

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	51
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj128gb106t-i-pt

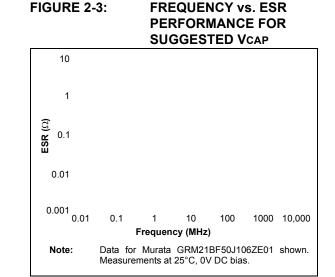
Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.4 Voltage Regulator Pins (ENVREG/DISVREG and VCAP/VDDCORE)

Note:	This secti	on applies	only	to	PIC24FJ
		th an on-chi			

The on-chip voltage regulator enable/disable pin (ENVREG or DISVREG, depending on the device family) must always be connected directly to either a supply voltage or to ground. The particular connection is determined by whether or not the regulator is to be used:

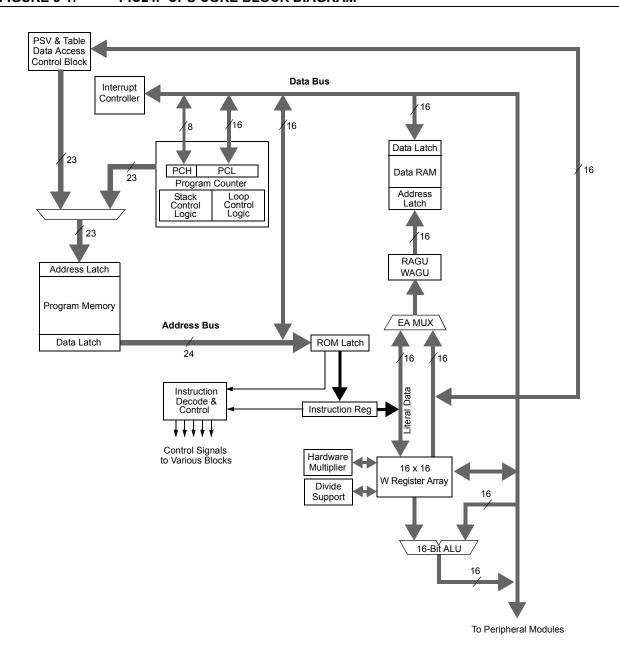

- For ENVREG, tie to VDD to enable the regulator, or to ground to disable the regulator
- For DISVREG, tie to ground to enable the regulator or to VDD to disable the regulator

Refer to **Section 26.2** "**On-Chip Voltage Regulator**" for details on connecting and using the on-chip regulator.

When the regulator is enabled, a low-ESR (<5 Ω) capacitor is required on the VCAP/VDDCORE pin to stabilize the voltage regulator output voltage. The VCAP/VDDCORE pin must not be connected to VDD, and must use a capacitor of 10 μ F connected to ground. The type can be ceramic or tantalum. A suitable example is the Murata GRM21BF50J106ZE01 (10 μ F, 6.3V) or equivalent. Designers may use Figure 2-3 to evaluate ESR equivalence of candidate devices.

The placement of this capacitor should be close to VCAP/VDDCORE. It is recommended that the trace length not exceed 0.25 inch (6 mm). Refer to **Section 29.0 "Electrical Characteristics"** for additional information.

When the regulator is disabled, the VCAP/VDDCORE pin must be tied to a voltage supply at the VDDCORE level. Refer to **Section 29.0 "Electrical Characteristics"** for information on VDD and VDDCORE.


2.5 ICSP Pins

The PGECx and PGEDx pins are used for In-Circuit Serial Programming (ICSP) and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of ohms, not to exceed 100Ω .

Pull-up resistors, series diodes and capacitors on the PGECx and PGEDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin input voltage high (VIH) and input low (VIL) requirements.

For device emulation, ensure that the "Communication Channel Select" (i.e., PGECx/PGEDx pins) programmed into the device matches the physical connections for the ICSP to the Microchip debugger/emulator tool.

For more information on available Microchip development tools connection requirements, refer to **Section 27.0 "Development Support"**.

TABLE 4-3: CPU CORE REGISTERS MAP

IABLE	4-J.	CFUC			R2 MAP													
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
WREG0	0000								Working F	Register 0								0000
WREG1	0002								Working F	Register 1								0000
WREG2	0004		Working Register 2										0000					
WREG3	0006								Working F	Register 3								0000
WREG4	0008								Working F	Register 4								0000
WREG5	000A								Working F	Register 5								0000
WREG6	000C								Working F	Register 6								0000
WREG7	000E								Working F	Register 7								0000
WREG8	0010								Working F	Register 8								0000
WREG9	0012								Working F	Register 9								0000
WREG10	0014								Working R	Register 10								0000
WREG11	0016								Working F	Register 11								0000
WREG12	0018								Working R	Register 12								0000
WREG13	001A								Working R	Register 13								0000
WREG14	001C								Working R	Register 14								0000
WREG15	001E								Working R	Register 15								0800
SPLIM	0020							Stack	Pointer Lin	nit Value Re	egister							xxxx
PCL	002E							Progra	m Counter I	Low Word F	Register							0000
PCH	0030				_	—		—	—			Progra	m Counter	Register Hig	gh Byte			0000
TBLPAG	0032				_	—		—	—			Table N	lemory Pag	e Address I	Register			0000
PSVPAG	0034	_	_	_	_	_	_	_	_		P	rogram Spa	ace Visibility	/ Page Add	ress Registe	er		0000
RCOUNT	0036		Repeat Loop Counter Register									xxxx						
SR	0042	-	_	_	—		_	_	DC	IPL2	IPL1	IPL0	RA	Ν	OV	Z	С	0000
CORCON	0044	_	IPL3 PSV 000									0000						
DISICNT	0052	_	-						Disabl	e Interrupts	Counter R	egister						xxxx

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-7: INPUT CAPTURE REGISTER MAP 1

0
2009
Microchip
Technology
Inc.

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IC1CON1	0140		—	ICSIDL	ICTSEL2	ICTSEL1	ICTSEL0	—	—	—	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0	0000
IC1CON2	0142	_	_	_		_	_	_	IC32	ICTRIG	TRIGSTAT	_	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000D
IC1BUF	0144								Input Cap	ture 1 Buffe	er Register		•			•	•	0000
IC1TMR	0146								Timer	Value 1 Re	egister							xxxx
IC2CON1	0148	_	—	ICSIDL	ICTSEL2	ICTSEL1	ICTSEL0	_	_	_	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0	0000
IC2CON2	014A	_	_	_	—	_	_	_	IC32	ICTRIG	TRIGSTAT	_	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000D
IC2BUF	014C								Input Cap	ture 2 Buffe	er Register							0000
IC2TMR	014E		, , , , , , , , , , , , , , , , , , ,											xxxx				
IC3CON1	0150	_	—	ICSIDL	ICTSEL2	ICTSEL1	ICTSEL0	_	_	_	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0	0000
IC3CON2	0152	_	_	_		_	_	_	IC32	ICTRIG	TRIGSTAT	_	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000D
IC3BUF	0154								Input Capt	ture 3 Buffe	er Register							0000
IC3TMR	0156								Timer	Value 3 Re	egister							xxxx
IC4CON1	0158	_	_	ICSIDL	ICTSEL2	ICTSEL1	ICTSEL0	_	_	_	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0	0000
IC4CON2	015A	-	—	_	_	_	—	_	IC32	ICTRIG	TRIGSTAT	_	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000D
IC4BUF	015C								Input Cap	ture 4 Buffe	er Register							0000
IC4TMR	015E								Timer	Value 4 Re	egister							xxxx
IC5CON1	0160	_	—	ICSIDL	ICTSEL2	ICTSEL1	ICTSEL0	_	_	—	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0	0000
IC5CON2	0162		_	_	_	_	—	_	IC32	ICTRIG	TRIGSTAT	_	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000D
IC5BUF	0164								Input Cap	ture 5 Buffe	er Register							0000
IC5TMR	0166								Timer	Value 5 Re	egister							xxxx
IC6CON1	0168	_		ICSIDL	ICTSEL2	ICTSEL1	ICTSEL0	—	—		ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0	0000
IC6CON2	016A	_			_	—	_	—	IC32	ICTRIG	TRIGSTAT	—	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000D
IC6BUF	016C								Input Capt	ture 6 Buffe	er Register							0000
IC6TMR	016E								Timer	Value 6 Re	egister							xxxx
IC7CON1	0170	_		ICSIDL	ICTSEL2	ICTSEL1	ICTSEL0	_	_	-	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0	0000
IC7CON2	0172	—	_	_		—	—	—	IC32	ICTRIG	TRIGSTAT	—	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000D
IC7BUF	0174								Input Capt	ture 7 Buffe	er Register							0000
IC7TMR	0176								Timer	Value 7 Re	egister							xxxx
IC8CON1	0178	—	_	ICSIDL	ICTSEL2	ICTSEL1	ICTSEL0	—	—	_	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0	0000
IC8CON2	017A	—	—	—	_	—	—	_	IC32	ICTRIG	TRIGSTAT	_	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000D
IC8BUF	017C								Input Cap	ture 8 Buffe	er Register							0000
IC8TMR	017E								Timer	Value 8 Re	egister							xxxx
IC9CON1	0180	_	_	ICSIDL	ICTSEL2	ICTSEL1	ICTSEL0	—	—	_	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0	0000
IC9CON2	0182	_	_	_		_	_		IC32	ICTRIG	TRIGSTAT	_	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000D
IC9BUF	0184								Input Cap	ture 9 Buffe	er Register							0000
IC9TMR	0186								Timer	Value 9 Re	egister							xxxx

DS39897C-page 47

5.2 RTSP Operation

The PIC24F Flash program memory array is organized into rows of 64 instructions or 192 bytes. RTSP allows the user to erase blocks of eight rows (512 instructions) at a time and to program one row at a time. It is also possible to program single words.

The 8-row erase blocks and single row write blocks are edge-aligned, from the beginning of program memory, on boundaries of 1536 bytes and 192 bytes, respectively.

When data is written to program memory using TBLWT instructions, the data is not written directly to memory. Instead, data written using table writes is stored in holding latches until the programming sequence is executed.

Any number of TBLWT instructions can be executed and a write will be successfully performed. However, 64 TBLWT instructions are required to write the full row of memory.

To ensure that no data is corrupted during a write, any unused addresses should be programmed with FFFFFFh. This is because the holding latches reset to an unknown state, so if the addresses are left in the Reset state, they may overwrite the locations on rows which were not rewritten.

The basic sequence for RTSP programming is to set up a Table Pointer, then do a series of TBLWT instructions to load the buffers. Programming is performed by setting the control bits in the NVMCON register.

Data can be loaded in any order and the holding registers can be written to multiple times before performing a write operation. Subsequent writes, however, will wipe out any previous writes.

Note: Writing to a location multiple times without erasing is *not* recommended.

All of the table write operations are single-word writes (2 instruction cycles), because only the buffers are written. A programming cycle is required for programming each row.

5.3 JTAG Operation

The PIC24F family supports JTAG boundary scan. Boundary scan can improve the manufacturing process by verifying pin-to-PCB connectivity.

5.4 Enhanced In-Circuit Serial Programming

Enhanced In-Circuit Serial Programming uses an on-board bootloader, known as the program executive, to manage the programming process. Using an SPI data frame format, the program executive can erase, program and verify program memory. For more information on Enhanced ICSP, see the device programming specification.

5.5 Control Registers

There are two SFRs used to read and write the program Flash memory: NVMCON and NVMKEY.

The NVMCON register (Register 5-1) controls which blocks are to be erased, which memory type is to be programmed and when the programming cycle starts.

NVMKEY is a write-only register that is used for write protection. To start a programming or erase sequence, the user must consecutively write 55h and AAh to the NVMKEY register. Refer to **Section 5.6 "Programming Operations"** for further details.

5.6 Programming Operations

A complete programming sequence is necessary for programming or erasing the internal Flash in RTSP mode. During a programming or erase operation, the processor stalls (waits) until the operation is finished. Setting the WR bit (NVMCON<15>) starts the operation and the WR bit is automatically cleared when the operation is finished.

REGISTER 7-1: SR: ALU STATUS REGISTER (IN CPU)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R-0
	—	—	—	_	—	—	DC ⁽¹⁾
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0
IPL2 ^(2,3)	IPL1 ^(2,3)	IPL0 ^(2,3)	RA ⁽¹⁾	N ⁽¹⁾	0V ⁽¹⁾	Z ⁽¹⁾	C ⁽¹⁾
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-5	IPL<2:0>: CPU Interrupt Priority Level Status bits ^(2,3)
	111 = CPU interrupt priority level is 7 (15). User interrupts disabled.
	110 = CPU interrupt priority level is 6 (14)
	101 = CPU interrupt priority level is 5 (13)
	100 = CPU interrupt priority level is 4 (12)
	011 = CPU interrupt priority level is 3 (11)
	010 = CPU interrupt priority level is 2 (10)
	001 = CPU interrupt priority level is 1 (9)
	000 = CPU interrupt priority level is 0 (8)

- **Note 1:** See Register 3-1 for the description of the remaining bit(s) that are not dedicated to interrupt control functions.
 - **2:** The IPL bits are concatenated with the IPL3 bit (CORCON<3>) to form the CPU interrupt priority level. The value in parentheses indicates the interrupt priority level if IPL3 = 1.
 - 3: The IPL Status bits are read-only when NSTDIS (INTCON1<15>) = 1.

REGISTER 7-2: CORCON: CPU CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—	—	—	—	—	—	—	
bit 15							bit 8	
U-0	U-0	U-0	U-0	R/C-0	R/W-0	U-0	U-0	
—	_	—		IPL3 ⁽²⁾	PSV ⁽¹⁾	—	—	
bit 7							bit 0	
Legend:		C = Clearable	bit					
R = Readable b	oit	W = Writable I	bit	U = Unimpler	nented bit, read	as '0'		
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknowr				

bit 3 IPL3: CPU Interrupt Priority Level Status bit⁽²⁾ 1 = CPU interrupt priority level is greater than 7 0 = CPU interrupt priority level is 7 or less

- **Note 1:** See Register 3-2 for the description of the remaining bit(s) that are not dedicated to interrupt control functions.
 - 2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU interrupt priority level.

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_	T2IP2	T2IP1	T2IP0	_	OC2IP2	OC2IP1	OC2IP0
bit 15							bit
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
_	IC2IP2	IC2IP1	IC2IP0	—	_	_	_
bit 7							bit
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplei	mented bit, read	l as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 11 bit 10-8	• • 001 = Interru 000 = Interru Unimplemen OC2IP<2:0>:	pt is priority 7 (I pt is priority 1 pt source is dis ated: Read as '(c Output Compa pt is priority 7 (I	abled)' re Channel 2	Interrupt Priorit	ty bits		
bit 7 bit 6-4	Unimplemen IC2IP<2:0>:	pt source is dis ited: Read as '(Input Capture C pt is priority 7 (I)' Shannel 2 Inte		S		
bit 3-0	000 = Interru	pt is priority i pt source is dis ited: Read as '(

REGISTER 7-18: IPC1: INTERRUPT PRIORITY CONTROL REGISTER 1

REGISTER 7-29: IPC12: INTERRUPT PRIORITY CONTROL REGISTER 12

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
—	_			—	MI2C2P2	MI2C2P1	MI2C2P0
bit 15							bit 8

U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0			
—	SI2C2P2	SI2C2P1	SI2C2P0	—			_			
bit 7	bit 7 bit 0									

Legend:								
R = Readable bit		W = Writable bit	U = Unimplemented bit	, read as '0'				
-n = Value a	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				
bit 15-11	Unimpler	nented: Read as '0'						
bit 10-8	•							
	• 001 = Interrupt is priority 1 000 = Interrupt source is disabled							
bit 7	Unimpler	nented: Read as '0'						
bit 6-4		2:0>: Slave I2C2 Event Inter errupt is priority 7 (highest p	1 2					

- 111 = Interrupt is priority 7 (highest priority interrup
 - 001 = Interrupt is priority 1 000 = Interrupt source is disabled
- bit 3-0 Unimplemented: Read as '0'

10.1.1 OPEN-DRAIN CONFIGURATION

In addition to the PORT, LAT and TRIS registers for data control, each port pin can also be individually configured for either digital or open-drain output. This is controlled by the Open-Drain Control register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output.

The open-drain feature allows the generation of outputs higher than VDD (e.g., 5V) on any desired digital only pins by using external pull-up resistors. The maximum open-drain voltage allowed is the same as the maximum VIH specification.

10.2 Configuring Analog Port Pins

The AD1PCFGL and TRIS registers control the operation of the A/D port pins. Setting a port pin as an analog input also requires that the corresponding TRIS bit be set. If the TRIS bit is cleared (output), the digital output level (VOH or VOL) will be converted.

When reading the PORT register, all pins configured as analog input channels will read as cleared (a low level).

Pins configured as digital inputs will not convert an analog input. Analog levels on any pin that is defined as a digital input (including the ANx pins) may cause the input buffer to consume current that exceeds the device specifications.

10.2.1 I/O PORT WRITE/READ TIMING

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically, this instruction would be a NOP.

10.2.2 ANALOG INPUT PINS AND VOLTAGE CONSIDERATIONS

The voltage tolerance of pins used as device inputs is dependent on the pin's input function. Pins that are used as digital only inputs are able to handle DC voltages up to 5.5V, a level typical for digital logic circuits. In contrast, pins that also have analog input functions of any kind can only tolerate voltages up to VDD. Voltage excursions beyond VDD on these pins are always to be avoided. Table 10-1 summarizes the input capabilities. Refer to **Section 29.1 "DC Characteristics"** for more details.

Note: For easy identification, the pin diagrams at the beginning of the data sheet also indicate 5.5V tolerant pins with dark grey shading.

TABLE 10-1: INPUT VOLTAGE LEVELS⁽¹⁾

Port or Pin	Tolerated Input	Description
PORTA<10:9>	Vdd	Only VDD input
PORTB<15:0>		levels tolerated.
PORTC<15:12>		
PORTD<7:6>		
PORTF<0>		
PORTG<9:6>, PORTG<3:2>		
PORTA<15:14>, PORTA<7:0>	5.5V	Tolerates input levels above
PORTC<4:1>		VDD, useful for
PORTD<15:8>, PORTD<5:0>		most standard logic.
PORTE<9:0>		
PORTF<13:12>, PORTF<8>, PORTF<5:1>		
PORTG<15:12>, PORTG<1:0>		

Note 1: Not all port pins shown here are implemented on 64-pin and 80-pin devices. Refer to Section 1.0 "Device Overview" to confirm which ports are available in specific devices.

EXAMPLE 10-1: PORT WRITE/READ EXAMPLE

MOV 0xFF00, W0 MOV W0, TRISBB NOP BTSS PORTB, #13 ; Configure PORTB<15:8> as inputs
; and PORTB<7:0> as outputs

- ; Delay 1 cycle
- ; Next Instruction

For 32-bit cascaded operation, these steps are also necessary:

- Set the OC32 bits for both registers (OCyCON2<8> and (OCxCON2<8>). Enable the even numbered module first to ensure the modules will start functioning in unison.
- Clear the OCTRIG bit of the even module (OCyCON2), so the module will run in Synchronous mode.
- 3. Configure the desired output and Fault settings for OCy.
- 4. Force the output pin for OCx to the output state by clearing the OCTRIS bit.
- If Trigger mode operation is required, configure the trigger options in OCx by using the OCTRIG (OCxCON2<7>), TRIGSTAT (OCxCON2<6>), and SYNCSEL (OCxCON2<4:0>) bits.
- Configure the desired compare or PWM mode of operation (OCM<2:0>) for OCy first, then for OCx.

Depending on the output mode selected, the module holds the OCx pin in its default state, and forces a transition to the opposite state when OCxR matches the timer. In Double Compare modes, OCx is forced back to its default state when a match with OCxRS occurs. The OCxIF interrupt flag is set after an OCxR match in Single Compare modes, and after each OCxRS match in Double Compare modes.

Single-shot pulse events only occur once, but may be repeated by simply rewriting the value of the OCxCON1 register. Continuous pulse events continue indefinitely until terminated.

14.3 Pulse-Width Modulation (PWM) Mode

In PWM mode, the output compare module can be configured for edge-aligned or center-aligned pulse waveform generation. All PWM operations are double-buffered (buffer registers are internal to the module and are not mapped into SFR space).

To configure the output compare module for PWM operation:

- 1. Configure the OCx output for one of the available Peripheral Pin Select pins.
- 2. Calculate the desired duty cycles and load them into the OCxR register.
- 3. Calculate the desired period and load it into the OCxRS register.
- Select the current OCx as the sync source by writing 0x1F to SYNCSEL<4:0> (OCxCON2<4:0>), and clearing OCTRIG (OCxCON2<7>).
- 5. Select a clock source by writing the OCTSEL<2:0> (OCxCON<12:10>) bits.
- 6. Enable interrupts, if required, for the timer and output compare modules. The output compare interrupt is required for PWM Fault pin utilization.
- 7. Select the desired PWM mode in the OCM<2:0> (OCxCON1<2:0>) bits.
- If a timer is selected as a clock source, set the TMRy prescale value and enable the time base by setting the TON (TxCON<15>) bit.
- Note: This peripheral contains input and output functions that may need to be configured by the Peripheral Pin Select. See Section 10.4 "Peripheral Pin Select" for more information.

REGISTER 15-1: SPIx STATUS AND CONTROL REGISTER (CONTINUED)

- bit 1 SPITBF: SPIx Transmit Buffer Full Status bit 1 = Transmit not yet started, SPIxTXB is full 0 = Transmit started, SPIxTXB is empty In Standard Buffer mode: Automatically set in hardware when CPU writes SPIxBUF location, loading SPIxTXB. Automatically cleared in hardware when SPIx module transfers data from SPIxTXB to SPIxSR. In Enhanced Buffer mode: Automatically set in hardware when CPU writes SPIxBUF location, loading the last available buffer location. Automatically cleared in hardware when a buffer location is available for a CPU write. bit 0 SPIRBF: SPIx Receive Buffer Full Status bit 1 = Receive complete, SPIxRXB is full 0 = Receive is not complete, SPIxRXB is empty In Standard Buffer mode: Automatically set in hardware when SPIx transfers data from SPIxSR to SPIxRXB. Automatically cleared in hardware when core reads SPIxBUF location, reading SPIxRXB. In Enhanced Buffer mode: Automatically set in hardware when SPIx transfers data from SPIxSR to buffer, filling the last unread buffer location. Automatically cleared in hardware when a buffer location is available for a transfer from SPIxSR.
- **Note 1:** If SPIEN = 1, these functions must be assigned to available RPn pins before use. See **Section 10.4** "**Peripheral Pin Select**" for more information.

REGISTER 18-1: BDnSTAT: BUFFER DESCRIPTOR n STATUS REGISTER PROTOTYPE, USB MODE (BD0STAT THROUGH BD63STAT)

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
UOWN	DTS	PID3	PID2	PID1	PID0	BC9	BC8	
bit 15		•		•	•		bit 8	
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
BC7	BC6	BC5	BC4	BC3	BC2	BC1	BC0	
bit 7				1			bit (
Legend:								
R = Readab	le bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'		
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		
bit 14	1 = Data 1 p	oggle Packet bi acket	t					
bit 13-10	 0 = Data 0 packet PID<3:0>: Packet Identifier bits (written by the USB module) In Device mode: Represents the PID of the received token during the last transfer. In Host mode: Represents the last returned PID or the transfer status indicator. 							
bit 9-0	BC<9:0>: By This represer during a tran	te Count its the number	of bytes to be t npletion, the b	transmitted or the optic count is up	ne maximum n			

18.7.2 USB INTERRUPT REGISTERS

REGISTER 18-14: U1OTGIR: USB OTG INTERRUPT STATUS REGISTER (HOST MODE ONLY)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_ /	—	—	—	_	—	_	_
bit 15	-	•			•		bit 8
DIL 15							Ľ

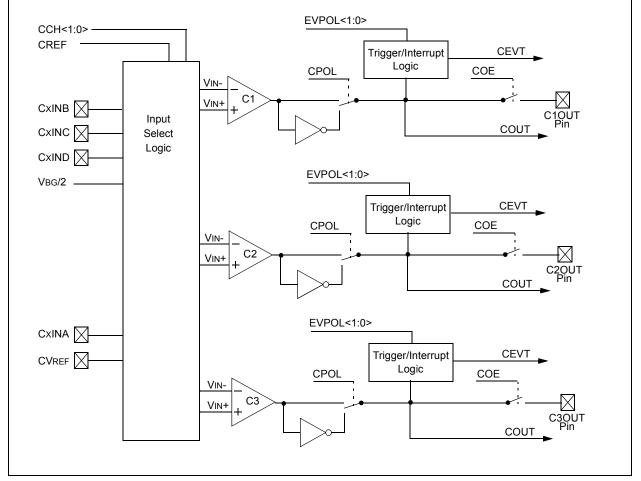
R/K-0, HS	U-0	R/K-0, HS					
IDIF	T1MSECIF	LSTATEIF	ACTVIF	SESVDIF	SESENDIF	_	VBUSVDIF
bit 7							bit 0

Legend:	U = Unimplemented bit, read as '0'					
R = Readable bit	K = Write '1' to clear bit	HS = Hardware Settable bit				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15-8	Unimplemented: Read as '0'
bit 7	IDIF: ID State Change Indicator bit
	1 = Change in ID state detected
	0 = No ID state change
bit 6	T1MSECIF: 1 Millisecond Timer bit
	1 = The 1 millisecond timer has expired
	0 = The 1 millisecond timer has not expired
bit 5	LSTATEIF: Line State Stable Indicator bit
	1 = USB line state (as defined by the SE0 and JSTATE bits) has been stable for 1 ms, but different from last time
	0 = USB line state has not been stable for 1 ms
bit 4	ACTVIF: Bus Activity Indicator bit
	1 = Activity on the D+/D- lines or VBUS detected
	0 = No activity on the D+/D- lines or VBUS detected
bit 3	SESVDIF: Session Valid Change Indicator bit
	1 = VBUS has crossed VA_SESS_END (as defined in the USB OTG Specification) ⁽¹⁾
	0 = VBUS has not crossed VA_SESS_END
bit 2	SESENDIF: B-Device VBUS Change Indicator bit
	1 = VBUS change on B-device detected; VBUS has crossed VB_SESS_END (as defined in the USB OTG Specification) ⁽¹⁾
	0 = VBUS has not crossed VA_SESS_END
bit 1	Unimplemented: Read as '0'
bit 0	VBUSVDIF A-Device VBUS Change Indicator bit
	1 = VBUS change on A-device detected; VBUS has crossed VA_VBUS_VLD (as defined in the USB OTG Specification) ⁽¹⁾
	0 = No VBUS change on A-device detected
Note 1:	VBUS threshold crossings may be either rising or falling.

Note: Individual bits can only be cleared by writing a '1' to the bit position as part of a word write operation on the entire register. Using Boolean instructions or bitwise operations to write to a single bit position will cause all set bits at the moment of the write to become cleared.

23.0 TRIPLE COMPARATOR MODULE


Note:	This data sheet summarizes the features						
	of this group of PIC24F devices. It is not						
	intended to be a comprehensive reference						
	source. For more information, refer to the						
	associated "PIC24F Family Reference						
	Manual" chapter.						

The triple comparator module provides three dual input comparators. The inputs to the comparator can be configured to use any one of four external analog inputs as well, as a voltage reference input from either the internal band gap reference divided by two (VBG/2) or the comparator voltage reference generator.

The comparator outputs may be directly connected to the CxOUT pins. When the respective COE equals '1', the I/O pad logic makes the unsynchronized output of the comparator available on the pin.

A simplified block diagram of the module in shown in Figure 23-1. Diagrams of the possible individual comparator configurations are shown in Figure 23-2.

Each comparator has its own control register, CMxCON (Register 23-1), for enabling and configuring its operation. The output and event status of all three comparators is provided in the CMSTAT register (Register 23-2).

FIGURE 23-1: TRIPLE COMPARATOR MODULE BLOCK DIAGRAM

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
CTMUEN		CTMUSIDL	TGEN	EDGEN	EDGSEQEN	IDISSEN	CTTRIG			
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
EDG2POL	EDG2SEL1	EDG2SEL0	EDG1POL	EDG1SEL1	EDG1SEL0	EDG2STAT	EDG1STAT			
bit 7							bit C			
Legend:										
R = Readable		W = Writable I	oit	•	nented bit, read	l as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own			
bit 15		FMU Enable bit								
	1 = Module is 0 = Module is									
bit 14		ited: Read as '0)'							
bit 13	-	Stop in Idle Mod								
		nue module ope		evice enters Idl	e mode					
		module operat			0					
bit 12	TGEN: Time	Generation Ena	ble bit ⁽¹⁾							
	1 = Enables edge delay generation									
	0 = Disables edge delay generation									
bit 10	EDGEN: Edg									
	1 = Edges are not blocked 0 = Edges are blocked									
bit 10	•	Edge Sequence	e Enable hit							
		vent must occu		2 event can or	cur					
		sequence is ne								
bit 9	IDISSEN: An	alog Current Sc	ource Control b	oit						
	1 = Analog current source output is grounded									
		urrent source o	utput is not gro	bunded						
bit 8	-	ger Control bit								
	1 = Trigger output is enabled 0 = Trigger output is disabled									
bit 7		Edge 2 Polarity S								
		rogrammed for		e response						
		rogrammed for								
bit 6-5	EDG2SEL<1	:0>: Edge 2 So	urce Select bit	s						
	11 = CTED1									
	10 = CTED2	•								
	01 = OC1 mo 00 = Timer1 r									
bit 4		dge 1 Polarity S	Select bit							
		rogrammed for		e response						
		rogrammed for								
Note 1: If]	CEN - 1 that	CTEDGx inputs	and CTDI S a	utoute must be	assigned to av	ailabla PDn nin				

See Section 10.4 "Peripheral Pin Select" for more information.

REGISTER 25-1: CTMUCON: CTMU CONTROL REGISTER

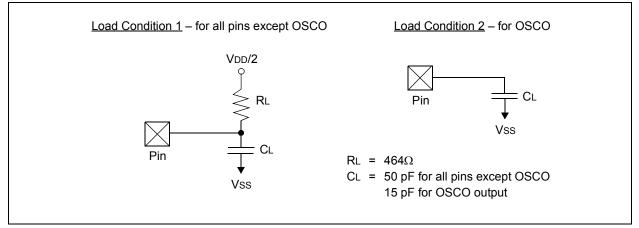
© 2009 Microchip Technology Inc.

Assembly Mnemonic	Assembly Syntax		Description	# of Words	# of Cycles	Status Flags Affected
TBLRDH	TBLRDH	Ws,Wd	Read Prog<23:16> to Wd<7:0>	1	2	None
TBLRDL	TBLRDL	Ws,Wd	Read Prog<15:0> to Wd	1	2	None
TBLWTH	TBLWTH	Ws,Wd	Write Ws<7:0> to Prog<23:16>	1	2	None
TBLWTL	TBLWTL	Ws,Wd	Write Ws to Prog<15:0>	1	2	None
ULNK	ULNK		Unlink Frame Pointer	1	1	None
XOR	XOR	f	f = f .XOR. WREG	1	1	N, Z
	XOR	f,WREG	WREG = f .XOR. WREG	1	1	N, Z
	XOR	#lit10,Wn	Wd = lit10 .XOR. Wd	1	1	N, Z
	XOR	Wb,Ws,Wd	Wd = Wb .XOR. Ws	1	1	N, Z
	XOR	Wb,#lit5,Wd	Wd = Wb .XOR. lit5	1	1	N, Z
ZE	ZE	Ws,Wnd	Wnd = Zero-Extend Ws	1	1	C, Z, N

TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)

TABLE 29-10: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS

Operati	Operating Conditions: -40°C < TA < +125°C (unless otherwise stated)								
Param No.	Symbol	Characteristics	Min	Тур	Max	Units	Comments		
	Vrgout	Regulator Output Voltage	_	2.5	_	V			
	Vbg	Internal Band Gap Reference	_	1.2	_	V			
	CEFC	External Filter Capacitor Value	4.7	10		μF	Series resistance < 3 Ohm recommended; < 5 Ohm required.		
	TVREG	Regulator Start-up Time							
			—	10	—	μS	PMSLP = 1, or any POR or BOR		
			_	190	_	μS	Wake for sleep when PMSLP = 0		
	Твg	Band Gap Reference Start-up Time		_	1	ms			

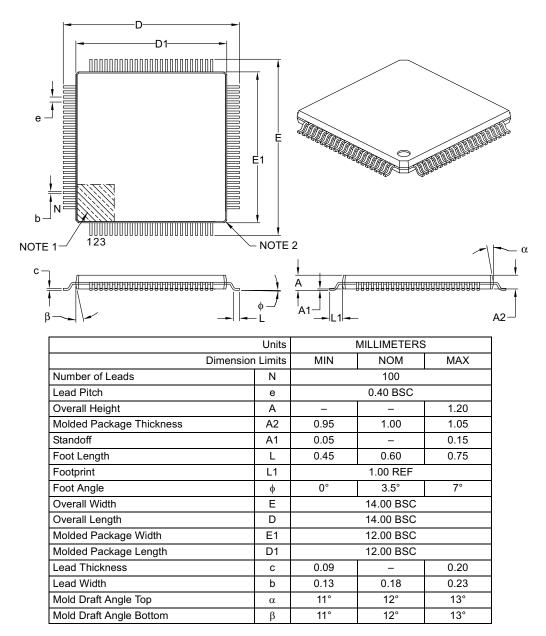

29.2 AC Characteristics and Timing Parameters

The information contained in this section defines the PIC24FJ256GB110 family AC characteristics and timing parameters.

TABLE 29-11: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC

	Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated)			
AC CHARACTERISTICS	Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial			
	Operating voltage VDD range as described in Section 29.1 "DC Characteristics".			

FIGURE 29-2: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS


TABLE 29-12: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions
DO50	Cosc2	OSCO/CLKO pin	_	—	15		In XT and HS modes when external clock is used to drive OSCI.
DO56	Сю	All I/O pins and OSCO	—	—	50	pF	EC mode.
DO58	Св	SCLx, SDAx		—	400	pF	In I ² C™ mode.

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

100-Lead Plastic Thin Quad Flatpack (PT) – 12x12x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Chamfers at corners are optional; size may vary.
- 3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-100B

D

Data Memory	
Address Space	41
Memory Map	41
Near Data Space	
SFR Space	
Software Stack	59
Space Organization	
DC Characteristics	
I/O Pin Input Specifications	318
I/O Pin Output Specifications	319
Idle Current	315
Operating Current	314
Power-Down Current	316
Program Memory Specifications	319
Development Support	299
Device Features (Summary)	
100-Pin	15
64-Pin	
80-Pin	14
Doze Mode	132

Е

Electrical Characteristics	
A/D Specifications	
Absolute Maximum Ratings	
External Clock	
Internal Voltage Regulator Specifications	
Load Conditions and Requirements for	
Specifications	
PLL Clock Specifications	
Temperature and Voltage Specifications	
Thermal Conditions	
V/F Graph	
ENVREG Pin	
Equations	
A/D Conversion Clock Period274	
Baud Rate Reload Calculation 193	
Calculating the PWM Period176	
Calculation for Maximum PWM Resolution	
Estimating USB Transceiver Current	
Consumption211	
Relationship Between Device and SPI	
Clock Speed190	
RTCC Calibration	
UART Baud Rate with BRGH = 0	
UART Baud Rate with BRGH = 1	
Errata 9	

F

40, 287–291
63
63
64
64
64
69

I

I/O Ports	
Analog Port Pins Configuration	
Input Change Notification	
Open-Drain Configuration	
Parallel (PIO)	

Peripheral Pi	n Select	135
Pull-ups and	Pull-downs	
I ² C		
	dresses	
-	Rate as Bus Master	
	ss Masking	193
Input Capture		
	rations	
	and Trigger Modes	
Input Capture with Instruction Set	Dedicated Timers	169
		205
Inter-Integrated Ci	ircuit. See I ² C.	101
	able (IVT)	
Interrupts		/ /
•	equence	77
	Status Registers	
	Vectors	
	ervice Procedures	
Vector Table		78
IrDA Support		201
J		
•		207
JTAG Intenace		297
Μ		
Microchip Internet	Web Site	348
	ssembler, Linker, Librarian	
	Development Environment	
Software	•	299
MPLAB PM3 Devi	ce Programmer	302
MPLAB REAL ICE	E In-Circuit Emulator System	301
MPLINK Object Li	nker/MPLIB Object Librarian	300
N		
		12
		42
0		
Oscillator Configu		
Clock Selecti	on	122
	ing	
	се	
	g Scheme	
0	uration on POR	
USB Operati	on	128

Special Considerations	129
Output Compare	
32-Bit Mode	173
Synchronous and Trigger Modes	173
Output Compare with Dedicated Timers	173
Ρ	
Packaging	327
Details	
Marking	327

Parallel Master Port. See PMP	
Peripheral Enable Bits	132
Peripheral Module Disable Bits	132