 on page 160 and Figure 17-4 on page 160 for an
example. The CPOL functionality is summarized below:

• Bits 1, 0 – SPR1, SPR0: SPI Clock Rate Select 1 and 0
These two bits control the SCK rate of the device configured as a Master. SPR1 and SPR0 have
no effect on the Slave. The relationship between SCK and the Oscillator Clock frequency fosc is
shown in the following table:

Table 17-2. CPOL Functionality

CPOL Leading Edge Trailing Edge

0 Rising Falling

1 Falling Rising

Table 17-3. CPHA Functionality

CPHA Leading Edge Trailing Edge

0 Sample Setup

1 Setup Sample

Table 17-4. Relationship Between SCK and the Oscillator Frequency

SPI2X SPR1 SPR0 SCK Frequency

0 0 0 fosc/4

0 0 1 fosc/16

0 1 0 fosc/64

0 1 1 fosc/128
161
8023F–AVR–07/09

ATmega325P/3250P

bits of the data read from the UDRn will be masked to zero. The USART has to be initialized
before the function can be used.

Note: 1. See Section “5.” on page 10.

The function simply waits for data to be present in the receive buffer by checking the RXCn Flag,
before reading the buffer and returning the value.

18.7.2 Receiving Frames with 9 Data Bits

If 9-bit characters are used (UCSZ=7), the ninth bit must be read from the RXB8n bit in UCSRnB
before reading the low bits from the UDRn. This rule applies to the FEn, DORn and UPEn Status
Flags as well. Read status from UCSRnA, then data from UDRn. Reading the UDRn I/O location
will change the state of the receive buffer FIFO and consequently the TXB8n, FEn, DORn and
UPEn bits, which all are stored in the FIFO, will change.

Assembly Code Example(1)

USART_Receive:

; Wait for data to be received

sbis UCSR0A, RXC0

rjmp USART_Receive

; Get and return received data from buffer

in r16, UDR0

ret

C Code Example(1)

unsigned char USART_Receive(void)

{

/* Wait for data to be received */

while (!(UCSR0A & (1<<RXC0)))

;

/* Get and return received data from buffer */

return UDR0;

}

174
8023F–AVR–07/09

ATmega325P/3250P

18.10 Register Description

18.10.1 UDRn – USART I/O Data Register n

The USART Transmit Data Buffer Register and USART Receive Data Buffer Registers share the
same I/O address referred to as USART Data Register or UDRn. The Transmit Data Buffer Reg-
ister (TXB) will be the destination for data written to the UDRn Register location. Reading the
UDRn Register location will return the contents of the Receive Data Buffer Register (RXB).

For 5-, 6-, or 7-bit characters the upper unused bits will be ignored by the Transmitter and set to
zero by the Receiver.

The transmit buffer can only be written when the UDREn Flag in the UCSRnA Register is set.
Data written to UDRn when the UDREn Flag is not set, will be ignored by the USART Transmit-
ter. When data is written to the transmit buffer, and the Transmitter is enabled, the Transmitter
will load the data into the Transmit Shift Register when the Shift Register is empty. Then the
data will be serially transmitted on the TxD pin.

The receive buffer consists of a two level FIFO. The FIFO will change its state whenever the
receive buffer is accessed. Due to this behavior of the receive buffer, do not use Read-Modify-
Write instructions (SBI and CBI) on this location. Be careful when using bit test instructions
(SBIC and SBIS), since these also will change the state of the FIFO.

18.10.2 UCSRnA – USART Control and Status Register n A

• Bit 7 – RXCn: USART Receive Complete
This flag bit is set when there are unread data in the receive buffer and cleared when the receive
buffer is empty (i.e., does not contain any unread data). If the Receiver is disabled, the receive
buffer will be flushed and consequently the RXCn bit will become zero. The RXCn Flag can be
used to generate a Receive Complete interrupt (see description of the RXCIEn bit).

• Bit 6 – TXCn: USART Transmit Complete
This flag bit is set when the entire frame in the Transmit Shift Register has been shifted out and
there are no new data currently present in the transmit buffer (UDRn). The TXCn Flag bit is auto-
matically cleared when a transmit complete interrupt is executed, or it can be cleared by writing
a one to its bit location. The TXCn Flag can generate a Transmit Complete interrupt (see
description of the TXCIEn bit).

Bit 7 6 5 4 3 2 1 0

RXBn[7:0] UDRn (Read)

TXBn[7:0] UDRn (Write)

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

RXCn TXCn UDREn FEn DORn UPEn U2Xn MPCMn UCSRnA

Read/Write R R/W R R R R R/W R/W

Initial Value 0 0 1 0 0 0 0 0
182
8023F–AVR–07/09

ATmega325P/3250P

18.10.5 UBRRnL and UBRRnH – USART Baud Rate Registers n

• Bit 15:12 – Reserved Bits
These bits are reserved for future use. For compatibility with future devices, these bit must be
written to zero when UBRRnH is written.

• Bit 11:0 – UBRR11:0: USART Baud Rate Register
This is a 12-bit register which contains the USART baud rate. The UBRRnH contains the four
most significant bits, and the UBRRnL contains the eight least significant bits of the USART
baud rate. Ongoing transmissions by the Transmitter and Receiver will be corrupted if the baud
rate is changed. Writing UBRRnL will trigger an immediate update of the baud rate prescaler.

18.11 Examples of Baud Rate Setting

For standard crystal and resonator frequencies, the most commonly used baud rates for asyn-
chronous operation can be generated by using the UBRRn settings in Table 18-3. UBRRn
values which yield an actual baud rate differing less than 0.5% from the target baud rate, are
bold in the table. Higher error ratings are acceptable, but the Receiver will have less noise resis-
tance when the error ratings are high, especially for large serial frames (see ”Asynchronous
Operational Range” on page 179). The error values are calculated using the following equation:

Figure 18-13. UCPOLn Bit Settings

UCPOLn
Transmitted Data Changed (Output
of TxD Pin)

Received Data Sampled (Input
on RxD Pin)

0 Rising XCK Edge Falling XCK Edge

1 Falling XCK Edge Rising XCK Edge

Bit 15 14 13 12 11 10 9 8

– – – – UBRRn[11:8] UBRRnH

UBRRn[7:0] UBRRnL

7 6 5 4 3 2 1 0

Read/Write R R R R R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Error[%]
BaudRateClosest Match

BaudRate
-- 1–⎝ ⎠

⎛ ⎞ 100%•=
186
8023F–AVR–07/09

ATmega325P/3250P

ATmega325P/3250P
Figure 22-2. TAP Controller State Diagram

22.4 TAP Controller

The TAP controller is a 16-state finite state machine that controls the operation of the Boundary-
scan circuitry, JTAG programming circuitry, or On-chip Debug system. The state transitions
depicted in Figure 22-2 depend on the signal present on TMS (shown adjacent to each state
transition) at the time of the rising edge at TCK. The initial state after a Power-on Reset is Test-
Logic-Reset.

As a definition in this document, the LSB is shifted in and out first for all Shift Registers.

Assuming Run-Test/Idle is the present state, a typical scenario for using the JTAG interface is:

• At the TMS input, apply the sequence 1, 1, 0, 0 at the rising edges of TCK to enter the Shift
Instruction Register – Shift-IR state. While in this state, shift the four bits of the JTAG
instructions into the JTAG Instruction Register from the TDI input at the rising edge of TCK.
The TMS input must be held low during input of the 3 LSBs in order to remain in the Shift-IR
state. The MSB of the instruction is shifted in when this state is left by setting TMS high. While
the instruction is shifted in from the TDI pin, the captured IR-state 0x01 is shifted out on the
TDO pin. The JTAG Instruction selects a particular Data Register as path between TDI and
TDO and controls the circuitry surrounding the selected Data Register.

Test-Logic-Reset

Run-Test/Idle

Shift-DR

Exit1-DR

Pause-DR

Exit2-DR

Update-DR

Select-IR Scan

Capture-IR

Shift-IR

Exit1-IR

Pause-IR

Exit2-IR

Update-IR

Select-DR Scan

Capture-DR

0

1

0 1 1 1

0 0

0 0

1 1

1 0

1

1

0

1

0

0

1 0

1

1

0

1

0

0

00

11
225
8023F–AVR–07/09

ATmega325P/3250P
135 EXTCLK (XTAL1)

Clock input and Oscillators for the main clock
(Observe-only)

134 OSCCK

133 RCCK

132 OSC32CK

131 PJ2.Data

Port J

130 PJ2.Control

129 PJ2.Pull-up_Enable

128 PJ3.Data

127 PJ3.Control

126 PJ3.Pull-up_Enable

125 PJ4.Data

124 PJ4.Control

123 PJ4.Pull-up_Enable

122 PJ5.Data

121 PJ5.Control

120 PJ5.Pull-up_Enable

119 PJ6.Data

118 PJ6.Control

117 PJ6.Pull-up_Enable

116 PD0.Data

Port D

115 PD0.Control

114 PD0.Pull-up_Enable

113 PD1.Data

112 PD1.Control

111 PD1.Pull-up_Enable

110 PD2.Data

109 PD2.Control

108 PD2.Pull-up_Enable

107 PD3.Data

106 PD3.Control

105 PD3.Pull-up_Enable

104 PD4.Data

103 PD4.Control

102 PD4.Pull-up_Enable

101 PD5.Data

100 PD5.Control

Table 23-7. ATmega3250P Boundary-scan Order, 100-pin (Continued)

Bit Number Signal Name Module
251
8023F–AVR–07/09

ATmega325P/3250P
Figure 24-1. Read-While-Write vs. No Read-While-Write

Read-While-Write
(RWW) Section

No Read-While-Write
(NRWW) Section

Z-pointer
Addresses RWW
Section

Z-pointer
Addresses NRWW
Section

CPU is Halted
During the Operation

Code Located in
NRWW Section
Can be Read During
the Operation
258
8023F–AVR–07/09

sbiw loophi:looplo, 1 ;use subi for PAGESIZEB<=256
brne Rdloop

; return to RWW section
; verify that RWW section is safe to read

Return:
in temp1, SPMCSR
sbrs temp1, RWWSB ; If RWWSB is set, the RWW section is not ready yet
ret
; re-enable the RWW section
ldi spmcrval, (1<<RWWSRE) | (1<<SPMEN)
call Do_spm
rjmp Return

Do_spm:
; check for previous SPM complete

Wait_spm:
in temp1, SPMCSR
sbrc temp1, SPMEN
rjmp Wait_spm
; input: spmcrval determines SPM action
; disable interrupts if enabled, store status
in temp2, SREG
cli
; check that no EEPROM write access is present

Wait_ee:
sbic EECR, EEWE
rjmp Wait_ee
; SPM timed sequence
out SPMCSR, spmcrval
spm
; restore SREG (to enable interrupts if originally enabled)
out SREG, temp2
ret
267
8023F–AVR–07/09

ATmega325P/3250P

Notes: 1. Program the Fuse bits and Boot Lock bits before programming the LB1 and LB2.
2. “1” means unprogrammed, “0” means programmed

25.2 Fuse Bits

The ATmega325P/3250P has three Fuse bytes. Table 25-3 - Table 25-5 describe briefly the
functionality of all the fuses and how they are mapped into the Fuse bytes. Note that the fuses
are read as logical zero, “0”, if they are programmed.

Notes: 1. See ”System and Reset Characterizations” on page 308 for BODLEVEL Fuse decoding.
2. Port G, PG5 is input only. Pull-up is always on. See ”Alternate Functions of Port G” on page 79

BLB1 Mode BLB12 BLB11

1 1 1
No restrictions for SPM or LPM accessing the Boot Loader
section.

2 1 0 SPM is not allowed to write to the Boot Loader section.

3 0 0

SPM is not allowed to write to the Boot Loader section, and LPM
executing from the Application section is not allowed to read
from the Boot Loader section. If Interrupt Vectors are placed in
the Application section, interrupts are disabled while executing
from the Boot Loader section.

4 0 1

LPM executing from the Application section is not allowed to
read from the Boot Loader section. If Interrupt Vectors are
placed in the Application section, interrupts are disabled while
executing from the Boot Loader section.

Table 25-2. Lock Bit Protection Modes(1)(2) (Continued)

Memory Lock Bits Protection Type

Table 25-3. Extended Fuse Byte

Extended Fuse Byte Bit No Description Default Value

– 7 – 1

– 6 – 1

– 5 – 1

– 4 – 1

– 5 – 1

BODLEVEL1(1) 2 Brown-out Detector trigger level 1 (unprogrammed)

BODLEVEL0(1) 1 Brown-out Detector trigger level 1 (unprogrammed)

RSTDISBL(2) 0 External Reset Disable 1 (unprogrammed)
272
8023F–AVR–07/09

ATmega325P/3250P

ATmega325P/3250P
Notes: 1. The SPIEN Fuse is not accessible in serial programming mode.
2. The default value of BOOTSZ1..0 results in maximum Boot Size. See Table 24-6 on page 268

for details.
3. See ”WDTCR – Watchdog Timer Control Register” on page 51 for details.
4. Never ship a product with the OCDEN Fuse programmed regardless of the setting of Lock bits

and JTAGEN Fuse. A programmed OCDEN Fuse enables some parts of the clock system to
be running in all sleep modes. This may increase the power consumption.

5. If the JTAG interface is left unconnected, the JTAGEN fuse should if possible be disabled. This
to avoid static current at the TDO pin in the JTAG interface.

Notes: 1. The default value of SUT1..0 results in maximum start-up time for the default clock source.
See ”System and Reset Characterizations” on page 308 for details.

2. The default setting of CKSEL3..0 results in internal RC Oscillator @ 8 MHz. See Table 8-6 on
page 33 for details.

3. The CKOUT Fuse allow the system clock to be output on PORTE7. See ”Clock Output Buffer”
on page 35 for details.

4. See ”System Clock Prescaler” on page 35 for details.

The status of the Fuse bits is not affected by Chip Erase. Note that the Fuse bits are locked if
Lock bit1 (LB1) is programmed. Program the Fuse bits before programming the Lock bits.

Table 25-4. Fuse High Byte

Fuse High Byte Bit No Description Default Value

OCDEN(4) 7 Enable OCD
1 (unprogrammed, OCD
disabled)

JTAGEN(5) 6 Enable JTAG
0 (programmed, JTAG
enabled)

SPIEN(1) 5
Enable Serial Program and Data
Downloading

0 (programmed, SPI
prog. enabled)

WDTON(3) 4 Watchdog Timer always on 1 (unprogrammed)

EESAVE 3
EEPROM memory is preserved
through the Chip Erase

1 (unprogrammed,
EEPROM not preserved)

BOOTSZ1 2
Select Boot Size (see Table 25-7 on
page 275 for details)

0 (programmed)(2)

BOOTSZ0 1
Select Boot Size (see Table 25-7 on
page 275 for details)

0 (programmed)(2)

BOOTRST 0 Select Reset Vector 1 (unprogrammed)

Table 25-5. Fuse Low Byte

Fuse Low Byte Bit No Description Default Value

CKDIV8(4) 7 Divide clock by 8 0 (programmed)

CKOUT(3) 6 Clock output 1 (unprogrammed)

SUT1 5 Select start-up time 1 (unprogrammed)(1)

SUT0 4 Select start-up time 0 (programmed)(1)

CKSEL3 3 Select Clock source 0 (programmed)(2)

CKSEL2 2 Select Clock source 0 (programmed)(2)

CKSEL1 1 Select Clock source 1 (unprogrammed)(2)

CKSEL0 0 Select Clock source 0 (programmed)(2)
273
8023F–AVR–07/09

Notes: 1. Values are guidelines only. Actual values are TBD.
2. The Power-on Reset will not work unless the supply voltage has been below VPOT (falling)

26.8 Brown-out Detection

Note: 1. VBOT may be below nominal minimum operating voltage for some devices. For devices where
this is the case, the device is tested down to VCC = VBOT during the production test. This guar-
antees that a Brown-Out Reset will occur before VCC drops to a voltage where correct
operation of the microcontroller is no longer guaranteed. The test is performed using
BODLEVEL = 10 for ATmega325P/3250PV and BODLEVEL = 01 for ATmega325P/3250PL.

Table 26-5. Reset, Brown-out and Internal Voltage Reference Characteristics(1),
TA = -40°C to 85°C

Symbol Parameter Min Typ Max Units

VPOT

Power-on Reset Threshold Voltage (rising) 1.1 1.4 1.6 V

Power-on Reset Threshold Voltage (falling)(2) 0.6 1.3 1.6 V

SRON Power-on Slope Rate 0.01 10 V/ms

Table 26-6. BODLEVEL Fuse Coding(1)

BODLEVEL 1:0 Fuses Min VBOT Typ VBOT Max VBOT Units

11 BOD Disabled

10 1.7 1.8 2

V01 2.5 2.7 2.9

00 4.1 4.3 4.5
309
8023F–AVR–07/09

ATmega325P/3250P

ATmega325P/3250P
Figure 27-14. I/O Pin Pull-up Resistor Current vs. Input Voltage (VCC = 2.7 V)

Figure 27-15. I/O Pin Pull-up Resistor Current vs. Input Voltage (VCC = 5 V)

I/O PIN PULL-UP RESISTOR CURRENT vs. INPUT VOLTAGE
VCC = 2.7V

85 °C

25 °C

-40 °C0

10

20

30

40

50

60

70

80

0 0.5 1 1.5 2 2.5 3

VOP (V)

I O
P

(u
A

)

I/O PIN PULL-UP RESISTOR CURRENT vs. INPUT VOLTAGE
VCC = 5V

85 °C

25 °C

-40 °C0

20

40

60

80

100

120

140

160

0 1 2 3 4 5 6

VOP (V)

I O
P

(u
A

)

322
8023F–AVR–07/09

ATmega325P/3250P
Figure 27-26. I/O Pin Source Current vs. Output Voltage, Port B (VCC = 2.7 V)

Figure 27-27. I/O Pin Source Current vs. Output Voltage, Port B (VCC = 5 V)

I/O PIN SOURCE CURRENT vs. OUTPUT VOLTAGE, PORT B
VCC = 2.7V

25 °C

0

5

10

15

20

25

0 0.5 1 1.5 2 2.5 3

VOH (V)

I O
H

(m
A

)

I/O PIN SOURCE CURRENT vs. OUTPUT VOLTAGE, PORT B
VCC = 5V

25 °C

0

10

20

30

40

50

60

70

0 1 2 3 4 5 6

VOH (V)

I O
H

(m
A

)

328
8023F–AVR–07/09

32.4 ATmega3250P rev. A

• Interrupts may be lost when writing the timer registers in the asynchronous timer.
• Using BOD disable will make the chip reset.

1. Interrupts may be lost when writing the timer registers in the asynchronous timer.

The interrupt will be lost if a timer register that is synchronous timer clock is written when the
asynchronous Timer/Counter register (TCNTx) is 0x00.

Problem Fix/Workaround

Always check that the asynchronous Timer/Counter register neither have the value 0xFF nor
0x00 before writing to the asynchronous Timer Control Register (TCCRx), asynchronous
Timer Counter Register (TCNTx), or asynchronous Output Compare Register (OCRx).

2. Using BOD disable will make the chip reset.

If the part enters sleep with the BOD turned off with the BOD disable option

enabled, a BOD reset will be generated at wakeup and the chip will reset.

Problem Fix/Workaround

Do not use BOD disable

32.5 ATmega3250P rev. B

• Interrupts may be lost when writing the timer registers in the asynchronous timer.

1. Interrupts may be lost when writing the timer registers in the asynchronous timer.

The interrupt will be lost if a timer register that is synchronous timer clock is written when the
asynchronous Timer/Counter register (TCNTx) is 0x00.

Problem Fix/Workaround

Always check that the asynchronous Timer/Counter register neither have the value 0xFF nor
0x00 before writing to the asynchronous Timer Control Register (TCCRx), asynchronous
Timer Counter Register (TCNTx), or asynchronous Output Compare Register (OCRx).

32.6 ATmega3250P rev. C

• Interrupts may be lost when writing the timer registers in the asynchronous timer.

1. Interrupts may be lost when writing the timer registers in the asynchronous timer.

The interrupt will be lost if a timer register that is synchronous timer clock is written when the
asynchronous Timer/Counter register (TCNTx) is 0x00.

Problem Fix/Workaround

Always check that the asynchronous Timer/Counter register neither have the value 0xFF nor
0x00 before writing to the asynchronous Timer Control Register (TCCRx), asynchronous
Timer Counter Register (TCNTx), or asynchronous Output Compare Register (OCRx).
355
8023F–AVR–07/09

ATmega325P/3250P

