

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	51
Program Memory Size	192KB (65.5K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-VQFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj192gb106-i-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		Pin Number			1 4	
Function	64-Pin TQFP, QFN	80-Pin TQFP	100-Pin TQFP	I/O	Input Buffer	Description
CN43	_	52	66	I	ST	Interrupt-on-Change Inputs.
CN44	_	53	67	I	ST	
CN45	_	4	6	I	ST	
CN46	_		7	I	ST	
CN47	_	5	8	I	ST	
CN48	_	_	9	I	ST	
CN49	46	58	72	I	ST	
CN50	49	61	76	I	ST	
CN51	50	62	77	-	ST	
CN52	51	63	78	-	ST	
CN53	42	54	68	Ι	ST	
CN54	43	55	69	Ι	ST	
CN55	44	56	70	Ι	ST	
CN56	45	57	71	Ι	ST	
CN57	—	64	79	Ι	ST	
CN58	60	76	93	Ι	ST	
CN59	61	77	94	I	ST	
CN60	62	78	98	I	ST	
CN61	63	79	99	I	ST	
CN62	64	80	100	I	ST	
CN63	1	1	3	Ι	ST	
CN64	2	2	4	Ι	ST	
CN65	3	3	5	Ι	ST	
CN66	_	13	18	Ι	ST	
CN67	—	14	19	I	ST	
CN68	58	72	87	I	ST	
CN69	59	73	88	I	ST	
CN70	—	42	52	I	ST	
CN71	33	41	51	I	ST	
CN74	—	43	53	I	ST	
CN75	—	—	40	I	ST	
CN76	—	—	39	I	ST	
CN77	—	75	90	I	ST	
CN78	—	74	89	I	ST	
CN79	—	—	96	I	ST	
CN80	—	—	97		ST	
CN81	—	—	95		ST	
CN82		_	1		ST	
CTED1	28	34	42		ANA	CTMU External Edge Input 1.
CTED2	27	33	41		ANA	CTMU External Edge Input 2.
CTPLS	29	35	43	0	—	CTMU Pulse Output.
CVREF	23	29	34	0	—	Comparator Voltage Reference Output.

TABLE 1-4: PIC24FJ256GB110 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

Legend: TT

TTL = TTL input buffer ANA = Analog level input/output ST = Schmitt Trigger input buffer

 $I^2C^{TM} = I^2C/SMBus$ input buffer

TABLE 4-31: PROGRAM SPACE ADDRESS CONSTRUCTION

	Access	Program Space Address							
Access Type	Space	<23>	<22:16>	<15>	<14:1>	<0>			
Instruction Access	User	0 PC<22:1>			0				
(Code Execution)			0xx xxxx x	XXX XXXX	xxxx xxx0				
TBLRD/TBLWT	User	TB	LPAG<7:0>	Data EA<15:0>					
(Byte/Word Read/Write)		02	xxx xxxx	XXXX XXXX XXXX XXXX					
	Configuration	TB	LPAG<7:0>	Data EA<15:0>					
		1:	xxx xxxx	xxxx xxxx xxxx xxxx					
Program Space Visibility (Block Remap/Read)	User	0	PSVPAG<7	':0>	Data EA<14	:0> ⁽¹⁾			
		0	XXXX XXX	x xxx xxxx xxxx xxx		xxxx x			

Note 1: Data EA<15> is always '1' in this case, but is not used in calculating the program space address. Bit 15 of the address is PSVPAG<0>.

FIGURE 4-5: DATA ACCESS FROM PROGRAM SPACE ADDRESS GENERATION

- **Note 1:** The LSb of program space addresses is always fixed as '0' in order to maintain word alignment of data in the program and data spaces.
 - **2:** Table operations are not required to be word-aligned. Table read operations are permitted in the configuration memory space.

5.6.2 PROGRAMMING A SINGLE WORD OF FLASH PROGRAM MEMORY

If a Flash location has been erased, it can be programmed using table write instructions to write an instruction word (24-bit) into the write latch. The TBLPAG register is loaded with the 8 Most Significant Bytes of the Flash address. The TBLWTL and TBLWTH instructions write the desired data into the write latches and specify the lower 16 bits of the program memory address to write to. To configure the NVMCON register for a word write, set the NVMOP bits (NVMCON<3:0>) to '0011'. The write is performed by executing the unlock sequence and setting the WR bit, as shown in Example 5-7. An equivalent procedure in C, using the MPLAB C30 compiler and built-in hardware functions, is shown in Example 5-8.

EXAMPLE 5-7: PROGRAMMING A SINGLE WORD OF FLASH PROGRAM MEMORY (ASSEMBLY LANGUAGE CODE)

; Setup a MOV MOV MOV	<pre>pointer to data Program Memory #tblpage(PROG_ADDR), W0 W0, TBLPAG #tbloffset(PROG_ADDR), W0</pre>	; ;] ;]	Initialize PM Page Boundary SFR Initialize a register with program memory address
MOV	#LOW_WORD, W2	;	
MOV	#HIGH_BYTE, W3	;	
TBLWTL	W2, [W0]	;	Write PM low word into program latch
TBLWTH	W3, [W0++]	;	Write PM high byte into program latch
; Setup NV MOV MOV	MCON for programming one word t #0x4003, W0 W0, NVMCON	to ; ;	data Program Memory Set NVMOP bits to 0011
DISI	#5	;	Disable interrupts while the KEY sequence is written
MOV	#0x55, W0	;	Write the key sequence
MOV	W0, NVMKEY		
MOV	#0xAA, W0		
MOV	W0, NVMKEY		
BSET	NVMCON, #WR	;	Start the write cycle
NOP		;	Insert two NOPs after the erase
NOP		;	Command is asserted

EXAMPLE 5-8: PROGRAMMING A SINGLE WORD OF FLASH PROGRAM MEMORY (C LANGUAGE CODE)

```
// C example using MPLAB C30
   unsigned int offset;
   unsigned long progAddr = 0xXXXXXX;
                                               // Address of word to program
   unsigned int progDataL = 0xXXXX;
                                                // Data to program lower word
   unsigned char progDataH = 0xXX;
                                                // Data to program upper byte
//Set up NVMCON for word programming
   NVMCON = 0 \times 4003;
                                                // Initialize NVMCON
//Set up pointer to the first memory location to be written
                                               // Initialize PM Page Boundary SFR
   TBLPAG = progAddr>>16;
   offset = progAddr & 0xFFFF;
                                                // Initialize lower word of address
//Perform TBLWT instructions to write latches
                                               // Write to address low word
       __builtin_tblwtl(offset, progDataL);
       __builtin_tblwth(offset, progDataH);
                                               // Write to upper byte
       asm("DISI #5");
                                                // Block interrupts with priority < 7</pre>
                                                // for next 5 instructions
       __builtin_write_NVM();
                                                // C30 function to perform unlock
                                                // sequence and set WR
```

NOTES:

7.0 INTERRUPT CONTROLLER

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "PIC24F Family Reference Manual", Section 8. "Interrupts" (DS39707).

The PIC24F interrupt controller reduces the numerous peripheral interrupt request signals to a single interrupt request signal to the PIC24F CPU. It has the following features:

- Up to 8 processor exceptions and software traps
- 7 user-selectable priority levels
- Interrupt Vector Table (IVT) with up to 118 vectors
- A unique vector for each interrupt or exception source
- · Fixed priority within a specified user priority level
- Alternate Interrupt Vector Table (AIVT) for debug support
- · Fixed interrupt entry and return latencies

7.1 Interrupt Vector Table

The Interrupt Vector Table (IVT) is shown in Figure 7-1. The IVT resides in program memory, starting at location 000004h. The IVT contains 126 vectors, consisting of 8 non-maskable trap vectors, plus up to 118 sources of interrupt. In general, each interrupt source has its own vector. Each interrupt vector contains a 24-bit wide address. The value programmed into each interrupt vector location is the starting address of the associated Interrupt Service Routine (ISR).

Interrupt vectors are prioritized in terms of their natural priority; this is linked to their position in the vector table. All other things being equal, lower addresses have a higher natural priority. For example, the interrupt associated with vector 0 will take priority over interrupts at any other vector address.

PIC24FJ256GB110 family devices implement non-maskable traps and unique interrupts. These are summarized in Table 7-1 and Table 7-2.

7.1.1 ALTERNATE INTERRUPT VECTOR TABLE

The Alternate Interrupt Vector Table (AIVT) is located after the IVT, as shown in Figure 7-1. Access to the AIVT is provided by the ALTIVT control bit (INTCON2<15>). If the ALTIVT bit is set, all interrupt and exception processes will use the alternate vectors instead of the default vectors. The alternate vectors are organized in the same manner as the default vectors.

The AIVT supports emulation and debugging efforts by providing a means to switch between an application and a support environment without requiring the interrupt vectors to be reprogrammed. This feature also enables switching between applications for evaluation of different software algorithms at run time. If the AIVT is not needed, the AIVT should be programmed with the same addresses used in the IVT.

7.2 Reset Sequence

A device Reset is not a true exception because the interrupt controller is not involved in the Reset process. The PIC24F devices clear their registers in response to a Reset which forces the PC to zero. The micro-controller then begins program execution at location 000000h. The user programs a GOTO instruction at the Reset address, which redirects program execution to the appropriate start-up routine.

Note: Any unimplemented or unused vector locations in the IVT and AIVT should be programmed with the address of a default interrupt handler routine that contains a RESET instruction.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	_	—	_	_	—	—
bit 15	÷		·			·	bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_	AD1IP2	AD1IP1	AD1IP0	_	U1TXIP2	U1TXIP1	U1TXIP0
bit 7	·		•		•	•	bit C
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'	
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown	
bit 15-7	Unimplemen	ted: Read as '	כ'				
bit 6-4	AD1IP<2:0>:	A/D Conversio	n Complete In	terrupt Priority I	bits		
	111 = Interru	pt is priority 7 (I	highest priority	interrupt)			
	•						
	•						
	001 = Interru	pt is priority 1					
	000 = Interru	pt source is dis	abled				
bit 3	Unimplemen	ted: Read as '	כ'				
bit 2-0	U1TXIP<2:0>	: UART1 Trans	smitter Interrup	t Priority bits			
	111 = Interru	pt is priority 7 (I	highest priority	interrupt)			
	•						
	•						
	001 = Interru	ot is priority 1					
	000 = Interru	pt source is dis	abled				

REGISTER 7-20: IPC3: INTERRUPT PRIORITY CONTROL REGISTER 3

REGISTER	7-27: IPC1	0: INTERRUP		CONTROL	REGISTER 10		
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_	OC7IP2	OC7IP1	OC7IP0	—	OC6IP2	OC6IP1	OC6IP0
bit 15							bit 8
11-0	D/\\/_1	P/M/_0	P/M/_0	11-0	D/\\/_1	P/M/-0	P/M/O
	OC5IP2	OC5IP1	OC5IP0		IC6IP2	IC6IP1	IC6IP0
bit 7							bit 0
Legend:	lo hit	M = M/ritable	bit	LI – Linimpio	montod hit road	1 25 '0'	
		'1' = Bit is set	DIL	0' - Onimpier	ared	v – Bitis unkr	
	IFUK				areu		IOWIT
bit 15	Unimplemer	nted: Read as '	0'				
bit 14-12	OC7IP<2:0>:	: Output Compa	are Channel 7	Interrupt Priorit	ty bits		
	111 = Interru	pt is priority 7 (highest priority	interrupt)			
	•						
	•						
	001 = Interru	pt is priority 1	ablad				
bit 11	Unimplement	ipt source is als					
bit 10_8			ore Channel 6	Interrunt Priorit	ty hite		
	111 = Interru	pt is priority 7 (highest priority	interrupt)	ly bits		
	•		5 , ,	1 /			
	•						
	001 = Interru	pt is priority 1					
	000 = Interru	pt source is dis	abled				
bit 7	Unimplemer	nted: Read as '	0'				
bit 6-4	OC5IP<2:0>:	: Output Compa	are Channel 5	Interrupt Priorit	ty bits		
	111 = Interru	pt is priority 7 (highest priority	interrupt)			
	•						
	•						
	001 = Interru 000 = Interru	ipt is priority 1 ipt source is dis	abled				
bit 3	Unimplemer	nted: Read as '	0'				
bit 2-0	IC6IP<2:0>:	Input Capture C	Channel 6 Inter	rupt Priority bit	ts		
	111 = Interru	pt is priority 7 (highest priority	interrupt)			
	•						
	•						
	001 = Interru	pt is priority 1					
	000 = Interru	pt source is dis	abled				

© 2009 Microchip Technology Inc.

REGISTER 10-5: RPINR4: PERIPHERAL PIN SELECT INPUT REGISTER 4

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	—	T5CKR5	T5CKR4	T5CKR3	T5CKR2	T5CKR1	T5CKR0
bit 15							bit 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	T4CKR5	T4CKR4	T4CKR3	T4CKR2	T4CKR1	T4CKR0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	T5CKR<5:0>: Assign Timer5 External Clock (T5CK) to Corresponding RPn or RPIn Pin bits
bit 7-6	Unimplemented: Read as '0'
bit 5-0	T4CKR<5:0>: Assign Timer4 External Clock (T4CK) to Corresponding RPn or RPIn Pin bits

REGISTER 10-6: RPINR7: PERIPHERAL PIN SELECT INPUT REGISTER 7

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	IC2R5	IC2R4	IC2R3	IC2R2	IC2R1	IC2R0
bit 15							bit 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	IC1R5	IC1R4	IC1R3	IC1R2	IC1R1	IC1R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 IC2R<5:0>: Assign Input Capture 2 (IC2) to Corresponding RPn or RPIn Pin bits

bit 7-6 Unimplemented: Read as '0'

bit 5-0 IC1R<5:0>: Assign Input Capture 1 (IC1) to Corresponding RPn or RPIn Pin bits

REGISTER 10-9: RPINR10: PERIPHERAL PIN SELECT INPUT REGISTER 10

U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	IC8R5	IC8R4	IC8R3	IC8R2	IC8R1	IC8R0
	·					bit 8
U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
	IC7R5	IC7R4	IC7R3	IC7R2	IC7R1	IC7R0
				·		bit 0
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown	
	U-0 — U-0 — bit	U-0 R/W-1 — IC8R5 U-0 R/W-1 — IC7R5 bit W = Writable POR '1' = Bit is set	U-0 R/W-1 R/W-1 — IC8R5 IC8R4 U-0 R/W-1 R/W-1 — IC7R5 IC7R4 bit W = Writable bit Y= Bit is set	U-0 R/W-1 R/W-1 R/W-1 — IC8R5 IC8R4 IC8R3 U-0 R/W-1 R/W-1 R/W-1 — IC7R5 IC7R4 IC7R3 bit W = Writable bit U = Unimplen '1' = Bit is set '0' = Bit is clear	U-0 R/W-1 R/W-1 R/W-1 R/W-1 — IC8R5 IC8R4 IC8R3 IC8R2 U-0 R/W-1 R/W-1 R/W-1 R/W-1 — IC7R5 IC7R4 IC7R3 IC7R2 bit W = Writable bit U = Unimplemented bit, rea '0' = Bit is cleared	U-0 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 — IC8R5 IC8R4 IC8R3 IC8R2 IC8R1 U-0 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 — IC7R5 IC7R4 IC7R3 IC7R2 IC7R1 bit W = Writable bit U = Unimplemented bit, read as '0' '0' = Bit is cleared x = Bit is unkr

bit 15-14	Unimplemented: Read as '0'
bit 13-8	IC8R<5:0>: Assign Input Capture 8 (IC8) to Corresponding RPn or RPIn Pin bits
bit 7-6	Unimplemented: Read as '0'
bit 5-0	IC7R<5:0>: Assign Input Capture 7 (IC7) to Corresponding RPn or RPIn Pin bits

REGISTER 10-10: RPINR11: PERIPHERAL PIN SELECT INPUT REGISTER 11

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	OCFBR5	OCFBR4	OCFBR3	OCFBR2	OCFBR1	OCFBR0
bit 15							bit 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	—	OCFAR5	OCFAR4	OCFAR3	OCFAR2	OCFAR1	OCFAR0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **OCFBR<5:0>:** Assign Output Compare Fault B (OCFB) to Corresponding RPn or RPIn Pin bits

bit 7-6 Unimplemented: Read as '0'

bit 5-0 OCFAR<5:0>: Assign Output Compare Fault A (OCFA) to Corresponding RPn or RPIn Pin bits

REGISTER 12-2: TyCON: TIMER3 AND TIMER5 CONTROL REGISTER⁽³⁾

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
TON ⁽¹⁾	—	TSIDL ⁽¹⁾	—	—	—	—	—
bit 15							bit 8

U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	U-0
—	TGATE ⁽¹⁾	TCKPS1 ⁽¹⁾	TCKPS0 ⁽¹⁾	—	—	TCS ^(1,2)	—
bit 7							bit 0

Legend:				
R = Reada	ble bit W = V	/ritable bit	U = Unimplemented bit,	read as '0'
-n = Value	at POR '1' = B	it is set	'0' = Bit is cleared	x = Bit is unknown
bit 15	TON: Timery On bit ⁽¹)		
	1 = Starts 16-bit Tim	ery		
	0 = Stops 16-bit Tim	ery		
bit 14	Unimplemented: Re	ad as '0'		
bit 13	TSIDL: Stop in Idle N	lode bit ⁽¹⁾		
	1 = Discontinue mod	ule operation whe	n device enters Idle mode	
	0 = Continue module	operation in Idle	mode	
bit 12-7	Unimplemented: Re	ad as '0'		
bit 6	TGATE: Timery Gate	d Time Accumula	tion Enable bit ⁽¹⁾	
	When TCS = 1:			
	This bit is ignored.			
	<u>When TCS = 0:</u>			
	\perp = Gated time accu	mulation enabled		
hit 5_1			cale Select hits(1)	
DIL 3-4	11 = 1.256			
	10 = 1:64			
	01 = 1:8			
	00 = 1:1			
bit 3-2	Unimplemented: Re	ad as '0'		
bit 1	TCS: Timery Clock S	ource Select bit ^{(1,}	2)	
	1 = External clock fr	om pin TyCK (on t	he rising edge)	
	0 = Internal clock (F	osc/2)		
bit 0	Unimplemented: Re	ad as '0'		
Note 1:	When 32-bit operation is operation; all timer functi	enabled (T2CON∙ ons are set throug	<3> or T4CON<3> = 1), these h T2CON and T4CON.	e bits have no effect on Timery
2:	If TCS = 1, RPINRx (Tx	CK) must be config	gured to an available RPn pir	a. See Section 10.4 "Peripheral

- **Pin Select**" for more information.
- **3:** Changing the value of TyCON while the timer is running (TON = 1) causes the timer prescale counter to reset and is not recommended.

NOTES:

R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
UARTEN	(1)	USIDL	IREN ⁽²⁾	RTSMD	_	UEN1	UEN0
bit 15							bit 8
R/C-0, H	C R/W-0	R/W-0, HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSEL1	PDSEL0	STSEL
bit 7							bit 0
Legend:		C = Clearable	bit	HC = Hardwa	re Clearable bi	t	
R = Reada	able bit	W = Writable	oit	U = Unimplem	nented bit, read	d as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15	UARTEN: UA	ARTx Enable bit	(1)				
	1 = UARTx is	s enabled; all U	ARTx pins are	controlled by L	JARTx as defin	ed by UEN<1:0	>
	0 = UARTx is	s disabled; all L	JARTx pins ar	e controlled by	PORT latches	; UARTx power	consumption
	minimal						
bit 14	Unimplemen	ted: Read as '0)'				
bit 13	USIDL: Stop	in Idle Mode bit					
	1 = Discontin	ue module ope	ration when d	evice enters Idie	e mode		
hit 12		Encoder and De	ecoder Enable	hit(2)			
	1 = IrDA enc	oder and decor	ler enabled	DI			
	0 = IrDA enc	oder and decod	ler disabled				
bit 11	RTSMD: Mod	le Selection for	UxRTS Pin bi	t			
	1 = UxRTS p	in in Simplex m	ode				
	$0 = \overline{\text{UxRTS}} p$	in in Flow Cont	rol mode				
bit 10	Unimplemen	ted: Read as '0)'				
bit 9-8	UEN1:UEN0:	UARTx Enable	e bits				
	11 = UxTX,	UxRX and BCL	Kx pins are er	habled and used	d; UxCTS pin c	ontrolled by por	t latches
	$10 = \mathbf{U}\mathbf{X}\mathbf{I}\mathbf{X},$ $01 = \mathbf{U}\mathbf{x}\mathbf{T}\mathbf{X}$	UXRX, UXCIS:	and UXRIS pi	ns are enabled	and used	controlled by no	t latches
	00 = UxTX	and UxRX pins	are enabled a	nd used; UxCT	S and UxRTS/I	BCLKx pins con	trolled by port
	latches	•				·	5.1
bit 7	WAKE: Wake	e-up on Start Bit	Detect During	g Sleep Mode E	nable bit		
	1 = UARTx w	vill continue to s	ample the Ux	RX pin; interrup	t generated on	falling edge, bi	t cleared in
	hardware	e on following ri	sing edge				
	0 = No wake	-up enabled					
bit 6	LPBACK: UA	ARIX Loopback	Mode Select	bit			
	$\perp = \text{Enable L}$	oopback mode k mode is disah	led				
bit 5		n-Baud Enable	hit				
Sit 0	1 = Enable b	aud rate meas	urement on th	e next characte	r – requires re	ception of a Sv	nc field (55h):
	cleared in	n hardware upo	n completion				
	0 = Baud rate	e measurement	disabled or c	ompleted			
Note 1:	If UARTEN = 1. fl	he peripheral in	puts and outo	uts must be con	figured to an a	vailable RPn ni	n. See
	Section 10.4 "Pe	eripheral Pin S	elect" for mor	e information.	J	 	

REGISTER 17-1: UxMODE: UARTx MODE REGISTER

2: This feature is only available for the 16x BRG mode (BRGH = 0).

REGISTER 17-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED)

bit 5		ADDEN: Address Character Detect bit (bit 8 of received data = 1)
		 1 = Address Detect mode enabled. If 9-bit mode is not selected, this does not take effect. 0 = Address Detect mode disabled
bit 4		RIDLE: Receiver Idle bit (read-only)
		1 = Receiver is Idle0 = Receiver is active
bit 3		PERR: Parity Error Status bit (read-only)
		 1 = Parity error has been detected for the current character (character at the top of the receive FIFO) 0 = Parity error has not been detected
bit 2		FERR: Framing Error Status bit (read-only)
		 1 = Framing error has been detected for the current character (character at the top of the receive FIFO) 0 = Framing error has not been detected
bit 1		OERR: Receive Buffer Overrun Error Status bit (clear/read-only)
		 1 = Receive buffer has overflowed 0 = Receive buffer has not overflowed (clearing a previously set OERR bit (1 → 0 transition) will reset the receiver buffer and the RSR to the empty state
bit 0		URXDA : Receive Buffer Data Available bit (read-only)
		1 = Receive buffer has data, at least one more character can be read 0 = Receive buffer is empty
Note 1	l: Va (11	alue of bit only affects the transmit properties of the module when the IrDA encoder is enabled REN = 1).
2	2: If	UARTEN = 1, the peripheral inputs and outputs must be configured to an available RPn pin.

See Section 10.4 "Peripheral Pin Select" for more information.

REGISTER 18-5: U1PWRC: USB POWER CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

R/W-0, HS	U-0	U-0	R/W-0	U-0	U-0	R/W-0, HC	R/W-0
UACTPND	—	—	USLPGRD	—	—	USUSPND	USBPWR
bit 7							bit 0

Legend:	HS = Hardware Settable bit	HC = Hardware Clearable bi	t
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8	Unimplemented: Read as '0'
bit 7	UACTPND: USB Activity Pending bit
	 1 = Module should not be suspended at the moment (requires USLPGRD bit to be set) 0 = Module may be suspended or powered down
bit 6-5	Unimplemented: Read as '0'
bit 4	USLPGRD: Sleep/Suspend Guard bit
	 1 = Indicate to the USB module that it is about to be suspended or powered down 0 = No suspend
bit 3-2	Unimplemented: Read as '0'
bit 1	USUSPND: USB Suspend Mode Enable bit
	 1 = USB OTG module is in Suspend mode; USB clock is gated and the transceiver is placed in a low-power state
	0 = Normal USB OTG operation
bit 0	USBPWR: USB Operation Enable bit
	1 = USB OTG module is enabled
	$0 = \text{USB OTG module is disabled}^{\prime\prime}$
Nata A.	

Note 1: Do not clear this bit unless the HOSTEN, USBEN and OTGEN bits (U1CON<3,0> and U1OTGCON<2>) are all cleared.

R/W-0	U-0	R/W-0	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0	R/W-0	R/W-0		
PMPEN	_	PSIDL	ADRMUX1	ADRMUX0	PTBEEN	PTWREN	PTRDEN		
bit 15							bit 8		
R/W-0	R/W-0	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0	R/W-0	R/W-0		
CSF1	CSF0	ALP	CS2P	CS1P	BEP	WRSP	RDSP		
bit 7							bit 0		
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'			
-n = Value at	POR	'1' = Bit is set	t	'0' = Bit is clea	ared	x = Bit is unkn	iown		
bit 15	PMPEN: Para 1 = PMP ena 0 = PMP disa	allel Master Po abled abled, no off-ch	rt Enable bit nip access perfe	ormed					
bit 14	Unimplemen	ted: Read as '	0'						
bit 13	PSIDL: Stop	in Idle Mode bi	t						
	1 = Discontir 0 = Continue	nue module opera	tion in Idle mod	evice enters Idie le	e mode				
bit 12-11	ADRMUX<1:0>: Address/Data Multiplexing Selection bits ⁽¹⁾								
	11 = Reserv 10 = All 16 k 01 = Lower PMA<1 00 = Addres	bits of address 8 bits of addre 10:8> is and data app	are multiplexed ess are multiple bear on separat	l on PMD<7:0> exed on PMD< e pins	pins 7:0> pins, upp	oer 3 bits are r	nultiplexed on		
bit 10	PTBEEN: By	te Enable Port	Enable bit (16-	Bit Master mod	e)				
	1 = PMBE po 0 = PMBE po	ort enabled ort disabled							
bit 9	PTWREN: Write Enable Strobe Port Enable bit								
	1 = PMWR/F 0 = PMWR/F	PMENB port en PMENB port dis	abled sabled						
bit 8	PTRDEN: Re	ad/Write Strob	e Port Enable b	bit					
	1 = PMRD/P $0 = PMRD/P$	MWR port ena MWR port disa	bled Ibled						
bit 7-6	CSF1:CSF0:	Chip Select Fu	unction bits						
	11 = Reserve 10 = PMCS1 01 = PMCS2 00 = PMCS1	ed and PMCS2 fu functions as cl and PMCS2 fu	unction as chip hip select, PMC unction as addr	select CS1 functions as ess bits 15 and	s address bit 1 14	4			
bit 5	ALP: Addres	s Latch Polarity	/ bit ⁽¹⁾						
	1 = Active-hi 0 = Active-lo	gh <u>(PMALL</u> and w (PMALL and	d PMALH) PMALH)						
bit 4	CS2P: Chip S	Select 2 Polarit	y bit ⁽¹⁾						
	1 = Active-hi 0 = Active-lo	gh <u>(PMCS2/PM</u> w (PMCS2/PM	<u>//CS2)</u> //CS2)						
bit 3	CS1P: Chip S	Select 1 Polarit	y bit ⁽¹⁾						
	1 = Active-hi 0 = Active-lo	gh <u>(PMCS1/PM</u> w (PMCS1/PM	<u>//CS1)</u> //CS1)						

REGISTER 19-1: PMCON: PARALLEL PORT CONTROL REGISTER

Note 1: These bits have no effect when their corresponding pins are used as address lines.

20.0 REAL-TIME CLOCK AND CALENDAR (RTCC)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "PIC24F Family Reference Manual", Section 29. "Real-Time Clock and Calendar (RTCC)" (DS39696).

The Real-Time Clock and Calendar (RTCC) provides on-chip, hardware-based clock and calendar functionality with little or no CPU overhead. It is intended for applications where accurate time must be maintained for extended periods with minimal CPU activity and with limited power resources, such as battery-powered applications. Key features include:

- Time data in hours, minutes and seconds, with a granularity of one-half second
- 24-hour format (Military Time) display option
- Calendar data as date, month and year
- Automatic, hardware-based day of the week and leap year calculations for dates from 2000 through 2099
- Time and calendar data in BCD format for _compact firmware
- Highly configurable alarm function
- External output pin with selectable alarm signal or seconds "tick" signal output
- · User calibration feature with auto-adjust

A simplified block diagram of the module is shown in Figure 20-1. The SOSC and RTCC will both remain running while the device is held in Reset with MCLR and will continue running after MCLR is released.

FIGURE 20-1: RTCC BLOCK DIAGRAM

20.1.3 RTCC CONTROL REGISTERS

REGISTER 20-1: RCFGCAL: RTCC CALIBRATION AND CONFIGURATION REGISTER⁽¹⁾

R/W-0	U-0	R/W-0	R-0	R-0	R/W-0	R/W-0	R/W-0
RTCEN ⁽²⁾	—	RTCWREN	RTCSYNC	HALFSEC ⁽³⁾	RTCOE	RTCPTR1	RTCPTR0
bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| CAL7 | CAL6 | CAL5 | CAL4 | CAL3 | CAL2 | CAL1 | CAL0 |
| bit 7 | | | | | | | bit 0 |

Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 15	RTCEN: RTCC Enable bit ⁽²⁾
	 1 = RTCC module is enabled 0 = RTCC module is disabled
bit 14	Unimplemented: Read as '0'
bit 13	RTCWREN: RTCC Value Registers Write Enable bit 1 = RTCVALH and RTCVALL registers can be written to by the user 0 = RTCVALH and RTCVALL registers are locked out from being written to by the user
bit 12	 RTCSYNC: RTCC Value Registers Read Synchronization bit 1 = RTCVALH, RTCVALL and ALCFGRPT registers can change while reading due to a rollover ripple resulting in an invalid data read. If the register is read twice and results in the same data, the data can be assumed to be valid. 0 = RTCVALH, RTCVALL or ALCFGRPT registers can be read without concern over a rollover ripple
bit 11	HALFSEC: Half-Second Status bit ⁽³⁾ 1 = Second half period of a second 0 = First half period of a second
bit 10	RTCOE: RTCC Output Enable bit 1 = RTCC output enabled 0 = RTCC output disabled
bit 9-8	RTCPTR<1:0>: RTCC Value Register Window Pointer bits Points to the corresponding RTCC Value registers when reading RTCVALH and RTCVALL registers; the RTCPTR<1:0> value decrements on every read or write of RTCVALH until it reaches '00'. <u>RTCVAL<15:8>:</u> 00 = MINUTES 01 = WEEKDAY 10 = MONTH 11 = Reserved <u>RTCVAL<7:0>:</u> 00 = SECONDS 01 = HOURS 10 = DAY 11 = YEAR
Note 1:	The RCFGCAL register is only affected by a POR.

- 2: A write to the RTCEN bit is only allowed when RTCWREN = 1.
- 3: This bit is read-only. It is cleared to '0' on a write to the lower half of the MINSEC register.

22.0 10-BIT HIGH-SPEED A/D CONVERTER

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "PIC24F Family Reference Manual", Section 17. "10-Bit A/D Converter" (DS39705).

The 10-bit A/D Converter has the following key features:

- · Successive Approximation (SAR) conversion
- Conversion speeds of up to 500 ksps
- 16 analog input pins
- External voltage reference input pins
- Internal band gap reference inputs
- Automatic Channel Scan mode
- Selectable conversion trigger source
- 16-word conversion result buffer
- Selectable Buffer Fill modes
- · Four result alignment options
- Operation during CPU Sleep and Idle modes

On all PIC24FJ256GB110 family devices, the 10-bit A/D Converter has 16 analog input pins, designated AN0 through AN15. In addition, there are two analog input pins for external voltage reference connections (VREF+ and VREF-). These voltage reference inputs may be shared with other analog input pins.

A block diagram of the A/D Converter is shown in Figure 22-1.

To perform an A/D conversion:

- 1. Configure the A/D module:
 - Configure port pins as analog inputs and/or select band gap reference inputs (AD1PCFGL<15:0> and AD1PCFGH<1:0>).
 - b) Select voltage reference source to match expected range on analog inputs (AD1CON2<15:13>).
 - c) Select the analog conversion clock to match desired data rate with processor clock (AD1CON3<7:0>).
 - d) Select the appropriate sample/conversion sequence (AD1CON1<7:5> and AD1CON3<12:8>).
 - e) Select how conversion results are presented in the buffer (AD1CON1<9:8>).
 - f) Select interrupt rate (AD1CON2<5:2>).
 - g) Turn on A/D module (AD1CON1<15>).
- 2. Configure A/D interrupt (if required):
 - a) Clear the AD1IF bit.
 - b) Select A/D interrupt priority.

100-Lead TQFP (14x14x1 mm)

Legend	: XXX Y YY WW NNN @3 *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ((e3)) can be found on the outer packaging for this package.
Note:	In the eve be carried characters	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available s for customer-specific information.

64-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIM	ETERS		
Dimensior	MIN	NOM	MAX	
Contact Pitch	E		0.50 BSC	
Contact Pad Spacing	C1		11.40	
Contact Pad Spacing	C2		11.40	
Contact Pad Width (X64)	X1			0.30
Contact Pad Length (X64)	Y1			1.50
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2085A