

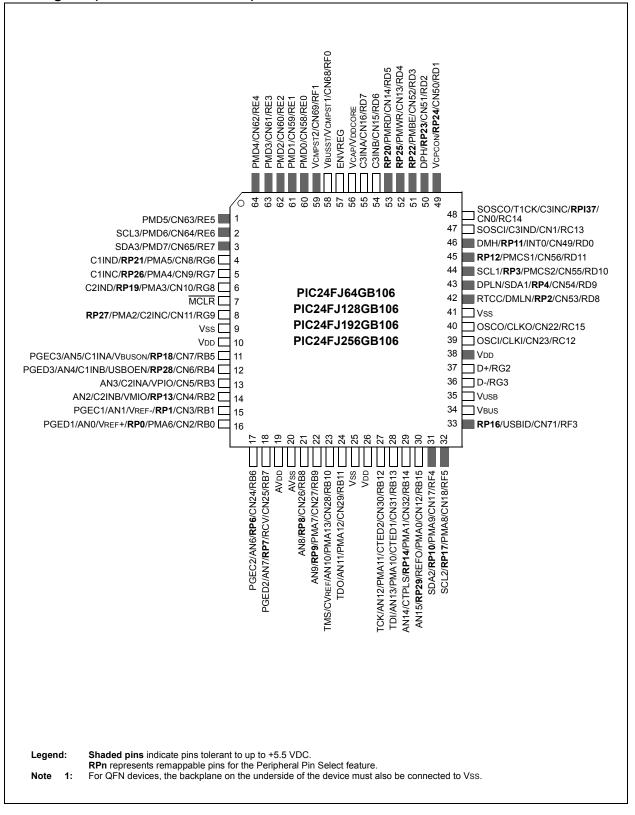
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

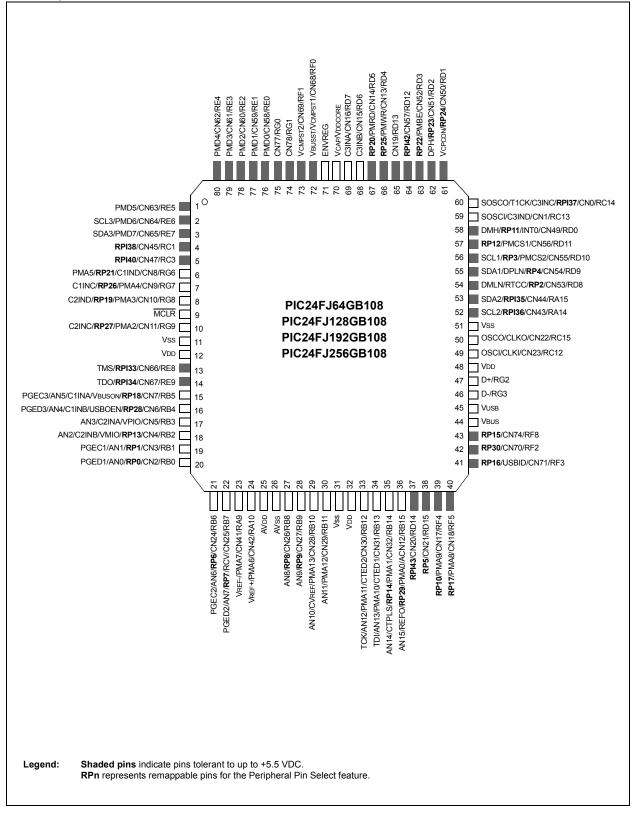
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	83
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj128gb110t-i-pt


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagram (64-Pin TQFP and QFN)

Pin Diagram (80-Pin TQFP)

MCI R

Vss

Vdd

C1

C6⁽²⁾-

Ī

2.0 **GUIDELINES FOR GETTING STARTED WITH 16-BIT** MICROCONTROLLERS

2.1 **Basic Connection Requirements**

Getting started with the PIC24FJ256GB110 family of 16-bit microcontrollers requires attention to a minimal set of device pin connections before proceeding with development.

The following pins must always be connected:

- All VDD and Vss pins (see Section 2.2 "Power Supply Pins")
- All AVDD and AVSS pins, regardless of whether or not the analog device features are used (see Section 2.2 "Power Supply Pins")
- MCLR pin (see Section 2.3 "Master Clear (MCLR) Pin")
- ENVREG/DISVREG and VCAP/VDDCORE pins (PIC24FJ devices only) (see Section 2.4 "Voltage Regulator Pins (ENVREG/DISVREG and VCAP/VDDCORE)")

These pins must also be connected if they are being used in the end application:

- PGECx/PGEDx pins used for In-Circuit Serial Programming[™] (ICSP[™]) and debugging purposes (see Section 2.5 "ICSP Pins")
- · OSCI and OSCO pins when an external oscillator source is used

(see Section 2.6 "External Oscillator Pins")

Additionally, the following pins may be required:

 VREF+/VREF- pins used when external voltage reference for analog modules is implemented

The AVDD and AVSS pins must always be Note: connected, regardless of whether any of the analog modules are being used.

The minimum mandatory connections are shown in Figure 2-1.

RECOMMENDED FIGURE 2-1: MINIMUM CONNECTIONS C2⁽²⁾ Vdd ŹR1 20 /ss (1) (1) R2 (EN/DIS)VREG

PIC24FXXXX

VCAP/VDDCORE

20/

C4⁽²⁾

VDD

Vss

/SS

C7

C3(2)

Key (all values are recommendations):

AVDD

AVSS

C1 through C6: 0.1 µF, 20V ceramic

C7: 10 $\mu\text{F},\,6.3\text{V}$ or greater, tantalum or ceramic

C5⁽²⁾

R1: 10 kΩ

- R2: 100Ω to 470Ω
- Note 1: See Section 2.4 "Voltage Regulator Pins (ENVREG/DISVREG and VCAP/VDDCORE)" for explanation of ENVREG/DISVREG pin connections.
 - 2: The example shown is for a PIC24F device with five VDD/VSS and AVDD/AVSS pairs. Other devices may have more or less pairs; adjust the number of decoupling capacitors appropriately.

TABLE 4-7: INPUT CAPTURE REGISTER MAP 1

0
2009
Microchip
Technology
Inc.

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IC1CON1	0140		—	ICSIDL	ICTSEL2	ICTSEL1	ICTSEL0	—	—	—	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0	0000
IC1CON2	0142	_	_	_		_	_	_	IC32	ICTRIG	TRIGSTAT	_	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000D
IC1BUF	0144								Input Cap	ture 1 Buffe	er Register		•			•	•	0000
IC1TMR	0146								Timer	Value 1 Re	egister							xxxx
IC2CON1	0148	_	—	ICSIDL	ICTSEL2	ICTSEL1	ICTSEL0	_	_	_	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0	0000
IC2CON2	014A	_	_	_	—	_	_	_	IC32	ICTRIG	TRIGSTAT	_	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000D
IC2BUF	014C		Input Capture 2 Buffer Register 000											0000				
IC2TMR	014E											xxxx						
IC3CON1	0150	_	—	ICSIDL	ICTSEL2	ICTSEL1	ICTSEL0	_	_	_	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0	0000
IC3CON2	0152	_	_	_		_	_	_	IC32	ICTRIG	TRIGSTAT	_	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000D
IC3BUF	0154								Input Capt	ture 3 Buffe	er Register							0000
IC3TMR	0156								Timer	Value 3 Re	egister							xxxx
IC4CON1	0158	_	_	ICSIDL	ICTSEL2	ICTSEL1	ICTSEL0	_	_	_	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0	0000
IC4CON2	015A	-	—	_	_	_	_	_	IC32	ICTRIG	TRIGSTAT	_	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000D
IC4BUF	015C		Input Capture 4 Buffer Register 000									0000						
IC4TMR	015E		Timer Value 4 Register								xxxx							
IC5CON1	0160	_	—	ICSIDL	ICTSEL2	ICTSEL1	ICTSEL0	_	_	—	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0	0000
IC5CON2	0162		_	_	_	_	—	_	IC32	ICTRIG	TRIGSTAT	_	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000D
IC5BUF	0164								Input Cap	ture 5 Buffe	er Register							0000
IC5TMR	0166								Timer	Value 5 Re	egister							xxxx
IC6CON1	0168	_		ICSIDL	ICTSEL2	ICTSEL1	ICTSEL0	—	—		ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0	0000
IC6CON2	016A	_			_	—	_	—	IC32	ICTRIG	TRIGSTAT	—	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000D
IC6BUF	016C								Input Capt	ture 6 Buffe	er Register							0000
IC6TMR	016E								Timer	Value 6 Re	egister							xxxx
IC7CON1	0170	_		ICSIDL	ICTSEL2	ICTSEL1	ICTSEL0	_	_		ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0	0000
IC7CON2	0172	—	_	_		—	—	—	IC32	ICTRIG	TRIGSTAT	—	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000D
IC7BUF	0174								Input Capt	ture 7 Buffe	er Register							0000
IC7TMR	0176								Timer	Value 7 Re	egister							xxxx
IC8CON1	0178	—	_	ICSIDL	ICTSEL2	ICTSEL1	ICTSEL0	—	—	_	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0	0000
IC8CON2	017A	—	—	—	_	—	—	_	IC32	ICTRIG	TRIGSTAT	_	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000D
IC8BUF	017C								Input Cap	ture 8 Buffe	er Register							0000
IC8TMR	017E								Timer	Value 8 Re	egister							xxxx
IC9CON1	0180	_	_	ICSIDL	ICTSEL2	ICTSEL1	ICTSEL0	—	—	_	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0	0000
IC9CON2	0182	_	_	_		_	_		IC32	ICTRIG	TRIGSTAT	_	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000D
IC9BUF	0184								Input Cap	ture 9 Buffe	er Register							0000
IC9TMR	0186								Timer	Value 9 Re	egister							xxxx

DS39897C-page 47

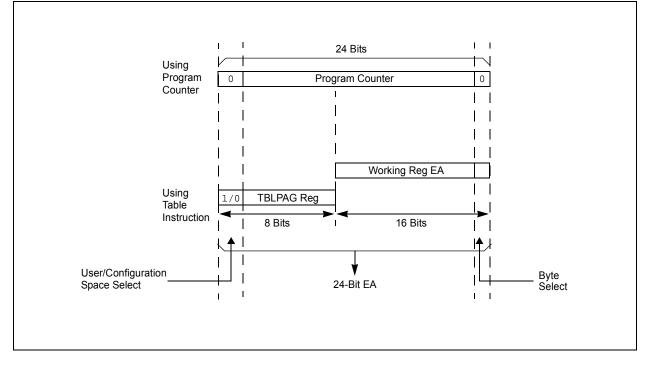
5.0 FLASH PROGRAM MEMORY

Note:	This data sheet summarizes the features of this group of PIC24F devices. It is not						
	intended to be a comprehensive reference						
	source. For more information, refer to the						
	"PIC24F Family Reference Manual",						
	Section 4. "Program Memory"						
	(DS39715).						

The PIC24FJ256GB110 family of devices contains internal Flash program memory for storing and executing application code. It can be programmed in four ways:

- In-Circuit Serial Programming[™] (ICSP[™])
- Run-Time Self-Programming (RTSP)
- JTAG
- Enhanced In-Circuit Serial Programming (Enhanced ICSP)

ICSP allows a PIC24FJ256GB110 family device to be serially programmed while in the end application circuit. This is simply done with two lines for the programming clock and programming data (which are named PGECx and PGEDx, respectively), and three other lines for power (VDD), ground (Vss) and Master Clear (MCLR). This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed. RTSP is accomplished using TBLRD (table read) and TBLWT (table write) instructions. With RTSP, the user may write program memory data in blocks of 64 instructions (192 bytes) at a time, and erase program memory in blocks of 512 instructions (1536 bytes) at a time.


5.1 Table Instructions and Flash Programming

Regardless of the method used, all programming of Flash memory is done with the table read and table write instructions. These allow direct read and write access to the program memory space from the data memory while the device is in normal operating mode. The 24-bit target address in the program memory is formed using the TBLPAG<7:0> bits and the Effective Address (EA) from a W register specified in the table instruction, as shown in Figure 5-1.

The TBLRDL and the TBLWTL instructions are used to read or write to bits<15:0> of program memory. TBLRDL and TBLWTL can access program memory in both Word and Byte modes.

The TBLRDH and TBLWTH instructions are used to read or write to bits<23:16> of program memory. TBLRDH and TBLWTH can also access program memory in Word or Byte mode.

FIGURE 5-1: ADDRESSING FOR TABLE REGISTERS

EXAMPLE 5-4: LOADING THE WRITE BUFFERS (C LANGUAGE CODE)

```
// C example using MPLAB C30
   #define NUM_INSTRUCTION_PER_ROW 64
   unsigned int offset;
   unsigned int i;
   unsigned long progAddr = 0xXXXXXX;
                                                           // Address of row to write
   unsigned int progData[2*NUM_INSTRUCTION_PER_ROW]; // Buffer of data to write
//Set up NVMCON for row programming
   NVMCON = 0 \times 4001;
                                                             // Initialize NVMCON
//Set up pointer to the first memory location to be written
                                                            // Initialize PM Page Boundary SFR
   TBLPAG = progAddr>>16;
   offset = progAddr & 0xFFFF;
                                                            // Initialize lower word of address
//Perform TBLWT instructions to write necessary number of latches
for(i=0; i < 2*NUM_INSTRUCTION_PER_ROW; i++)</pre>
   {
       __builtin_tblwtl(offset, progData[i++]); // Write to address low word
__builtin_tblwth(offset, progData[i]); // Write to upper byte
                                                            // Increment address
       offset = offset + 2;
   }
```


DISI	#5	;	Block all interrupts with priority <7
		;	for next 5 instructions
MOV	#0x55, W0		
MOV	W0, NVMKEY	;	Write the 55 key
MOV	#0xAA, W1	;	
MOV	W1, NVMKEY	;	Write the AA key
BSET	NVMCON, #WR	;	Start the erase sequence
NOP		;	
NOP		;	
BTSC	NVMCON, #15	;	and wait for it to be
BRA	\$-2	;	completed

EXAMPLE 5-6: INITIATING A PROGRAMMING SEQUENCE (C LANGUAGE CODE)

// C example using MPLAB C	30	
· · · ·		Block all interrupts with priority < 7 for next 5 instructions
builtin_write_NVM();	//	Perform unlock sequence and set WR

	REGISTER 8-2:	CLKDIV: CLOCK DIVIDER REGISTER
--	---------------	--------------------------------

REGISTER	8-2: CLKD	DIV: CLOCK [GISTER			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1
ROI	DOZE2	DOZE1	DOZE0	DOZEN ⁽¹⁾	RCDIV2	RCDIV1	RCDIV0
bit 15							bit 8
R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0
CPDIV1	CPDIV0	_		_			
bit 7					1		bit (
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15 bit 14-12	1 = Interrupts 0 = Interrupts	on Interrupt bi clear the DOZ have no effect CPU Periphera	EN bit and rest t on the DOZE		ripheral clock ra	atio to 1:1	
	111 = 1:128 110 = 1:64 101 = 1:32 100 = 1:16 011 = 1:8 010 = 1:4 001 = 1:2 000 = 1:1						
bit 11	1 = DOZE<2	ZE Enable bit ⁽¹⁾ :0> bits specify ipheral clock ra	the CPU peri	oheral clock rati I	0		
bit 10-8	111 = 31.25 k 110 = 125 kH 101 = 250 kH	(divide-by-4) (divide-by-2)	256)))				
bit 7-6		USB System (divide-by-8) ⁽²⁾ divide-by-4) ⁽²⁾ (divide-by-2)	Clock Select b	its (postscaler s	elect from 32 N	/IHz clock bran	ch)
bit 5-0	Unimplemen	ted: Read as ')'				
Note 1: Th	his bit is automa	tically cleared	when the ROI	bit is set and ar	n interrupt occu	ırs.	

Note 1: This bit is automatically cleared when the ROI bit is set and an interrupt occurs.

2: This setting is not allowed while the USB module is enabled.

REGISTER 10-19: RPINR27: PERIPHERAL PIN SELECT INPUT REGISTER 27

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	— U4CTSR5		U4CTSR4	U4CTSR3	U4CTSR2	U4CTSR1	U4CTSR0
bit 15							bit 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	U4RXR5 U4RXF		U4RXR4	U4RXR3	U4RXR2	U4RXR1	U4RXR0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	U4CTSR<5:0>: Assign UART4 Clear to Send (U4CTS) to Corresponding RPn or RPIn Pin bits
bit 7-6	Unimplemented: Read as '0'
bit 5-0	U4RXR<5:0>: Assign UART4 Receive (U4RX) to Corresponding RPn or RPIn Pin bits

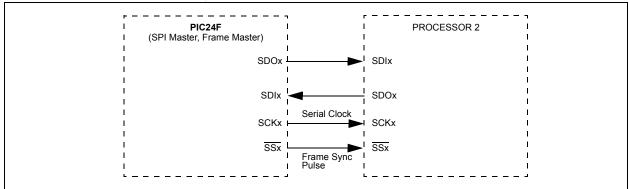
REGISTER 10-20: RPINR28: PERIPHERAL PIN SELECT INPUT REGISTER 28

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	SCK3R5	SCK3R4	SCK3R3	SCK3R2	SCK3R1	SCK3R0
bit 15							bit 8

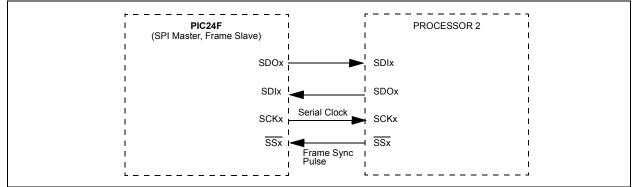
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	SDI3R5	SDI3R4	SDI3R3	SDI3R2	SDI3R1	SDI3R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

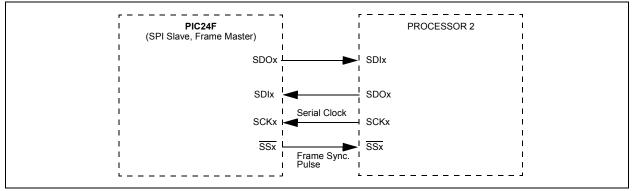
bit 15-14 Unimplemented: Read as '0'

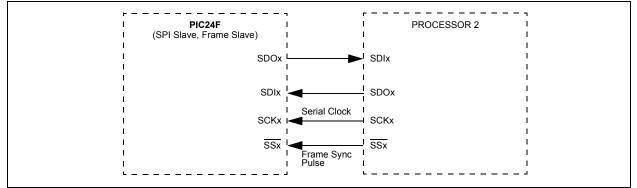

bit 13-8 SCK3R<5:0>: Assign SPI3 Clock Input (SCK3IN) to Corresponding RPn or RPIn Pin bits

bit 7-6 Unimplemented: Read as '0'


bit 5-0 SDI3R<5:0>: Assign SPI3 Data Input (SDI3) to Corresponding RPn or RPIn Pin bits

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0			
	_	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	—	—			
bit 15							bit 8			
R/W-0	U-0	U-0	R/W-0, HCS	R/W-0	R/W-0	R/W-0	R/W-0			
ENFLT)	_	OCFLT0	TRIGMODE	OCM2 ⁽¹⁾	OCM1 ⁽¹⁾	OCM0 ⁽¹⁾			
bit 7							bit 0			
Legend:				HCS = Hardw	are Clearable/	Settable bit				
R = Reada	able bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'				
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown			
bit 15-14	Unimplem	ented: Read as '	0'							
bit 13	-	top Output Comp		ode Control bit						
	1 = Output	Compare x halts Compare x cont	in CPU Idle mo	ode						
bit 12-10		::0>: Output Con	•		noue					
DIL 12-10		•		elect bits						
		111 = System Clock 110 = Reserved								
		101 = Reserved								
		100 = Timer1 011 = Timer5								
		010 = Timer4								
		001 = Timer3								
h :+ 0 0	000 = Time		01							
bit 9-8	-	ented: Read as '								
bit 7		ault 0 Input Enab) input is enabled								
	0 = Fault 0) input is disabled	t							
bit 6-5	-	ented: Read as '								
bit 4		OCFLT0: PWM Fault Condition Status bit 1 = PWM Fault condition has occurred (cleared in HW only)								
		Fault condition ha				CM<2:0> = 111)			
bit 3		E: Trigger Status								
		TAT (OCxCON2- TAT is only clear		when OCxRS	= OCxTMR or i	n software				
bit 2-0	OCM<2:0>	: Output Compar	e x Mode Selec	t bits ⁽¹⁾						
		111 = Center-aligned PWM mode on OCx ⁽²⁾								
		110 = Edge-aligned PWM Mode on OCx ⁽²⁾								
		101 = Double Compare Continuous Pulse mode: Initialize OCx pin low, toggle OCx state continuously on alternate matches of OCxR and OCxRS								
	100 = Do	•								
		ngle Compare Co		mode: Compa	are events cont	inuously toggle	OCx pin			
	010 = Si	ngle Compare Si	ngle-Shot mode	: Initialize OCx	pin high, comp	are event force	es OCx pin low			
		ngle Compare Si utput compare ch			c pin low, compa	are event forces	s OCx pin high			
Note 1:		t must also be co			oin. For more in	formation see	Section 10 4			
	"Peripheral Pi OCFA pin contr	n Select".	-	-						
2:										





NOTES:

REGISTER 18-17: U1IR: USB INTERRUPT STATUS REGISTER (HOST MODE ONLY)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
R/K-0, HS	R-0	R/K-0, HS					
STALLIF	ATTACHIF	RESUMEIF	IDLEIF	TRNIF	SOFIF	UERRIF	DETACHIF
bit 7							bit 0

bit 7	bit (
Legend:	U = Unimplemented bit, read as '0'							
R = Readat	ble bit K = Write '1' to clear bit HS = Hardware Settable bit							
-n = Value a	at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown							
bit 15-8	Unimplemented: Read as '0'							
bit 7	STALLIF: STALL Handshake Interrupt bit							
	 1 = A STALL handshake was sent by the peripheral device during the handshake phase of the transaction in Device mode 0 = A STALL handshake has not been sent 							
bit 6	ATTACHIF: Peripheral Attach Interrupt bit							
	 1 = A peripheral attachment has been detected by the module; set if the bus state is not SE0 and there has been no bus activity for 2.5 μs 0 = No peripheral attachement detected 							
bit 5	RESUMEIF: Resume Interrupt bit							
	1 = A K-state is observed on the D+ or D- pin for 2.5 μs (differential '1' for low speed, differential '0' fo full speed)							
L:1 4	0 = No K-state observed							
bit 4	IDLEIF: Idle Detect Interrupt bit 1 = Idle condition detected (constant Idle state of 3 ms or more)							
	0 = No Idle condition detected							
bit 3	TRNIF: Token Processing Complete Interrupt bit							
	 1 = Processing of current token is complete; read U1STAT register for endpoint information 0 = Processing of current token not complete; clear U1STAT register or load next token from U1STAT 							
bit 2	SOFIF: Start-Of-Frame Token Interrupt bit							
	1 = A Start-Of-Frame token received by the peripheral or the Start-Of-Frame threshold reached by the host							
	0 = No Start-Of-Frame token received or threshold reached							
bit 1	UERRIF: USB Error Condition Interrupt bit							
	 1 = An unmasked error condition has occurred; only error states enabled in the U1EIE register can se this bit 							
	0 = No unmasked error condition has occurred							
bit 0	DETACHIF: Detach Interrupt bit							
	1 = A peripheral detachment has been detected by the module; Reset state must be cleared before this bit can be reconcerted.							
	 this bit can be reasserted No peripheral detachment detected. Individual bits can only be cleared by writing a '1' to the bi position as part of a word write operation on the entire register. Using Boolean instructions or bit wise operations to write to a single bit position will cause all set bits at the moment of the write to become cleared. 							

Note: Individual bits can only be cleared by writing a '1' to the bit position as part of a word write operation on the entire register. Using Boolean instructions or bitwise operations to write to a single bit position will cause all set bits at the moment of the write to become cleared.

REGISTER 18-19: U1EIR: USB ERROR INTERRUPT STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—		—	—			—
bit 15							bit 8

R/K-0, HS	U-0	R/K-0, HS					
DIOLE		DMAEF	BTOEF	DFN8EF	CRC16EF	CRC5EF	PIDEF
BTSEF	_	DIVIAEF	BIOEF	DENOEL	CRCIDEF	EOFEF	TIDEI
bit 7							bit 0

Legend:	U = Unimplemented bit, read as '0'				
R = Readable bit	K = Write '1' to clear bit	HS = Hardware Settable bit			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-8	Unimplemented: Read as '0'
bit 7	BTSEF: Bit Stuff Error Flag bit
	 1 = Bit stuff error has been detected 0 = No bit stuff error
bit 6	Unimplemented: Read as '0'
bit 5	 DMAEF: DMA Error Flag bit 1 = A USB DMA error condition detected; the data size indicated by the BD byte count field is less than the number of received bytes. The received data is truncated. 0 = No DMA error
bit 4	BTOEF: Bus Turnaround Time-out Error Flag bit 1 = Bus turnaround time-out has occurred 0 = No bus turnaround time-out
bit 3	 DFN8EF: Data Field Size Error Flag bit 1 = Data field was not an integral number of bytes 0 = Data field was an integral number of bytes
bit 2	CRC16EF: CRC16 Failure Flag bit 1 = CRC16 failed 0 = CRC16 passed
bit 1	For Device mode: CRC5EF: CRC5 Host Error Flag bit
	 1 = Token packet rejected due to CRC5 error 0 = Token packet accepted (no CRC5 error) For Host mode: EOFEF: End-Of-Frame Error Flag bit 1 = End-Of-Frame error has occurred 0 = End-Of-Frame interrupt disabled
bit 0	 PIDEF: PID Check Failure Flag bit 1 = PID check failed 0 = PID check passed. Individual bits can only be cleared by writing a '1' to the bit position as part of a word write operation on the entire register. Using Boolean instructions or bitwise operations to write to a single bit position will cause all set bits at the moment of the write to become cleared.
Note:	Individual bits can only be cleared by writing a '1' to the bit position as part of a word write operation on the entire register. Using Boolean instructions or bitwise operations to write to a single bit position will cause all set bits at the moment of the write to become cleared.

18.7.4 USB VBUS POWER CONTROL REGISTER

REGISTER 18-22: U1PWMCON: USB VBUS PWM GENERATOR CONTROL REGISTER

R/W-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0			
PWMEN	_	_	_		—	PWMPOL	CNTEN			
bit 15							bit 8			
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
—	_	_	_	_	—	—	—			
bit 7							bit 0			
Legend:										
R = Readabl	e bit	W = Writable b	it	U = Unimplemented bit, read as '0'						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own			
bit 15	PWMEN: PW	M Enable bit								
		nerator is enable								
	0 = PWM ger	nerator is disable	ed; output is h	neld in Reset sta	ate specified b	y PWMPOL				
bit 14-10	Unimplemented: Read as '0'									
bit 9	PWMPOL: P	NM Polarity bit								
	1 = PWM output is active-low and resets high									
		which a cative big	h and reacte	law.						

- 0 = PWM output is active-high and resets low
- bit 8 CNTEN: PWM Counter Enable bit
 - 1 = Counter is enabled
 - 0 = Counter is disabled
- bit 7-0 Unimplemented: Read as '0'

REGISTER 20-1: RCFGCAL: RTCC CALIBRATION AND CONFIGURATION REGISTER⁽¹⁾ (CONTINUED)

bit 7-0 CAL<7:0>: RTC Drift Calibration bits

...

01111111 = Maximum positive adjustment; adds 508 RTC clock pulses every one minute

... 00000001 = Minimum positive adjustment; adds 4 RTC clock pulses every one minute 00000000 = No adjustment

111111111 = Minimum negative adjustment; subtracts 4 RTC clock pulses every one minute

10000000 = Maximum negative adjustment; subtracts 512 RTC clock pulses every one minute

- **Note 1:** The RCFGCAL register is only affected by a POR.
 - **2:** A write to the RTCEN bit is only allowed when RTCWREN = 1.
 - 3: This bit is read-only. It is cleared to '0' on a write to the lower half of the MINSEC register.

REGISTER 20-2: PADCFG1: PAD CONFIGURATION CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—	—	—	—	—	—		
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	
—	—	—	—	—	—	RTSECSEL ⁽¹⁾	PMPTTL	
bit 7				·			bit 0	
Legend:								
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'				
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			own	

Unimplemented: Read as '0'
RTSECSEL: RTCC Seconds Clock Output Select bit ⁽¹⁾
 1 = RTCC seconds clock is selected for the RTCC pin 0 = RTCC alarm pulse is selected for the RTCC pin
PMPTTL: PMP Module TTL Input Buffer Select bit
 1 = PMP module inputs (PMDx, PMCS1) use TTL input buffers 0 = PMP module inputs use Schmitt Trigger input buffers

Note 1: To enable the actual RTCC output, the RTCOE (RCFGCAL<10>)) bit must also be set.

20.2 Calibration

The real-time crystal input can be calibrated using the periodic auto-adjust feature. When properly calibrated, the RTCC can provide an error of less than 3 seconds per month. This is accomplished by finding the number of error clock pulses for one minute and storing the value into the lower half of the RCFGCAL register. The 8-bit signed value loaded into the lower half of RCFGCAL is multiplied by four and will either be added or subtracted from the RTCC timer, once every minute. Refer to the steps below for RTCC calibration:

- 1. Using another timer resource on the device, the user must find the error of the 32.768 kHz crystal.
- 2. Once the error is known, it must be converted to the number of error clock pulses per minute and loaded into the RCFGCAL register.

EQUATION 20-1: RTCC CALIBRATION

Error (clocks per minute) =(Ideal Frequency† – Measured Frequency) * 60 † Ideal frequency = 32,768 Hz

3. a) If the oscillator is faster then ideal (negative result form step 2), the RCFGCAL register value needs to be negative. This causes the specified number of clock pulses to be substract from the timer counter once every minute.

b) If the oscillator is slower then ideal (positive result from step 2) the RCFGCAL register value needs to be positive. This causes the specified number of clock pulses to be added to the timer counter once every minute.

 Divide the number of error clocks per minute by 4 to get the correct CAL value and load the RCFGCAL register with the correct value.

(Each 1-bit increment in CAL adds or subtracts 4 pulses).

Writes to the lower half of the RCFGCAL register should only occur when the timer is turned off, or immediately after the rising edge of the seconds pulse.

Note:	It is up to the user to include, in the error
	value, the initial error of the crystal, drift
	due to temperature and drift due to crystal
	aging.

20.3 Alarm

- Configurable from half second to one year
- Enabled using the ALRMEN bit (ALCFGRPT<15>, Register 20-3)
- One-time alarm and repeat alarm options available

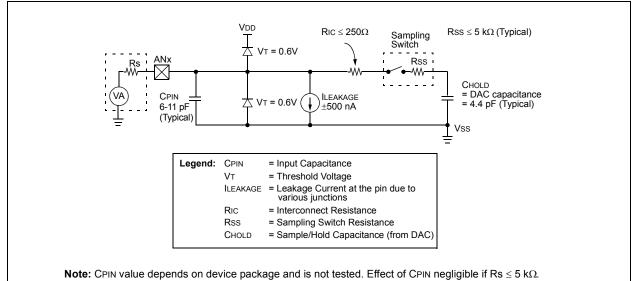
20.3.1 CONFIGURING THE ALARM

The alarm feature is enabled using the ALRMEN bit. This bit is cleared when an alarm is issued. Writes to ALRMVAL should only take place when ALRMEN = 0.

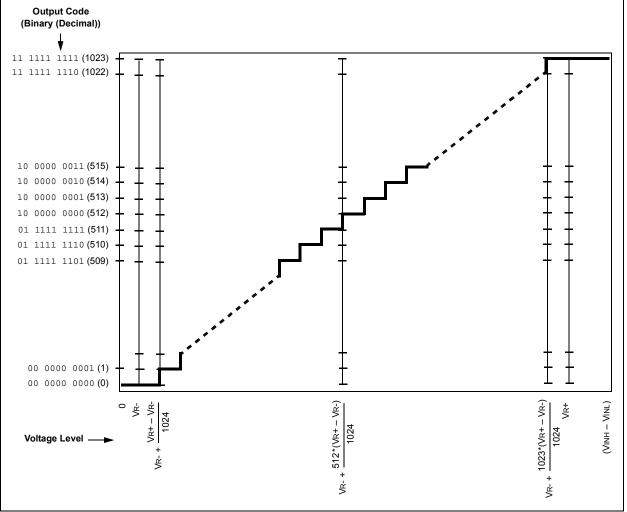
As shown in Figure 20-2, the interval selection of the alarm is configured through the AMASK bits (ALCFGRPT<13:10>). These bits determine which and how many digits of the alarm must match the clock value for the alarm to occur.

The alarm can also be configured to repeat based on a preconfigured interval. The amount of times this occurs once the alarm is enabled is stored in the ARPT bits, ARPT<7:0> (ALCFGRPT<7:0>). When the value of the ARPT bits equals 00h and the CHIME bit (ALCFGRPT<14>) is cleared, the repeat function is disabled and only a single alarm will occur. The alarm can be repeated up to 255 times by loading ARPT<7:0> with FFh.

After each alarm is issued, the value of the ARPT bits is decremented by one. Once the value has reached 00h, the alarm will be issued one last time, after which the ALRMEN bit will be cleared automatically and the alarm will turn off.

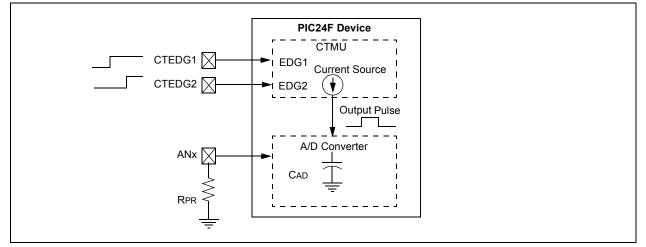

Indefinite repetition of the alarm can occur if the CHIME bit = 1. Instead of the alarm being disabled when the value of the ARPT bits reaches 00h, it rolls over to FFh and continues counting indefinitely while CHIME is set.

20.3.2 ALARM INTERRUPT


At every alarm event, an interrupt is generated. In addition, an alarm pulse output is provided that operates at half the frequency of the alarm. This output is completely synchronous to the RTCC clock and can be used as a trigger clock to other peripherals.

Note:	Changing any of the registers, other then the RCFGCAL and ALCFGRPT registers and the CHIME bit while the alarm is enabled (ALRMEN = 1), can result in a false alarm event leading to a false alarm interrupt. To avoid a false alarm event, the timer and alarm values should only be changed while the alarm is disabled (ALRMEN = 0). It is accommonded that the
	changed while the alarm is disabled (ALRMEN = 0). It is recommended that the ALCFGRPT register and CHIME bit be changed when RTCSYNC = 0.

25.2 Measuring Time


Time measurements on the pulse width can be similarly performed, using the A/D module's internal capacitor (CAD) and a precision resistor for current calibration. Figure 25-2 shows the external connections used for time measurements, and how the CTMU and A/D modules are related in this application. This example also shows both edge events coming from the external CTEDG pins, but other configurations using internal edge sources are possible. A detailed discussion on measuring capacitance and time with the CTMU module is provided in the *"PIC24F Family Reference Manual"*.

25.3 Pulse Generation and Delay

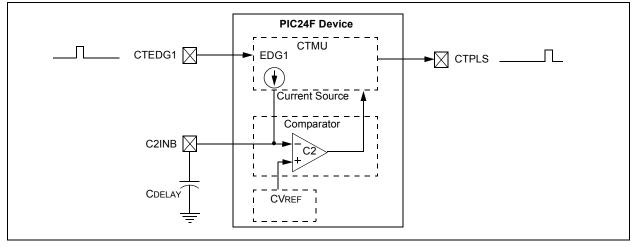
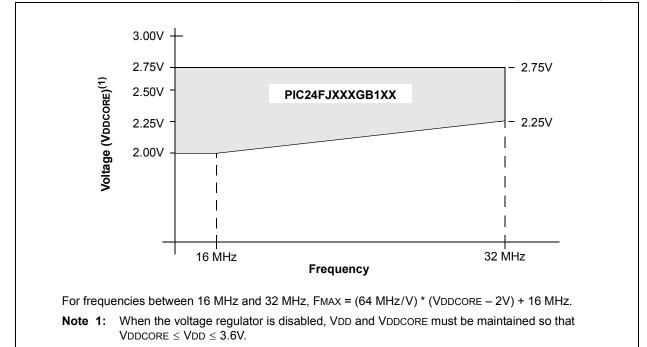

The CTMU module can also generate an output pulse with edges that are not synchronous with the device's system clock. More specifically, it can generate a pulse with a programmable delay from an edge event input to the module. When the module is configured for pulse generation delay by setting the TGEN bit (CTMUCON<12>), the internal current source is connected to the B input of Comparator 2. A capacitor (CDELAY) is connected to the Comparator 2 pin, C2INB, and the comparator voltage reference, CVREF, is connected to C2INA. CVREF is then configured for a specific trip point. The module begins to charge CDELAY when an edge event is detected. When CDELAY charges above the CVREF trip point, a pulse is output on CTPLS. The length of the pulse delay is determined by the value of CDELAY and the CVREF trip point.

Figure 25-3 shows the external connections for pulse generation, as well as the relationship of the different analog modules required. While CTEDG1 is shown as the input pulse source, other options are available. A detailed discussion on pulse generation with the CTMU module is provided in the *"PIC24F Family Reference Manual"*.

FIGURE 25-2: TYPICAL CONNECTIONS AND INTERNAL CONFIGURATION FOR TIME MEASUREMENT

FIGURE 25-3: TYPICAL CONNECTIONS AND INTERNAL CONFIGURATION FOR PULSE DELAY GENERATION



Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
BTSS	BTSS	f,#bit4	Bit Test f, Skip if Set	1	1 (2 or 3)	None
	BTSS	Ws,#bit4	Bit Test Ws, Skip if Set	1	1 (2 or 3)	None
BTST	BTST	f,#bit4	Bit Test f	1	1	Z
	BTST.C	Ws,#bit4	Bit Test Ws to C	1	1	С
	BTST.Z	Ws,#bit4	Bit Test Ws to Z	1	1	Z
	BTST.C	Ws,Wb	Bit Test Ws <wb> to C</wb>	1	1	С
	BTST.Z	Ws,Wb	Bit Test Ws <wb> to Z</wb>	1	1	Z
BTSTS	BTSTS	f,#bit4	Bit Test then Set f	1	1	Z
	BTSTS.C	Ws,#bit4	Bit Test Ws to C, then Set	1	1	С
	BTSTS.Z	Ws,#bit4	Bit Test Ws to Z, then Set	1	1	Z
CALL	CALL	lit23	Call Subroutine	2	2	None
	CALL	Wn	Call Indirect Subroutine	1	2	None
CLR	CLR	f	f = 0x0000	1	1	None
	CLR	WREG	WREG = 0x0000	1	1	None
	CLR	Ws	Ws = 0x0000	1	1	None
CLRWDT	CLRWDT		Clear Watchdog Timer	1	1	WDTO, Sleep
COM	СОМ	f	$f = \overline{f}$	1	1	N, Z
	СОМ	f,WREG	WREG = f	1	1	N, Z
	СОМ		Wd = Ws	1	1	N, Z
GD	CP	Ws,Wd f	Compare f with WREG	1	1	,
CP	CP			1	1	C, DC, N, OV, Z
	-	Wb,#lit5	Compare Wb with lit5	1	1	C, DC, N, OV, Z
920	CP	Wb,Ws	Compare Wb with Ws (Wb – Ws)	1	1	C, DC, N, OV, Z
CP0	CP0	f	Compare f with 0x0000			C, DC, N, OV, Z
	CP0	Ws	Compare Ws with 0x0000	1	1	C, DC, N, OV, Z
CPB	CPB	f	Compare f with WREG, with Borrow	1	1	C, DC, N, OV, Z
	CPB	Wb,#lit5	Compare Wb with lit5, with Borrow	1	1	C, DC, N, OV, Z
	CPB	Wb,Ws	Compare Wb with Ws, with Borrow $(Wb - Ws - C)$	1	1	C, DC, N, OV, Z
CPSEQ	CPSEQ	Wb,Wn	Compare Wb with Wn, Skip if =	1	1 (2 or 3)	None
CPSGT	CPSGT	Wb,Wn	Compare Wb with Wn, Skip if >	1	1 (2 or 3)	None
CPSLT	CPSLT	Wb,Wn	Compare Wb with Wn, Skip if <	1	1 (2 or 3)	None
CPSNE	CPSNE	Wb,Wn	Compare Wb with Wn, Skip if ≠	1	1 (2 or 3)	None
DAW	DAW.b	Wn	Wn = Decimal Adjust Wn	1	1	С
DEC	DEC	f	f = f -1	1	1	C, DC, N, OV, Z
	DEC	f,WREG	WREG = $f - 1$	1	1	C, DC, N, OV, Z
	DEC	Ws,Wd	Wd = Ws - 1	1	1	C, DC, N, OV, Z
DEC2	DEC2	f	f = f - 2	1	1	C, DC, N, OV, Z
	DEC2	f,WREG	WREG = $f - 2$	1	1	C, DC, N, OV, Z
	DEC2	Ws,Wd	Wd = Ws - 2	1	1	C, DC, N, OV, Z
DISI	DISI	#lit14	Disable Interrupts for k Instruction Cycles	1	1	None
DIV	DIV.SW	Wm,Wn	Signed 16/16-bit Integer Divide	1	18	N, Z, C, OV
	DIV.SD	Wm,Wn	Signed 32/16-bit Integer Divide	1	18	N, Z, C, OV
	DIV.UW	Wm,Wn	Unsigned 16/16-bit Integer Divide	1	18	N, Z, C, OV
	DIV.UD	Wm,Wn	Unsigned 32/16-bit Integer Divide	1	18	N, Z, C, OV
EXCH	EXCH	Wns,Wnd	Swap Wns with Wnd	1	1	None
FF1L	FF1L	Ws,Wnd	Find First One from Left (MSb) Side	1	1	С
FF1R	FF1R	Ws,Wnd	Find First One from Right (LSb) Side	1	1	С

TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)

29.1 DC Characteristics

FIGURE 29-1: PIC24FJ256GB110 FAMILY VOLTAGE-FREQUENCY GRAPH (INDUSTRIAL)

TABLE 29-1: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min	Тур	Max	Unit
PIC24FJ256GB110 Family:					
Operating Junction Temperature Range	TJ	-40	—	+125	°C
Operating Ambient Temperature Range	TA	-40	—	+85	°C
Power Dissipation: Internal Chip Power Dissipation: $PINT = VDD x (IDD - \Sigma IOH)$ I/O Pin Power Dissipation: $PI/O = \Sigma (\{VDD - VOH\} x IOH) + \Sigma (VOL x IOL)$	PD	Pint + Pi/o		W	
Maximum Allowed Power Dissipation		(TJ — TA)/θJ	W	

TABLE 29-2: THERMAL PACKAGING CHARACTERISTICS

Characteristic	Symbol	Тур	Мах	Unit	Notes
Package Thermal Resistance, 14x14x1 mm TQFP	θJA	50.0		°C/W	(Note 1)
Package Thermal Resistance, 12x12x1 mm TQFP	θJA	69.4	—	°C/W	(Note 1)
Package Thermal Resistance, 10x10x1 mm TQFP	θJA	76.6	—	°C/W	(Note 1)
Package Thermal Resistance, 9x9x0.9 mm QFN	θJA	28.0		°C/W	(Note 1)

Note 1: Junction to ambient thermal resistance, Theta-JA (θ JA) numbers are achieved by package simulations.