

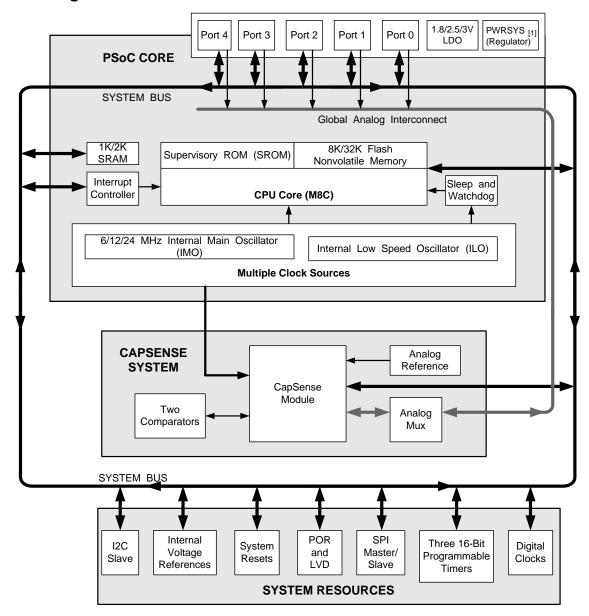
Welcome to **E-XFL.COM**

<u>Embedded - Microcontrollers - Application</u>
<u>Specific</u>: Tailored Solutions for Precision and Performance

Embedded - Microcontrollers - Application Specific represents a category of microcontrollers designed with unique features and capabilities tailored to specific application needs. Unlike general-purpose microcontrollers, application-specific microcontrollers are optimized for particular tasks, offering enhanced performance, efficiency, and functionality to meet the demands of specialized applications.

What Are <u>Embedded - Microcontrollers - Application Specific</u>?

Application charific microcontrollars are angineered to


Details	
Product Status	Obsolete
Applications	Capacitive Sensing
Core Processor	M8C
Program Memory Type	FLASH (8kB)
Controller Series	CY8C20xx6A
RAM Size	1K x 8
Interface	I ² C, SPI
Number of I/O	13
Voltage - Supply	1.71V ~ 5.5V
Operating Temperature	-40°C ~ 85°C
Mounting Type	Surface Mount
Package / Case	16-UFQFN
Supplier Device Package	16-QFN (3x3)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c20236a-24lkxat

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Logic Block Diagram

Note

^{1.} Internal voltage regulator for internal circuitry

CY8C20236A, CY8C20566A

Contents

PSoC® Functional Overview	4
PSoC Core	
CapSense System	
Additional System Resources	
Getting Started	
Application Notes	
Development Kits	5
Training	5
CYPros Consultants	
Solutions Library	5
Technical Support	
Designing with PSoC Designer	
Select Components	
Configure Components	
Organize and Connect	
Generate, Verify, and Debug	
Pinouts	
16-Pin QFN (No E-Pad)	7
48-Pin SSOP	8
Electrical Specifications	9
Absolute Maximum Ratings	
Operating Temperature	9
DC Chip-Level Specifications	10
DC GPIO Specifications	
DC Analog Mux Bus Specifications	13
DC Low Power Comparator Specifications	13
Comparator User Module Electrical Specifications	14
ADC Electrical Specifications	
DC POR and LVD Specifications	15

DC Programming Specifications	I C
AC Chip-Level Specifications	16
AC General Purpose I/O Specifications	17
AC Comparator Specifications	17
AC External Clock Specifications	
AC Programming Specifications	
AC I2C Specifications	19
Packaging Information	22
Thermal Impedances	23
Solder Reflow Specifications	23
Development Tool Selection	24
Software	24
Development Kits	24
Evaluation Tools	25
Device Programmers	25
Accessories (Emulation and Programming)	25
Ordering Information	26
Ordering Code Definitions	26
Reference Information	27
Acronyms	27
Reference Documents	
Document Conventions	27
Glossary	28
Document History Page	
Sales, Solutions, and Legal Information	29
Worldwide Sales and Design Support	
Products	
PSoC Solutions	20

Additional System Resources

System resources provide additional capability, such as I²C slave, SPI master, or SPI slave interfaces, three 16-bit programmable timers, and various system resets supported by the M8C.

These system resources provide additional capability useful to complete systems. Additional resources include low voltage detection and power on reset. The merits of each system resource are listed here:

- The I²C slave/SPI master-slave module provides 50/100/400 kHz communication over two wires. SPI communication over three or four wires runs at speeds of 46.9 kHz to 3 MHz (lower for a slower system clock).
- The I²C hardware address recognition feature reduces the already low power consumption by eliminating the need for CPU intervention until a packet addressed to the target device is received.
- The I²C enhanced slave interface appears as a 32-byte RAM buffer to the external I²C master. Using a simple predefined protocol, the master controls the read and write pointers into the RAM. When this method is enabled, the slave does not stall the bus when receiving data bytes in active mode. For usage details, refer to the application note I2C Enhanced Slave Operation AN56007.
- Low-voltage detection (LVD) interrupts can signal the application of falling voltage levels, while the advanced power-on-reset (POR) circuit eliminates the need for a system supervisor.
- An internal reference provides an absolute reference for capacitive sensing.
- A register-controlled bypass mode allows the user to disable the LDO regulator.

Getting Started

The quickest way to understand PSoC silicon is to read this datasheet and then use the PSoC Designer Integrated Development Environment (IDE). This datasheet is an overview of the PSoC integrated circuit and presents specific pin, register, and electrical specifications.

For in depth information, along with detailed programming details, see the Technical Reference Manual for the CY8C20x36A/66A PSoC devices.

For up-to-date ordering, packaging, and electrical specification information, see the latest PSoC device datasheets on the web at www.cypress.com/psoc.

Application Notes

Application notes are an excellent introduction to the wide variety of possible PSoC designs. They are located at www.cypress.com/psoc. Select Application Notes under the Documentation tab.

Development Kits

PSoC Development Kits are available online from Cypress at www.cypress.com/shop and through a growing number of regional and global distributors, which include Arrow, Avnet, Digi-Key, Farnell, Future Electronics, and Newark. Refer to Development Kits on page 24.

Training

Free PSoC and CapSense technical training (on demand, webinars, and workshops) is available online at www.cypress.com/training. The training covers a wide variety of topics and skill levels to assist you in your designs.

CYPros Consultants

Certified PSoC Consultants offer everything from technical assistance to completed PSoC designs. To contact or become a PSoC Consultant go to www.cypress.com/cypros.

Solutions Library

Visit our growing library of solution focused designs at www.cypress.com/solutions. Here you can find various application designs that include firmware and hardware design files that enable you to complete your designs quickly.

Technical Support

For assistance with technical issues, search KnowledgeBase articles and forums at www.cypress.com/support. If you cannot find an answer to your question, create a technical support case or call technical support at 1-800-541-4736.

Electrical Specifications

This section presents the DC and AC electrical specifications of the CY8C20x36A/66A PSoC devices. For the latest electrical specifications, confirm that you have the most recent datasheet by visiting the web at http://www.cypress.com/psoc.

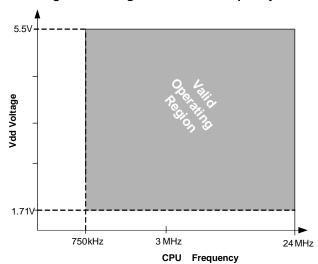


Figure 4. Voltage versus CPU Frequency

Absolute Maximum Ratings

Exceeding maximum ratings may shorten the useful life of the device. User guidelines are not tested.

Table 3. Absolute Maximum Ratings

Symbol	Description	Conditions	Min	Тур	Max	Units
T _{STG}	Storage temperature	Higher storage temperatures reduce data retention time. Recommended Storage Temperature is +25 °C ± 25 °C. Extended duration storage temperatures above 85 °C degrades reliability.	– 55	+25	+125	°C
V_{DD}	Supply voltage relative to V _{SS}	-	-0.5	_	+6.0	V
V _{IO}	DC input voltage	-	V _{SS} - 0.5	_	V _{DD} + 0.5	V
V _{IOZ}	DC voltage applied to tristate	-	V _{SS} - 0.5	_	V _{DD} + 0.5	V
I _{MIO}	Maximum current into any port pin	-	-25	_	+50	mA
ESD	Electro static discharge voltage	Human body model ESD	2000	_	-	V
LU	Latch-up current	In accordance with JESD78 standard	_	_	200	mA

Operating Temperature

Table 4. Operating Temperature

Symbol	Description	Conditions	Min	Тур	Max	Units
T _A	Ambient temperature	-	-40	-	+85	°C
TJ	Operational die temperature	The temperature rise from ambient to junction is package specific. Refer the table Thermal Impedances per Package on page 23. The user must limit the power consumption to comply with this requirement.	-40	_	+100	°C

Document Number: 001-63115 Rev. *B Page 9 of 29

DC Chip-Level Specifications

The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 5. DC Chip-Level Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
V _{DD} ^[7, 8, 9, 10]	Supply voltage	Refer the table DC POR and LVD Specifications on page 15	1.71	_	5.50	V
I _{DD24}	Supply current, IMO = 24 MHz	Conditions are $V_{DD} \le 3.0$ V, $T_A = 25$ °C, CPU = 24 MHz. CapSense running at 12 MHz, no I/O sourcing current	-	3.32	4.00	mA
I _{DD12}	Supply current, IMO = 12 MHz	Conditions are $V_{DD} \le 3.0 \text{ V}$, $T_A = 25 ^{\circ}\text{C}$, CPU = 12 MHz. CapSense running at 12 MHz, no I/O sourcing current	-	1.86	2.60	mA
I _{DD6}	Supply current, IMO = 6 MHz	Conditions are $V_{DD} \le 3.0$ V, $T_A = 25$ °C, CPU = 6 MHz. CapSense running at 6 MHz, no I/O sourcing current	-	1.13	1.80	mA
I _{SB0}	Deep sleep current	$V_{DD} \le 3.0 \text{ V}$, $T_A = 25 ^{\circ}\text{C}$, I/O regulator turned off	_	0.10	0.50	μΑ
I _{SB1}	Standby current with POR, LVD and sleep timer	$V_{DD} \le 3.0 \text{ V}, T_A = 25 ^{\circ}\text{C}, I/O \text{ regulator turned off}$	-	1.07	1.50	μА

Notes

- When V_{DD} remains in the range from 1.71 V to 1.9 V for more than 50 μsec, the slew rate when moving from the 1.71 V to 1.9 V range to greater than 2 V must be slower than 1 V/500 μsec to avoid triggering POR. The only other restriction on slew rates for any other voltage range or transition is the SR_{POWER_UP} parameter.
- 8. If powering down in standby sleep mode, to properly detect and recover from a V_{DD} brown out condition any of the following actions must be taken:

 - a. Bring the device out of sleep before powering down.

 b. Assure that V_{DD} falls below 100 mV before powering back up.

 c. Set the No Buzz bit in the OSC_CR0 register to keep the voltage monitoring circuit powered during sleep.

 d. Increase the buzz rate to assure that the falling edge of V_{DD} is captured. The rate is configured through the PSSDC bits in the SLP_CFG register. For the referenced registers, refer to the CY8C2V33 Technical Reference Manual. In deep sleep mode, additional low power voltage monitoring circuitry allows the productions to be detected for edge rates clower than 11/ms. V_{DD} brown out conditions to be detected for edge rates slower than 1V/ms.
- 9. For USB mode, the V_{DD} supply for bus-powered application should be limited to 4.35V-5.35V. For self-powered application, V_{DD} should be 3.15 V-3.45 V.
- 10. For proper CapSense block functionality, if the drop in V_{DD} exceeds 5% of the base V_{DD}, the rate at which V_{DD} drops should not exceed 200 mV/s. Base V_{DD} can be between 1.8 V and 5.5 V

DC GPIO Specifications

The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 3.0 V to 5.5 V and $-40~^{\circ}\text{C} \le T_{A} \le 85~^{\circ}\text{C}$, 2.4 V to 3.0 V and $-40~^{\circ}\text{C} \le T_{A} \le 85~^{\circ}\text{C}$, or 1.71 V to 2.4 V and $-40~^{\circ}\text{C} \le T_{A} \le 85~^{\circ}\text{C}$, respectively. Typical parameters apply to 5V and 3.3 V at 25 C and are for design guidance only.

Table 6. 3.0-V to 5.5-V DC GPIO Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
R _{PU}	Pull-up resistor	-	4	5.60	8	kΩ
V _{OH1}	High output voltage Port 2 or 3 pins	IOH \leq 10 μ A, maximum of 10 mA source current in all I/Os	V _{DD} – 0.20	-	_	V
V _{OH2}	High output voltage Port 2 or 3 Pins	IOH = 1 mA, maximum of 20 mA source current in all I/Os	V _{DD} – 0.90	-	-	V
V _{OH3}	High output voltage Port 0 or 1 pins with LDO regulator Disabled for port 1	IOH < 10 μA, maximum of 10 mA source current in all I/Os	V _{DD} – 0.20	-	_	V
V _{OH4}	High output voltage Port 0 or 1 pins with LDO regulator Disabled for port 1	IOH = 5 mA, maximum of 20 mA source current in all I/Os	V _{DD} – 0.90	_	-	V
V _{OH5}	High output voltage Port 1 Pins with LDO Regulator Enabled for 3 V out	IOH < 10 μ A, V _{DD} > 3.1 V, maximum of 4 I/Os all sourcing 5 mA	2.85	3.00	3.30	V
V _{OH6}	High output voltage Port 1 pins with LDO regulator enabled for 3 V out	IOH = 5 mA, V _{DD} > 3.1V, maximum of 20 mA source current in all I/Os	2.20	_	_	V
V _{OH7}	High output voltage Port 1 pins with LDO enabled for 2.5 V out	IOH < 10 μA, V _{DD} > 2.7 V, maximum of 20 mA source current in all I/Os	2.35	2.50	2.75	V
V _{OH8}	High output voltage Port 1 pins with LDO enabled for 2.5 V out	IOH = 2 mA, V _{DD} > 2.7 V, maximum of 20 mA source current in all I/Os	1.90	_	-	V
V _{OH9}	High output voltage Port 1 pins with LDO enabled for 1.8 V out	IOH < 10 μA, V _{DD} > 2.7 V, maximum of 20 mA source current in all I/Os	1.60	1.80	2.10	V
V _{OH10}	High output voltage Port 1 pins with LDO enabled for 1.8 V out	IOH = 1 mA, V _{DD} > 2.7 V, maximum of 20 mA source current in all I/Os	1.20	-	-	V
V _{OL}	Low output voltage	IOL = 25 mA, $V_{DD} > 3.3$ V, maximum of 60 mA sink current on even port pins (for example, P0[2] and P1[4]) and 60 mA sink current on odd port pins (for example, P0[3] and P1[5])	-	-	0.75	V
V_{IL}	Input low voltage	_	_	_	0.80	V
V _{IH}	Input high voltage	-	2.00	_	_	V
V_{H}	Input hysteresis voltage	_	_	80	ı	mV
I_{IL}	Input leakage (Absolute Value)	_	_	0.001	1	μА
C _{PIN}	Pin capacitance	Package and pin dependent Temp = 25 °C	0.50	1.70	7	pF

Table 7. 2.4-V to 3.0-V DC GPIO Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
R _{PU}	Pull-up resistor	_	4	5.60	8	kΩ
V _{OH1}	High output voltage Port 2 or 3 pins	IOH < 10 μA, maximum of 10 mA source current in all I/Os	V _{DD} - 0.20	_	_	V
V _{OH2}	High output voltage Port 2 or 3 Pins	IOH = 0.2 mA, maximum of 10 mA source current in all I/Os	V _{DD} - 0.40	_	_	V
V _{OH3}	High output voltage Port 0 or 1 pins with LDO regulator Disabled for port 1	IOH < 10 μA, maximum of 10 mA source current in all I/Os	V _{DD} - 0.20	_	-	V
V _{OH4}	High output voltage Port 0 or 1 pins with LDO regulator Disabled for Port 1	IOH = 2 mA, maximum of 10 mA source current in all I/Os	V _{DD} - 0.50	-	-	V
V _{OH5A}	High output voltage Port 1 pins with LDO enabled for 1.8 V out	IOH < 10 μA, V _{DD} > 2.4 V, maximum of 20 mA source current in all I/Os	1.50	1.80	2.10	V
V _{OH6A}	High output voltage Port 1 pins with LDO enabled for 1.8 V out	IOH = 1 mA, V _{DD} > 2.4 V, maximum of 20 mA source current in all I/Os	1.20	-	-	V
V _{OL}	Low output voltage	IOL = 10 mA, maximum of 30 mA sink current on even port pins (for example, P0[2] and P1[4]) and 30 mA sink current on odd port pins (for example, P0[3] and P1[5])	-	П	0.75	V
V_{IL}	Input low voltage	_	_	_	0.72	V
V _{IH}	Input high voltage	_	1.40	_		V
V _H	Input hysteresis voltage	_	-	80	-	mV
I _{IL}	Input leakage (absolute value)	_	-	1	1000	nA
C _{PIN}	Capacitive load on pins	Package and pin dependent Temp = 25 °C	0.50	1.70	7	pF

Table 8. 1.71-V to 2.4-V DC GPIO Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
R _{PU}	Pull-up resistor	-	4	5.60	8	kΩ
V _{OH1}	High output voltage Port 2 or 3 pins	IOH = 10 μA, maximum of 10 mA source current in all I/Os	V _{DD} – 0.20	-	_	V
V _{OH2}	High output voltage Port 2 or 3 pins	IOH = 0.5 mA, maximum of 10 mA source current in all I/Os	V _{DD} – 0.50	-	_	V
V _{OH3}	High output voltage Port 0 or 1 pins with LDO regulator Disabled for Port 1	IOH = 100 μA, maximum of 10 mA source current in all I/Os	V _{DD} – 0.20	-	_	V
V _{OH4}	High output voltage Port 0 or 1 Pins with LDO Regulator Disabled for Port 1	IOH = 2 mA, maximum of 10 mA source current in all I/Os	V _{DD} – 0.50	_	_	V
V _{OL}	Low output voltage	IOL = 5 mA, maximum of 20 mA sink current on even port pins (for example, P0[2] and P1[4]) and 30 mA sink current on odd port pins (for example, P0[3] and P1[5])	-	-	0.40	V
V_{IL}	Input low voltage	-	_	_	$0.30 \times V_{DD}$	V
V_{IH}	Input high voltage	_	0.65 × V _{DD}	_	-	V

Document Number: 001-63115 Rev. *B

Table 8. 1.71-V to 2.4-V DC GPIO Specifications (continued)

Symbol	Description	Conditions	Min	Тур	Max	Units
V_{H}	Input hysteresis voltage	_	_	80	-	mV
I _{IL}	Input leakage (absolute value)	_	_	1	1000	nA
C _{PIN}	Capacitive load on pins	Package and pin dependent temp = 25 °C	0.50	1.70	7	pF

DC Analog Mux Bus Specifications

The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 9. DC Analog Mux Bus Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
R _{SW}	Switch resistance to common analog bus	-	_	-	800	Ω
R _{GND}	Resistance of initialization switch to $V_{\rm SS}$	_	-	_	800	Ω

The maximum pin voltage for measuring $\rm R_{SW}$ and $\rm R_{GND}$ is 1.8 $\rm V$

DC Low Power Comparator Specifications

The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 10. DC Comparator Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
V_{LPC}	Low power comparator (LPC) common mode	Maximum voltage limited to V _{DD}	0.0	-	1.8	V
I _{LPC}	LPC supply current	_	_	10	40	μΑ
V _{OSLPC}	LPC voltage offset	_	_	2.5	30	mV

Document Number: 001-63115 Rev. *B Page 13 of 29

Comparator User Module Electrical Specifications

The following table lists the guaranteed maximum and minimum specifications. Unless stated otherwise, the specifications are for the entire device voltage and temperature operating range: $-40^{\circ}\text{C} <= \text{TA} <= 85^{\circ}\text{C}$, $1.71\text{V} <= \text{V}_{DD} <= 5.5\text{V}$.

Table 11. Comparator User Module Electrical Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
T _{COMP}	Comparator response time	50 mV overdrive	_	70	100	ns
Offset		Valid from 0.2 V to V _{DD} – 0.2 V – 2.5 30		mV		
Current		Average DC current, 50 mV overdrive	-	20	80	μA
PSRR	Supply voltage > 2 V	Power supply rejection ratio	_	80	-	dB
FORK	Supply voltage < 2 V	Power supply rejection ratio	_	40	_	dB
Input range		_	0		1.5	V

ADC Electrical Specifications

Table 12.ADC User Module Electrical Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
Input		1				
V _{IN}	Input voltage range	_	0	_	VREFADC	V
C _{IIN}	Input capacitance	_	_	_	5	pF
R _{IN}	Input resistance	Equivalent switched cap input resistance for 8-, 9-, or 10-bit resolution	1/(500fF x data clock)	1/(400fF x data clock)	1/(300fF x data clock)	Ω
Reference		•	•	l	I.	
V _{REFADC}	ADC reference voltage	_	1.14	_	1.26	V
Conversion Rate	•	1		l	<u> </u>	
F _{CLK}	Data clock	Source is chip's internal main oscillator. See AC Chip-Level Specifications for accuracy	2.25	-	6	MHz
S8	8-bit sample rate	Data clock set to 6 MHz. sample rate = 0.001/ (2^Resolution/Data Clock)	_	23.43	_	ksps
S10	10-bit sample rate	Data clock set to 6 MHz. sample rate = 0.001/ (2^resolution/data clock)	_	5.85	_	ksps
DC Accuracy	-	1		l	<u> </u>	
RES	Resolution	Can be set to 8-, 9-, or 10-bit	8	_	10	bits
DNL	Differential nonlinearity	-	-1	_	+2	LSB
INL	Integral nonlinearity	_	-2	_	+2	LSB
E _{OFFSET}	Offset error	8-bit resolution	0	3.20	19.20	LSB
		10-bit resolution	0	12.80	76.80	LSB
E _{GAIN}	Gain error	For any resolution	-5	_	+5	%FSR
Power		•	•	•		•
I _{ADC}	Operating current	-	_	2.10	2.60	mA
PSRR	Power supply rejection ratio	PSRR (V _{DD} > 3.0 V)	_	24	_	dB
		PSRR (V _{DD} < 3.0 V)	_	30	-	dB

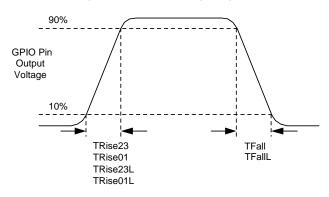
AC Chip-Level Specifications

The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 15. AC Chip-Level Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
F _{IMO24}	Internal main oscillator frequency at 24 MHz Setting	_	22.8	24	25.2	MHz
F _{IMO12}	Internal main oscillator frequency at 12 MHz setting	_	11.4	12	12.6	MHz
F _{IMO6}	Internal main oscillator frequency at 6 MHz setting	_	5.7	6.0	6.3	MHz
F _{CPU}	CPU frequency	-	0.75	_	25.20	MHz
F _{32K1}	Internal low speed oscillator frequency	-	19	32	50	kHz
F _{32K_U}	Internal low speed oscillator (ILO) untrimmed frequency)	_	13	32	82	kHz
DC _{IMO}	Duty cycle of IMO	-	40	50	60	%
DC _{ILO}	Internal low speed oscillator duty cycle	-	40	50	60	%
SR _{POWER_UP}	Power supply slew rate	V _{DD} slew rate during power-up	_	_	250	V/ms
t _{XRST}	External reset pulse width at power-up	After supply voltage is valid	1	_	-	ms
t _{XRST2}	External reset pulse width after power-up ^[15]	Applies after part has booted	10	_	-	μS

15. The minimum required XRES pulse length is longer when programming the device (see Table 19 on page 18).


AC General Purpose I/O Specifications

The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 16. AC GPIO Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
F _{GPIO}	GPIO operating frequency	Normal strong mode Port 0, 1	0	-	6 MHz for 1.71 V <v<sub>DD < 2.40 V</v<sub>	MHz
			0	_	12 MHz for 2.40 V < V _{DD} < 5.50 V	MHz
t _{RISE23}	Rise time, strong mode, Cload = 50 pF Ports 2 or 3	$V_{DD} = 3.0 \text{ to } 3.6 \text{ V}, 10\% \text{ to } 90\%$	15	_	80	ns
t _{RISE23L}	Rise time, strong mode low supply, Cload = 50 pF, Ports 2 or 3	$V_{DD} = 1.71 \text{ to } 3.0 \text{ V}, 10\% \text{ to } 90\%$	15	_	80	ns
t _{RISE01}	Rise time, strong mode, Cload = 50 pF Ports 0 or 1	V _{DD} = 3.0 to 3.6 V, 10% to 90% LDO enabled or disabled	10	_	50	ns
t _{RISE01L}	Rise time, strong mode low supply, Cload = 50 pF, Ports 0 or 1	V _{DD} = 1.71 to 3.0 V, 10% to 90% LDO enabled or disabled	10	_	80	ns
t _{FALL}	Fall time, strong mode, Cload = 50 pF all ports	$V_{DD} = 3.0 \text{ to } 3.6 \text{ V}, 10\% \text{ to } 90\%$	10	_	50	ns
t _{FALLL}	Fall time, strong mode low supply, Cload = 50 pF, all ports	$V_{DD} = 1.71 \text{ to } 3.0 \text{ V}, 10\% \text{ to } 90\%$	10	_	70	ns

Figure 5. GPIO Timing Diagram

AC Comparator Specifications

The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 17. AC Low Power Comparator Specifications

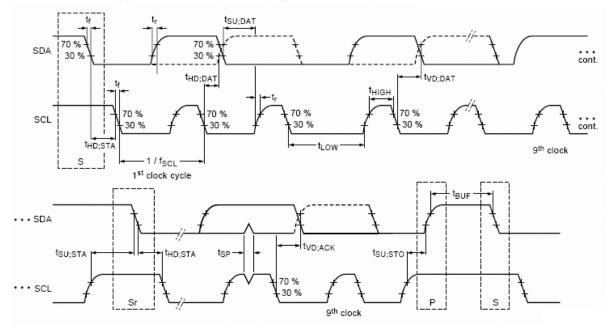
Symbol	Description	Conditions	Min	Тур	Max	Units
t _{LPC}	Comparator response time, 50 mV overdrive	50 mV overdrive does not include offset voltage.	-	-	100	ns

AC External Clock Specifications

The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 18. AC External Clock Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
F _{OSCEXT}	Frequency (external oscillator frequency)	_	0.75	-	25.20	MHz
	High period	_	20.60	-	5300	ns
	Low period	_	20.60	-	-	ns
	Power-up IMO to switch	_	150	1	1	μЅ


AC I²C Specifications

The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 20. AC Characteristics of the I²C SDA and SCL Pins

Symbol	Description	Standard Mode		Fast Mode		Units
	·	Min	Max	Min	Max	
f _{SCL}	SCL clock frequency	0	100	0	400	kHz
t _{HD;STA}	Hold time (repeated) START condition. After this period, the first clock pulse is generated	4.0	_	0.6	-	μs
t_{LOW}	LOW period of the SCL clock	4.7	_	1.3	_	μs
t _{HIGH}	HIGH Period of the SCL clock	4.0	_	0.6	-	μs
t _{SU;STA}	Setup time for a repeated START condition	4.7	_	0.6	-	μs
t _{HD;DAT}	Data hold time	0	3.45	0	0.90	μs
t _{SU;DAT}	Data setup time	250	_	100 ^[16]	-	ns
t _{SU;STO}	Setup time for STOP condition	4.0	_	0.6	-	μs
t _{BUF}	Bus free time between a STOP and START condition	4.7	_	1.3	_	μs
t _{SP}	Pulse width of spikes are suppressed by the input filter	_	_	0	50	ns

Figure 7. Definition for Timing for Fast/Standard Mode on the I²C Bus

Note

^{16.} A Fast-Mode I²C-bus device can be used in a standard mode I²C-bus system, but the requirement t_{SU:DAT} ≥ 250 ns must then be met. This automatically be the case if the device does not stretch the LOW period of the SCL signal. If such device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line t_{rmax} + t_{SU;DAT} = 1000 + 250 = 1250 ns (according to the Standard-Mode I²C-bus specification) before the SCL line is released.

Table 21. SPI Master AC Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
F _{SCLK}	SCLK clock frequency	$\begin{array}{c} V_{DD} \geq 2.4 \ V \\ V_{DD} < 2.4 \ V \end{array}$	_ _	_	6 3	MHz MHz
DC	SCLK duty cycle	_	_	50	_	%
t _{SETUP}	MISO to SCLK setup time	$\begin{array}{c} V_{DD} \geq 2.4 \ V \\ V_{DD} < 2.4 \ V \end{array}$	60 100	_	_ _	ns ns
t _{HOLD}	SCLK to MISO hold time	-	40	_	_	ns
t _{OUT_VAL}	SCLK to MOSI valid time	-	_	_	40	ns
t _{OUT_HIGH}	MOSI high time	_	40	_	_	ns

Figure 8. SPI Master Mode 0 and 2

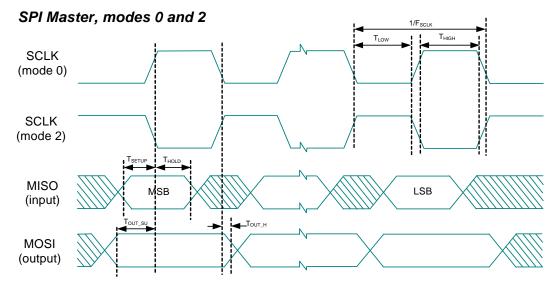


Figure 9. SPI Master Mode 1 and 3

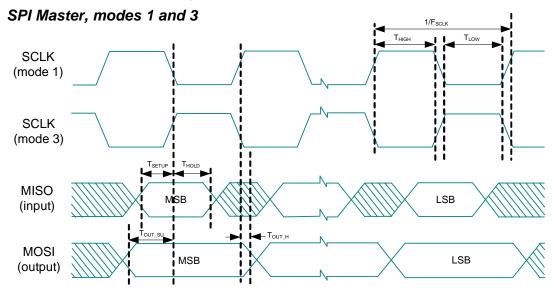


Table 22. SPI Slave AC Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
F _{SCLK}	SCLK clock frequency	V _{DD} ≥ 2.4 V	_	-	12	MHz
	001141	V _{DD} < 2.4 V		_	6	MHz
t_{LOW}	SCLK low time	_	42	_	_	ns
t _{HIGH}	SCLK high time	_	42	_	_	ns
t _{SETUP}	MOSI to SCLK setup time	_	30	_	_	ns
t _{HOLD}	SCLK to MOSI hold time	_	50	_	_	ns
t _{SS_MISO}	SS high to MISO valid	_	_	_	153	ns
t _{SCLK_MISO}	SCLK to MISO valid	_	_	_	125	ns
t _{SS_HIGH}	SS high time	_	50	_	_	ns
t _{SS_CLK}	Time from SS low to first SCLK	_	2/SCLK	_	_	ns
t _{CLK_SS}	Time from last SCLK to SS high	_	2/SCLK	_	_	ns

Figure 10. SPI Slave Mode 0 and 2

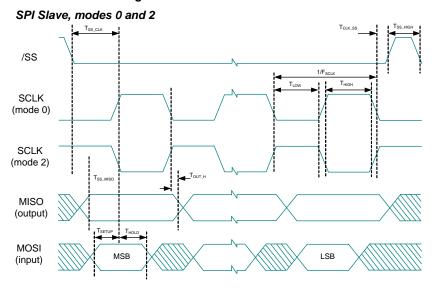
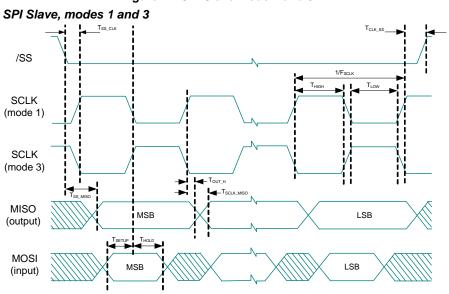
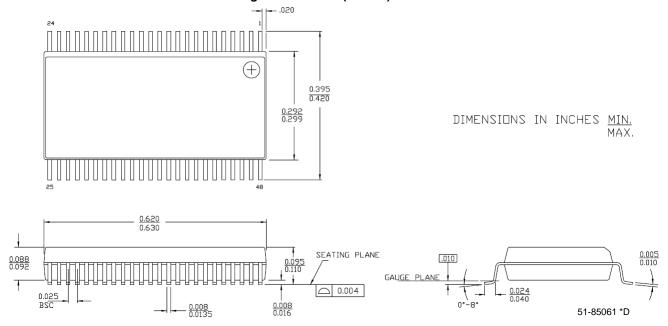



Figure 11. SPI Slave Mode 1 and 3

Packaging Information


This section illustrates the packaging specifications for the CY8C20x36A/66A PSoC device, along with the thermal impedances for each package.

Important Note Emulation tools may require a larger area on the target PCB than the chip's footprint. For a detailed description of the emulation tools' dimensions, refer to the emulator pod drawings at http://www.cypress.com.

0.20 DIA TYP. 0.152 REF 0.60 MAX SEATING PLANE TOP VIEW SIDE VIEW **BOTTOM VIEW** NOTES: PART NO. DESCRIPTION 1. JEDEC # MO-220 2. Package Weight: 0.014g LG16A LEAD-FREE 3. DIMENSIONS IN MM, MIN MAX 001-09116 *E LD16A STANDARD

Figure 12. 16-pin QFN No E-pad 3x3x0.6 mm Package Outline (Sawn)

Important Note For information on the preferred dimensions for mounting QFN packages, refer to Application Note, Application Notes for Surface Mount Assembly of Amkor's MicroLeadFrame (MLF) Packages available at http://www.amkor.com.

Thermal Impedances

Table 23. Thermal Impedances per Package

Package	Typical θ _{JA} ^[17]
16-pin QFN	33 °C/W
48-pin SSOP	69 °C/W

Solder Reflow Specifications

Table 24 shows the solder reflow temperature limits that must not be exceeded.

Table 24. Solder Reflow Specifications

Package	Maximum Peak Temperature (T _C)	Maximum Time above T_C – 5 $^{\circ}C$
16-pin QFN	260 °C	30 seconds
48-pin SSOP	260 °C	30 seconds

Development Tool Selection

Software

PSoC Designer

At the core of the PSoC development software suite is PSoC Designer. Utilized by thousands of PSoC developers, this robust software has been facilitating PSoC designs for years. PSoC Designer is available free of charge at http://www.cypress.com. PSoC Designer comes with a free C compiler.

PSoC Designer Software Subsystems

You choose a base device to work with and then select different onboard analog and digital components called user modules that use the PSoC blocks. Examples of user modules are ADCs, DACs, Amplifiers, and Filters. You configure the user modules for your chosen application and connect them to each other and to the proper pins. Then you generate your project. This prepopulates your project with APIs and libraries that you can use to program your application.

The tool also supports easy development of multiple configurations and dynamic reconfiguration. Dynamic reconfiguration allows for changing configurations at run time. Code Generation Tools PSoC Designer supports multiple third-party C compilers and assemblers. The code generation tools work seamlessly within the PSoC Designer interface and have been tested with a full range of debugging tools. The choice is yours.

Assemblers. The assemblers allow assembly code to be merged seamlessly with C code. Link libraries automatically use absolute addressing or are compiled in relative mode, and linked with other software modules to get absolute addressing.

C Language Compilers. C language compilers are available that support the PSoC family of devices. The products allow you to create complete C programs for the PSoC family devices. The optimizing C compilers provide all the features of C tailored to the PSoC architecture. They come complete with embedded libraries providing port and bus operations, standard keypad and display support, and extended math functionality.

Debugger

PSoC Designer has a debug environment that provides hardware in-circuit emulation, allowing you to test the program in a physical system while providing an internal view of the PSoC device. Debugger commands allow the designer to read and program and read and write data memory, read and write I/O registers, read and write CPU registers, set and clear breakpoints, and provide program run, halt, and step control. The debugger also allows the designer to create a trace buffer of registers and memory locations of interest.

In-Circuit Emulator

A low cost, high functionality In-Circuit Emulator (ICE) is available for development support. This hardware has the

capability to program single devices. The emulator consists of a base unit that connects to the PC by way of a USB port. The base unit is universal and operates with all PSoC devices. Emulation pods for each device family are available separately. The emulation pod takes the place of the PSoC device in the target board and performs full speed (24MHz) operation.

Standard Cypress PSoC IDE tools are available for debugging the CY8C20x36A/66A family of parts. However, the additional trace length and a minimal ground plane in the Flex-Pod can create noise problems that make it difficult to debug the design. A custom bonded On-Chip Debug (OCD) device is available in a 48-pin QFN package. The OCD device is recommended for debugging designs that have high current and/or high analog accuracy requirements. The QFN package is compact and is connected to the ICE through a high density connector.

PSoC Programmer

Flexible enough to be used on the bench in development, yet suitable for factory programming, PSoC Programmer works either as a standalone programming application or it can operate directly from PSoC Designer. PSoC Programmer software is compatible with both PSoC ICE-Cube in-circuit emulator and PSoC MiniProg. PSoC programmer is available free of charge at http://www.cypress.com/psocprogrammer.

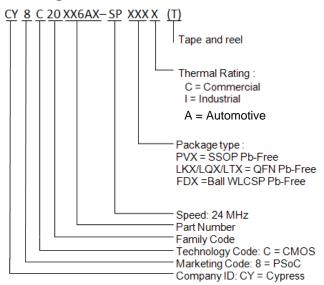
Development Kits

All development kits are sold at the Cypress Online Store.

CY3215-DK Basic Development Kit

The CY3215-DK is for prototyping and development with PSoC Designer. This kit supports in-circuit emulation and the software interface enables users to run, halt, and single step the processor and view the content of specific memory locations. PSoC Designer supports the advance emulation features also. The kit includes:

- PSoC Designer Software CD
- ICE-Cube In-Circuit Emulator
- ICE Flex-Pod for CY8C29x66A Family
- Cat-5 Adapter
- Mini-Eval Programming Board
- 110 ~ 240 V Power Supply, Euro-Plug Adapter
- iMAGEcraft C Compiler (Registration Required)
- ISSP Cable
- USB 2.0 Cable and Blue Cat-5 Cable
- 2 CY8C29466A-24PXI 28-PDIP Chip Samples


Ordering Information

The following table lists the CY8C20x36A/66A PSoC devices' key package features and ordering codes..

Table 26. PSoC Device Key Features and Ordering Information

Package	Ordering Code	Flash (Bytes)	SRAM (Bytes)	CapSense Blocks	Digital I/O Pins	Analog Inputs ^[21]	XRES Pin	USB	ADC
16-Pin (3 × 3 × 0.6 mm) QFN	CY8C20236A-24LKXA	8 K	1 K	1	13	13	Yes	No	Yes
16-Pin (3 × 3 × 0.6 mm) QFN (Tape and Reel)	CY8C20236A-24LKXAT	8 K	1 K	1	13	13	Yes	No	Yes
48-Pin SSOP	CY8C20566A-24PVXA	32 K	2 K	1	34	34	Yes	No	Yes
48-Pin SSOP (Tape and Reel)	CY8C20566A-24PVXAT	32 K	2 K	1	34	34	Yes	No	Yes

Ordering Code Definitions

Reference Information

Acronyms

The following table lists the acronyms that are used in this document.

Table 27. Acronyms Used in this Document

Acronym	Description			
AC	alternating current			
ADC	analog-to-digital converter			
API	application programming interface			
CMOS	complementary metal oxide semiconductor			
CPU	central processing unit			
DAC	digital-to-analog converter			
DC	direct current			
EOP	end of packet			
FSR	full scale range			
GPIO	general purpose input/output			
GUI	graphical user interface			
I ² C	inter-integrated circuit			
ICE	in-circuit emulator			
IDAC	digital analog converter current			
ILO	internal low speed oscillator			
IMO	internal main oscillator			
I/O	input/output			
ISSP	in-system serial programming			
LCD	In-system serial programming liquid crystal display			
LDO	low dropout (regulator)			
LSB				
LVD	least-significant bit low voltage detect			
MCU	micro-controller unit			
MIPS	mega instructions per second			
MISO	master in slave out			
MOSI	master out slave out			
MSB	most-significant bit			
OCD				
	on-chip debugger			
POR	power on reset			
PPOR	precision power on reset			
PSRR	power supply rejection ratio			
PWRSYS	power system			
PSoC®	Programmable System-on-Chip			
SLIMO	slow internal main oscillator			
SRAM	static random access memory			
SNR	signal to noise ratio			
QFN	quad flat no-lead			
SCL	serial I2C clock			
SDA	serial I2C data			
SDATA	serial ISSP data			
SPI	serial peripheral interface			
SS	slave select			
SSOP	shrink small outline package			
TC	test controller			
USB	universal serial bus			
USB D+	USB Data +			
USB D-	USB Data-			
WLCSP	wafer level chip scale package			
XTAL	crystal			

Reference Documents

- Technical reference manual for CY8C20xx6 devices
- In-system Serial Programming (ISSP) protocol for 20xx6 (AN2026C)
- Host Sourced Serial Programming for 20xx6 devices (AN59389)

Document Conventions

Units of Measure

Table 28 lists all the abbreviations used to measure the PSoC devices.

Table 28. Units of Measure

Symbol	Unit of Measure			
°C	degree Celsius			
dB	decibels			
fF	femto farad			
g	gram			
Hz	hertz			
KB	1024 bytes			
Kbit	1024 bits			
KHz	kilohertz			
Ksps	kilo samples per second			
kΩ	kilohm			
MHz	megahertz			
ΜΩ	megaohm			
μΑ	microampere			
μF	microfarad			
μН	microhenry			
μS	microsecond			
μW	microwatts			
mA	milli-ampere			
ms	milli-second			
mV	milli-volts			
nA	nanoampere			
ns	nanosecond			
nV	nanovolts			
W	ohm			
pA	picoampere			
pF	picofarad			
рр	peak-to-peak			
ppm	parts per million			
ps	picosecond			
sps	samples per second			
s	sigma: one standard deviation			
V	volts			
W	watt			

Document History Page

Document Title: CY8C20236A, CY8C20566A Automotive CapSense® Applications Document Number: 001-63115						
Revision	ECN	Origin of Change	Submission Date	Description of Change		
**	2989484	BTK	07/21/10	New Datasheet		
*A	3262255	BTK	05/19/11	Converted from Advance to Preliminary. Added preliminary information to datasheet.		
*B	3311559	BTK	07/13/11	Changed status from Preliminary to Final. Removed "Capacitance on Crystal Pins" section.		

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Automotive cypress.com/go/automotive cypress.com/go/clocks
Interface cypress.com/go/interface cypress.com/go/powerpsoc

cypress.com/go/plc
Memory cypress.com/go/memory
Optical & Image Sensing cypress.com/go/image
PSoC cypress.com/go/psoc
Touch Sensing cypress.com/go/touch
USB Controllers cypress.com/go/USB
Wireless/RF cypress.com/go/wireless

PSoC Solutions

psoc.cypress.com/solutions PSoC 1 | PSoC 3 | PSoC 5

© Cypress Semiconductor Corporation, 2010-2011. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

Document Number: 001-63115 Rev. *B

Revised July 19, 2011

Page 29 of 29