

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	51
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-VQFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj128gb106-i-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

Microchip's Worldwide Web site; http://www.microchip.com

Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

I	Reset – GOTO Instruction	000000h	
	Reset – GOTO Address	000002h	
	Reserved	000004h	
	Oscillator Fail Trap Vector		
	Address Error Trap Vector	-	
	Stack Error Trap Vector		
	Math Error Trap Vector		
	Reserved		
	Reserved		
	Reserved		
	Interrupt Vector 0	000014h]
	Interrupt Vector 1		
	Interrupt Vector 52	00007Ch	
ority	Interrupt Vector 53	00007Eh	Interrupt Vector Table (IVT) ⁽¹⁾
Dric	Interrupt Vector 54	000080h	
r F			
rde	_		
<u>0</u>			
rra	Interrupt Vector 116	0000FCh	
lati	Interrupt Vector 117	0000FEh	
2	Reserved	000100h	
sin	Reserved	000102h	
ea	Reserved		
Decreasing Natural Order Priority	Oscillator Fail Trap Vector		
Ō	Address Error Trap Vector		
	Stack Error Trap Vector		
	Math Error Trap Vector		
	Reserved		
	Reserved		7
	Reserved		
	Interrupt Vector 0	000114h	
	Interrupt Vector 1		
			(1)
	_		Alternate Interrupt Vector Table (AIVT) ⁽¹⁾
	Interrupt Vector 52	00017Ch	
	Interrupt Vector 53	00017Eh	
	Interrupt Vector 54	000180h	
	—		
	—	4	
	—		<u> </u>
Ļ	Interrupt Vector 116		
V	Interrupt Vector 117	0001FEh	
	Start of Code	000200h	

TABLE 7-1: TRAP VECTOR DETAILS

Vector Number	IVT Address	AIVT Address	Trap Source
0	000004h	000104h	Reserved
1	000006h	000106h	Oscillator Failure
2	000008h	000108h	Address Error
3	00000Ah	00010Ah	Stack Error
4	00000Ch	00010Ch	Math Error
5	00000Eh	00010Eh	Reserved
6	000010h	000110h	Reserved
7	000012h	000112h	Reserved

9.2.2 IDLE MODE

Idle mode has these features:

- The CPU will stop executing instructions.
- The WDT is automatically cleared.
- The system clock source remains active. By default, all peripheral modules continue to operate normally from the system clock source, but can also be selectively disabled (see Section 9.4 "Selective Peripheral Module Control").
- If the WDT or FSCM is enabled, the LPRC will also remain active.

The device will wake from Idle mode on any of these events:

- Any interrupt that is individually enabled.
- · Any device Reset.
- A WDT time-out.

On wake-up from Idle, the clock is reapplied to the CPU and instruction execution begins immediately, starting with the instruction following the PWRSAV instruction or the first instruction in the ISR.

9.2.3 INTERRUPTS COINCIDENT WITH POWER SAVE INSTRUCTIONS

Any interrupt that coincides with the execution of a PWRSAV instruction will be held off until entry into Sleep or Idle mode has completed. The device will then wake-up from Sleep or Idle mode.

9.3 Doze Mode

Generally, changing clock speed and invoking one of the power-saving modes are the preferred strategies for reducing power consumption. There may be circumstances, however, where this is not practical. For example, it may be necessary for an application to maintain uninterrupted synchronous communication, even while it is doing nothing else. Reducing system clock speed may introduce communication errors, while using a power-saving mode may stop communications completely.

Doze mode is a simple and effective alternative method to reduce power consumption while the device is still executing code. In this mode, the system clock continues to operate from the same source and at the same speed. Peripheral modules continue to be clocked at the same speed while the CPU clock speed is reduced. Synchronization between the two clock domains is maintained, allowing the peripherals to access the SFRs while the CPU executes code at a slower rate.

Doze mode is enabled by setting the DOZEN bit (CLKDIV<11>). The ratio between peripheral and core clock speed is determined by the DOZE<2:0> bits (CLKDIV<14:12>). There are eight possible configurations, from 1:1 to 1:256, with 1:1 being the default.

It is also possible to use Doze mode to selectively reduce power consumption in event driven applications. This allows clock-sensitive functions, such as synchronous communications, to continue without interruption while the CPU Idles, waiting for something to invoke an interrupt routine. Enabling the automatic return to full-speed CPU operation on interrupts is enabled by setting the ROI bit (CLKDIV<15>). By default, interrupt events have no effect on Doze mode operation.

9.4 Selective Peripheral Module Control

Idle and Doze modes allow users to substantially reduce power consumption by slowing or stopping the CPU clock. Even so, peripheral modules still remain clocked, and thus, consume power. There may be cases where the application needs what these modes do not provide: the allocation of power resources to CPU processing with minimal power consumption from the peripherals.

PIC24F devices address this requirement by allowing peripheral modules to be selectively disabled, reducing or eliminating their power consumption. This can be done with two control bits:

- The Peripheral Enable bit, generically named, "XXXEN", located in the module's main control SFR.
- The Peripheral Module Disable (PMD) bit, generically named, "XXXMD", located in one of the PMD Control registers.

Both bits have similar functions in enabling or disabling their associated module. Setting the PMD bit for a module disables all clock sources to that module, reducing its power consumption to an absolute minimum. In this state, the control and status registers associated with the peripheral will also be disabled, so writes to those registers will have no effect and read values will be invalid. Many peripheral modules have a corresponding PMD bit.

In contrast, disabling a module by clearing its XXXEN bit disables its functionality, but leaves its registers available to be read and written to. This reduces power consumption, but not by as much as setting the PMD bit does. Most peripheral modules have an enable bit; exceptions include input capture, output compare and RTCC.

To achieve more selective power savings, peripheral modules can also be selectively disabled when the device enters Idle mode. This is done through the control bit of the generic name format, "XXXIDL". By default, all modules that can operate during Idle mode will do so. Using the disable on Idle feature allows further reduction of power consumption during Idle mode, enhancing power savings for extremely critical power applications.

NOTES:

17.1 UART Baud Rate Generator (BRG)

The UART module includes a dedicated 16-bit Baud Rate Generator. The UxBRG register controls the period of a free-running, 16-bit timer. Equation 17-1 shows the formula for computation of the baud rate with BRGH = 0.

EQUATION 17-1: UART BAUD RATE WITH BRGH = $0^{(1,2)}$

Baud Rate = $\frac{FCY}{16 \cdot (UxBRG + 1)}$ UxBRG = $\frac{FCY}{16 \cdot Baud Rate} - 1$

Note 1: FCY denotes the instruction cycle clock

- frequency (Fosc/2).
 - **2:** Based on FCY = FOSC/2, Doze mode and PLL are disabled.

Example 17-1 shows the calculation of the baud rate error for the following conditions:

- Fcy = 4 MHz
- Desired Baud Rate = 9600

The maximum baud rate (BRGH = 0) possible is FCY/16 (for UxBRG = 0) and the minimum baud rate possible is FCY/(16 * 65536).

Equation 17-2 shows the formula for computation of the baud rate with BRGH = 1.

EQUATION 17-2: UART BAUD RATE WITH BRGH = $1^{(1,2)}$

		Baud Rate = $\frac{FCY}{4 \cdot (UxBRG + 1)}$
		$UxBRG = \frac{FCY}{4 \cdot Baud Rate} - 1$
Note	1:	Fcy denotes the instruction cycle clock frequency.
	э.	Deced on Fox - Foco/2 Deze made

2: Based on FCY = FOSC/2, Doze mode and PLL are disabled.

The maximum baud rate (BRGH = 1) possible is FcY/4 (for UxBRG = 0) and the minimum baud rate possible is FcY/(4 * 65536).

Writing a new value to the UxBRG register causes the BRG timer to be reset (cleared). This ensures the BRG does not wait for a timer overflow before generating the new baud rate.

EXAMPLE 17-1: BAUD RATE ERROR CALCULATION (BRGH = 0)⁽¹⁾

Desired Baud Rate = FCY/(16 (UxBRG + 1))Solving for UxBRG value: UxBRG = ((FCY/Desired Baud Rate)/16) - 1UxBRG = ((400000/9600)/16) - 1UxBRG = 2.5 Calculated Baud Rate= 4000000/(16 (25 + 1)) 9615 = Error (Calculated Baud Rate - Desired Baud Rate) = Desired Baud Rate = (9615 - 9600)/9600= 0.16%**Note 1:** Based on FCY = FOSC/2, Doze mode and PLL are disabled.

REGISTER 17-1: UXMODE: UARTX MODE REGISTER (CONTINUED)

bit 4	RXINV: Receive Polarity Inversion bit 1 = UxRX Idle state is '0' 0 = UxRX Idle state is '1'
bit 3	BRGH: High Baud Rate Enable bit
	1 = High-Speed mode (baud clock generated from FcY/4)0 = Standard mode (baud clock generated from FcY/16)
bit 2-1	PDSEL<1:0>: Parity and Data Selection bits
	 11 = 9-bit data, no parity 10 = 8-bit data, odd parity 01 = 8-bit data, even parity 00 = 8-bit data, no parity
bit 0	STSEL: Stop Bit Selection bit
	1 = Two Stop bits 0 = One Stop bit

- **Note 1:** If UARTEN = 1, the peripheral inputs and outputs must be configured to an available RPn pin. See **Section 10.4 "Peripheral Pin Select"** for more information.
 - **2:** This feature is only available for the 16x BRG mode (BRGH = 0).

REGISTER 18-1: BDnSTAT: BUFFER DESCRIPTOR n STATUS REGISTER PROTOTYPE, USB MODE (BD0STAT THROUGH BD63STAT)

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
UOWN	DTS	PID3	PID2	PID1	PID0	BC9	BC8
bit 15				•	•		bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
BC7	BC6	BC5	BC4	BC3	BC2	BC1	BC0
bit 7				1			bit (
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	nown
bit 14	the buffe DTS: Data To 1 = Data 1 pa 0 = Data 0 pa	oggle Packet bi acket	t				
bit 13-10	PID<3:0>: Pa In Device mo Represents th In Host mode	acket Identifier <u>de:</u> ne PID of the re <u>:</u>	eceived token o	the USB modu during the last tr nsfer status ind	ransfer.		
bit 9-0	BC<9:0>: By This represer during a tran	te Count its the number	of bytes to be t npletion, the b	transmitted or the optic count is up	ne maximum n		

18.7.2 USB INTERRUPT REGISTERS

REGISTER 18-14: U1OTGIR: USB OTG INTERRUPT STATUS REGISTER (HOST MODE ONLY)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15			•		•		bit 8
bit 15							

R/K-0, HS	U-0	R/K-0, HS					
IDIF	T1MSECIF	LSTATEIF	ACTVIF	SESVDIF	SESENDIF	_	VBUSVDIF
bit 7							bit 0

Legend:	U = Unimplemented bit, read as '0'					
R = Readable bit	K = Write '1' to clear bit	HS = Hardware Settable bit				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15-8	Unimplemented: Read as '0'
bit 7	IDIF: ID State Change Indicator bit
	1 = Change in ID state detected
	0 = No ID state change
bit 6	T1MSECIF: 1 Millisecond Timer bit
	1 = The 1 millisecond timer has expired
	0 = The 1 millisecond timer has not expired
bit 5	LSTATEIF: Line State Stable Indicator bit
	1 = USB line state (as defined by the SE0 and JSTATE bits) has been stable for 1 ms, but different from last time
	0 = USB line state has not been stable for 1 ms
bit 4	ACTVIF: Bus Activity Indicator bit
	1 = Activity on the D+/D- lines or VBUS detected
	0 = No activity on the D+/D- lines or VBUS detected
bit 3	SESVDIF: Session Valid Change Indicator bit
	1 = VBUS has crossed VA_SESS_END (as defined in the USB OTG Specification) ⁽¹⁾
	0 = VBUS has not crossed VA_SESS_END
bit 2	SESENDIF: B-Device VBUS Change Indicator bit
	 1 = VBUS change on B-device detected; VBUS has crossed VB_SESS_END (as defined in the USB OTG Specification)⁽¹⁾
	0 = VBUS has not crossed VA_SESS_END
bit 1	Unimplemented: Read as '0'
bit 0	VBUSVDIF A-Device VBUS Change Indicator bit
	1 = VBUS change on A-device detected; VBUS has crossed VA_VBUS_VLD (as defined in the USB OTG Specification) ⁽¹⁾
	0 = No VBUS change on A-device detected
Note 1:	VBUS threshold crossings may be either rising or falling.

Note: Individual bits can only be cleared by writing a '1' to the bit position as part of a word write operation on the entire register. Using Boolean instructions or bitwise operations to write to a single bit position will cause all set bits at the moment of the write to become cleared.

18.7.4 USB VBUS POWER CONTROL REGISTER

REGISTER 18-22: U1PWMCON: USB VBUS PWM GENERATOR CONTROL REGISTER

R/W-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
PWMEN	_				—	PWMPOL	CNTEN
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	_		_	_	—	—	—
bit 7							bit 0
Legend:							
R = Readabl	le bit	W = Writable b	it	U = Unimplem	nented bit, read	d as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			own
bit 15	PWMEN: PW	M Enable bit					
		nerator is enable					
	0 = PWM gei	nerator is disable	ed; output is h	neld in Reset sta	ate specified b	Y PWMPOL	
bit 14-10	Unimplemen	ted: Read as '0'	•				
bit 9	PWMPOL: P	WM Polarity bit					
	1 = PWM out	put is active-low	and resets h	igh			
		hout is potivo his	h and reacte	low			

0 = PWM output is active-high and resets low

bit 8 CNTEN: PWM Counter Enable bit

- 1 = Counter is enabled
- 0 = Counter is disabled
- bit 7-0 Unimplemented: Read as '0'

REGISTER 19-6: PADCFG1: PAD CONFIGURATION CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—	_		—	_
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
_	—	—		—		RTSECSEL ⁽¹⁾	PMPTTL
bit 7	•	· · · · · ·					bit 0
Legend:							
R = Readable	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'						
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			own

bit 15-2 Unimplemented: Read as '0'

bit 1 RTSECSEL: RTCC Seconds Clock Output Select bit⁽¹⁾ 1 = RTCC seconds clock is selected for the RTCC pin 0 = RTCC alarm pulse is selected for the RTCC pin

bit 0 **PMPTTL:** PMP Module TTL Input Buffer Select bit

1 = PMP module inputs (PMDx, PMCS1) use TTL input buffers

0 = PMP module inputs use Schmitt Trigger input buffers

Note 1: To enable the actual RTCC output, the RTCOE (RCFGCAL<10>)) bit must also be set.

REGISTER 20-1: RCFGCAL: RTCC CALIBRATION AND CONFIGURATION REGISTER⁽¹⁾ (CONTINUED)

bit 7-0 CAL<7:0>: RTC Drift Calibration bits

...

01111111 = Maximum positive adjustment; adds 508 RTC clock pulses every one minute

... 00000001 = Minimum positive adjustment; adds 4 RTC clock pulses every one minute 00000000 = No adjustment

111111111 = Minimum negative adjustment; subtracts 4 RTC clock pulses every one minute

10000000 = Maximum negative adjustment; subtracts 512 RTC clock pulses every one minute

- **Note 1:** The RCFGCAL register is only affected by a POR.
 - **2:** A write to the RTCEN bit is only allowed when RTCWREN = 1.
 - 3: This bit is read-only. It is cleared to '0' on a write to the lower half of the MINSEC register.

REGISTER 20-2: PADCFG1: PAD CONFIGURATION CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	_	—	—	—	—	—	_
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	—	—	—	—	—	RTSECSEL ⁽¹⁾	PMPTTL
bit 7		·				·	bit 0
Legend:							
R = Readable bit W = Writable bit			oit	U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown			own	
L							

Unimplemented: Read as '0'
RTSECSEL: RTCC Seconds Clock Output Select bit ⁽¹⁾
 1 = RTCC seconds clock is selected for the RTCC pin 0 = RTCC alarm pulse is selected for the RTCC pin
PMPTTL: PMP Module TTL Input Buffer Select bit
1 = PMP module inputs (PMDx, PMCS1) use TTL input buffers0 = PMP module inputs use Schmitt Trigger input buffers

Note 1: To enable the actual RTCC output, the RTCOE (RCFGCAL<10>)) bit must also be set.

21.3 Registers

There are four registers used to control programmable CRC operation:

- CRCCON
- CRCXOR
- CRCDAT
- CRCWDAT

REGISTER 21-1: CRCCON: CRC CONTROL REGISTER

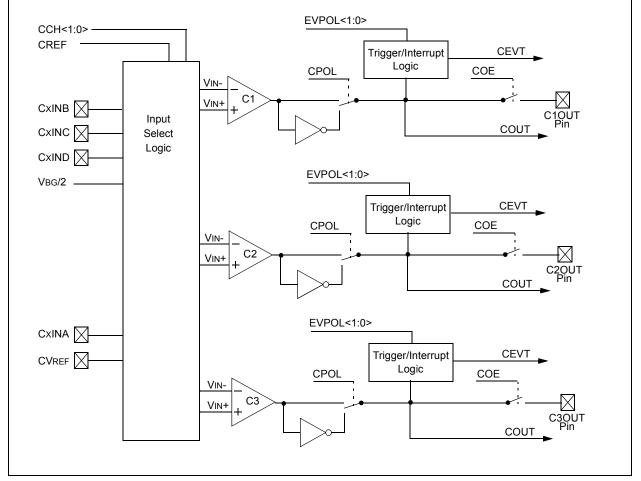
U-0	U-0	R/W-0	R-0	R-0	R-0	R-0	R-0
—	—	CSIDL	VWORD4	VWORD3	VWORD2	VWORD1	VWORD0
bit 15							bit 8

R-0	R-1	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CRCFUL	CRCMPT	—	CRCGO	PLEN3	PLEN2	PLEN1	PLEN0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13	CSIDL: CRC Stop in Idle Mode bit
	1 = Discontinue module operation when device enters Idle mode0 = Continue module operation in Idle mode
bit 12-8	VWORD<4:0>: Pointer Value bits
	Indicates the number of valid words in the FIFO. Has a maximum value of 8 when PLEN<3:0> > 7, or 16 when PLEN<3:0> \leq 7.
bit 7	CRCFUL: FIFO Full bit
	1 = FIFO is full
	0 = FIFO is not full
bit 6	CRCMPT: FIFO Empty Bit
	1 = FIFO is empty
	0 = FIFO is not empty
bit 5	Unimplemented: Read as '0'
bit 4	CRCGO: Start CRC bit
	1 = Start CRC serial shifter
	0 = CRC serial shifter turned off
bit 3-0	PLEN<3:0>: Polynomial Length bits
	Denotes the length of the polynomial to be generated minus 1.

23.0 TRIPLE COMPARATOR MODULE


Note:	This data sheet summarizes the features
	of this group of PIC24F devices. It is not
	intended to be a comprehensive reference
	source. For more information, refer to the
	associated "PIC24F Family Reference
	Manual" chapter.

The triple comparator module provides three dual input comparators. The inputs to the comparator can be configured to use any one of four external analog inputs as well, as a voltage reference input from either the internal band gap reference divided by two (VBG/2) or the comparator voltage reference generator.

The comparator outputs may be directly connected to the CxOUT pins. When the respective COE equals '1', the I/O pad logic makes the unsynchronized output of the comparator available on the pin.

A simplified block diagram of the module in shown in Figure 23-1. Diagrams of the possible individual comparator configurations are shown in Figure 23-2.

Each comparator has its own control register, CMxCON (Register 23-1), for enabling and configuring its operation. The output and event status of all three comparators is provided in the CMSTAT register (Register 23-2).

FIGURE 23-1: TRIPLE COMPARATOR MODULE BLOCK DIAGRAM

REGISTER 26-1: CW1: FLASH CONFIGURATION WORD 1 (CONTINUED)

bit 3-0 **WDTPS<3:0>:** Watchdog Timer Postscaler Select bits

1111 = 1:32,768 1110 = 1:16,384 1101 = 1:8,192 1100 = 1:4,096 1011 = 1:2,048 1010 = 1:1,024 1001 = 1:512 1000 = 1:256 0111 = 1:128 0110 = 1:64 0101 = 1:32 0100 = 1:16 0011 = 1:8 0010 = 1:4 0001 = 1:2 0000 = 1:1

Note 1: The JTAGEN bit can only be modified using In-Circuit Serial Programming[™] (ICSP[™]). It cannot be modified while programming the device through the JTAG interface.

TABLE 29-6: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

DC CHARACTERISTICS						V to 3.6V (unless otherwise stated) 5 +85°C for Industrial		
Parameter No.	Typical ⁽¹⁾	Мах	Units	Inits Conditions				
Power-Down	Current (IPD) ^{(;}	2)	•					
DC60	0.1	1	μA	-40°C				
DC60a	0.15	1	μΑ	+25°C	2.0∨ ⁽³⁾ 2.5∨ ⁽³⁾ 3.3∨ ⁽⁴⁾			
DC60m	2.25	11	μA	+60°C				
DC60b	3.7	18	μΑ	+85°C				
DC60c	0.2	1.4	μΑ	-40°C		7		
DC60d	0.25	1.4	μΑ	+25°C		Base Power-Down Current ⁽⁵⁾		
DC60n	2.6	16.5	μΑ	+60°C		Base Power-Down Current(*)		
DC60e	4.2	27	μΑ	+85°C				
DC60f	3.6	10	μA	-40°C				
DC60g	4.0	10	μΑ	+25°C				
DC60p	8.1	25.2	μΑ	+60°C				
DC60h	11.0	36	μΑ	+85°C				
DC61	1.75	3	μA	-40°C				
DC61a	1.75	3	μA	+25°C	2.0V ⁽³⁾			
DC61m	1.75	3	μA	+60°C	2.000			
DC61b	1.75	3	μA	+85°C				
DC61c	2.4	4	μA	-40°C				
DC61d	2.4	4	μA	+25°C	2.5V ⁽³⁾	Watchdog Timer Current: ∆lwDT ⁽⁵⁾		
DC61n	2.4	4	μA	+60°C	2.50.7			
DC61e	2.4	4	μA	+85°C]			
DC61f	2.8	5	μA	-40°C				
DC61g	2.8	5	μA	+25°C	3.3∨ ⁽⁴⁾			
DC61p	2.8	5	μA	+60°C	3.30			
DC61b	2.8	5	μA	+85°C				

Note 1: Data in the Typical column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: Base IPD is measured with all peripherals and clocks shut down. All I/Os are configured as inputs and pulled high. WDT, etc., are all switched off, PMSLP bit is clear, and the Peripheral Module Disable (PMD) bits for all unused peripherals are set.

3: On-chip voltage regulator disabled (ENVREG tied to Vss).

4: On-chip voltage regulator enabled (ENVREG tied to VDD). Low-Voltage Detect (LVD) and Brown-out Detect (BOD) are enabled.

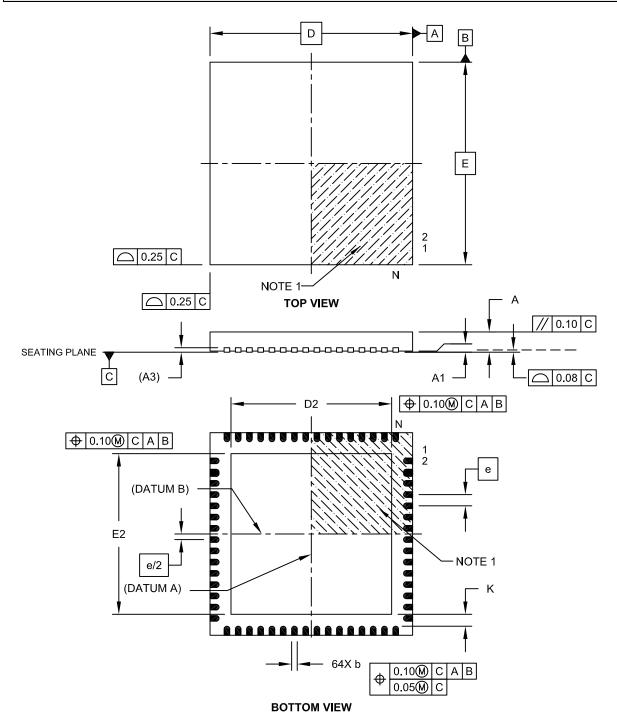
5: The Δ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.

DC CHARACI	FERISTICS		$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Parameter No.	Typical ⁽¹⁾	Мах	Units Conditions				
Power-Down	Current (IPD) ⁽²	2)					
DC62	2.5	7	μΑ	-40°C			
DC62a	2.5	7	μA	+25°C	2.0V ⁽³⁾	RTCC + Timer1 w/32 kHz Crystal: ∆RTCC + ∆I⊺i32 ⁽⁵⁾	
DC62m	3.0	7	μA	+60°C			
DC62b	3.0	7	μA	+85°C			
DC62c	2.8	7	μA	-40°C			
DC62d	3.0	7	μA	+25°C	2.5∨ ⁽³⁾		
DC62n	3.0	7	μA	+60°C	2.50(1)		
DC62e	3.0	7	μA	+85°C			
DC62f	3.5	10	μΑ	-40°C			
DC62g	3.5	10	μA	+25°C	3.3∨ ⁽⁴⁾		
DC62p	4.0	10	μA	+60°C			
DC62h	4.0	10	μA	+85°C			

TABLE 29-6: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD) (CONTINUED)

Note 1: Data in the Typical column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: Base IPD is measured with all peripherals and clocks shut down. All I/Os are configured as inputs and pulled high. WDT, etc., are all switched off, PMSLP bit is clear, and the Peripheral Module Disable (PMD) bits for all unused peripherals are set.


3: On-chip voltage regulator disabled (ENVREG tied to Vss).

4: On-chip voltage regulator enabled (ENVREG tied to VDD). Low-Voltage Detect (LVD) and Brown-out Detect (BOD) are enabled.

5: The Δ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN]


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-149B Sheet 1 of 2

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-149B Sheet 1 of 2

NOTES:

Peripheral Pin Select (PPS)
Available Peripherals and Pins136
Configuration Control 139
Considerations for Use140
Input Mapping136
Mapping Exceptions
Output Mapping
Peripheral Priority
Registers141–159
Pinout Descriptions
PMSLP Bit
and Wake-up Time
POR
and On-Chip Voltage Regulator
Power-Saving Features
Clock Frequency and Clock Switching
Instruction-Based Modes
Idle
Sleep
Power-up Requirements
Product Identification System
Program Memory
Access Using Table Instructions
Address Construction
Address Space
Flash Configuration Words
Memory Maps
Organization
Program Space Visibility
Program Space Visibility (PSV)
Pulse-Width Modulation (PWM) Mode
Pulse-Width Modulation, See PWM.
PWM
Duty Cycle and Period

R

Reader Response	
Reference Clock Output	129
Register Maps	
A/D Converter	53
Comparators	56
CPU Core	
CRC	56
CTMU	53
I ² C	
ICN	
Input Capture	47
Interrupt Controller	45
NVM	58
Output Compare	
Pad Configuration	52
Parallel Master/Slave Port	55
Peripheral Pin Select	57
PMD	58
PORTA	51
PORTB	51
PORTC	51
PORTD	51
PORTE	52
PORTF	52
PORTG	52
RTCC	
SPI	50
System	
Timers	
UART	
USB OTG	54

Registers	
AD1CHS (A/D Input Select)	
AD1CON1 (A/D Control 1)	
AD1CON2 (A/D Control 2)	
AD1CON3 (A/D Control 3)	
AD1CSSL (A/D Input Scan Select, Low)	
AD1PCFGH (A/D Port Configuration, High)	
AD1PCFGL (A/D Port Configuration, Low)	
ALCFGRPT (Alarm Configuration)	
ALMINSEC (Alarm Minutes and Seconds Value)	
ALMTHDY (Alarm Month and Day Value)	
ALWDHR (Alarm Weekday and Hours Value)	259
BDnSTAT Prototype (Buffer Descriptor n	
Status, CPU Mode)	215
BDnSTAT Prototype (Buffer Descriptor n	
Status, USB Mode)	
CLKDIV (Clock Divider)	
CMSTAT (Comparator Status)	
CMxCON (Comparator x Control)	
CORCON (CPU Control)	
CORCON (CPU Core Control)	
CRCCON (CRC Control)	
CRCXOR (CRC XOR Polynomial)	
CTMUCON (CTMU Control)	
CTMUICON (CTMU Current Control)	286
CVRCON (Comparator Voltage	
Reference Control)	
CW1 (Flash Configuration Word 1)	
CW2 (Flash Configuration Word 2)	
CW3 (Flash Configuration Word 3)	
DEVID (Device ID)	
DEVREV (Device Revision)	
I2CxCON (I2Cx Control)	
I2CxMSK (I2Cx Slave Mode Address Mask)	
I2CxSTAT (I2Cx Status)	
ICxCON1 (Input Capture x Control 1)	
ICxCON2 (Input Capture x Control 2)	
IEC0 (Interrupt Enable Control 0)	
IEC1 (Interrupt Enable Control 1)	
IEC2 (Interrupt Enable Control 2)	
IEC3 (Interrupt Enable Control 3)	
IEC4 (Interrupt Enable Control 4)	
IEC5 (Interrupt Enable Control 5)	
IFS0 (Interrupt Flag Status 0) IFS1 (Interrupt Flag Status 1)	
IFS1 (Interrupt Flag Status 2)	
IFS2 (Interrupt Flag Status 2)	
IFS4 (Interrupt Flag Status 4)	
IFS5 (Interrupt Flag Status 5)	
INTCON1 (Interrupt Control 1)	
INTCON2 (Interrupt Control 2)	
INTTREG (Interrupt Control and Status)	
IPC0 (Interrupt Priority Control 0)	
IPC1 (Interrupt Priority Control 1)	
IPC10 (Interrupt Priority Control 10)	
IPC10 (Interrupt Priority Control 10)	
IPC12 (Interrupt Priority Control 12)	
IPC13 (Interrupt Priority Control 13)	
IPC15 (Interrupt Priority Control 15)	
IPC16 (Interrupt Priority Control 16)	
IPC18 (Interrupt Priority Control 18)	
IPC19 (Interrupt Priority Control 19)	
IPC2 (Interrupt Priority Control 2)	
IPC20 (Interrupt Priority Control 20)	. 99
IPC20 (Interrupt Priority Control 20) IPC21 (Interrupt Priority Control 21)	. 99 114
IPC21 (Interrupt Priority Control 21)	. 99 114 115
	99 114 115 116