

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Obsolete
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	51
Program Memory Size	192KB (65.5K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj192gb106t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.2 USB On-The-Go

With the PIC24FJ256GB110 family of devices, Microchip introduces USB On-The-Go functionality on a single chip to its product line. This new module provides on-chip functionality as a target device compatible with the USB 2.0 standard, as well as limited stand-alone functionality as a USB embedded host. By implementing USB Host Negotiation Protocol (HNP), the module can also dynamically switch between device and host operation, allowing for a much wider range of versatile USB-enabled applications on a microcontroller platform.

In addition to USB host functionality, PIC24FJ256GB110 family devices provide a true single-chip USB solution, including an on-chip transceiver and voltage regulator, and a voltage boost generator for sourcing bus power during host operations.

1.3 Other Special Features

- Peripheral Pin Select: The Peripheral Pin Select (PPS) feature allows most digital peripherals to be mapped over a fixed set of digital I/O pins. Users may independently map the input and/or output of any one of the many digital peripherals to any one of the I/O pins.
- **Communications:** The PIC24FJ256GB110 family incorporates a range of serial communication peripherals to handle a range of application requirements. There are three independent I²C modules that support both Master and Slave modes of operation. Devices also have, through the Peripheral Pin Select feature, four independent UARTs with built-in IrDA encoder/decoders and three SPI modules.
- Analog Features: All members of the PIC24FJ256GB110 family include a 10-bit A/D Converter module and a triple comparator module. The A/D module incorporates programmable acquisition time, allowing for a channel to be selected and a conversion to be initiated without waiting for a sampling period, as well as faster sampling speeds. The comparator module includes three analog comparators that are configurable for a wide range of operations.
- **CTMU Interface:** In addition to their other analog features, members of the PIC24FJ256GB110 family include the brand new CTMU interface module. This provides a convenient method for precision time measurement and pulse generation, and can serve as an interface for capacitive sensors.

- Parallel Master/Enhanced Parallel Slave Port: One of the general purpose I/O ports can be reconfigured for enhanced parallel data communications. In this mode, the port can be configured for both master and slave operations, and supports 8-bit and 16-bit data transfers with up to 16 external address lines in Master modes.
- Real-Time Clock/Calendar: This module implements a full-featured clock and calendar with alarm functions in hardware, freeing up timer resources and program memory space for use of the core application.

1.4 Details on Individual Family Members

Devices in the PIC24FJ256GB110 family are available in 64-pin, 80-pin and 100-pin packages. The general block diagram for all devices is shown in Figure 1-1.

The devices are differentiated from each other in four ways:

- Flash program memory (64 Kbytes for PIC24FJ64GB1 devices, 128 Kbytes for PIC24FJ128GB1 devices, 192 Kbytes for PIC24FJ192GB1 devices and 256 Kbytes for PIC24FJ256GB1 devices).
- Available I/O pins and ports (51 pins on 6 ports for 64-pin devices, 65 pins on 7 ports for 80-pin devices and 83 pins on 7 ports for 100-pin devices).
- 3. Available Interrupt-on-Change Notification (ICN) inputs (49 on 64-pin devices, 63 on 80-pin devices and 81 on 100-pin devices).
- 4. Available remappable pins (29 pins on 64-pin devices, 40 pins on 80-pin devices and 44 pins on 100-pin devices)

All other features for devices in this family are identical. These are summarized in Table 1-1.

A list of the pin features available on the PIC24FJ256GB110 family devices, sorted by function, is shown in Table 1-4. Note that this table shows the pin location of individual peripheral features and not how they are multiplexed on the same pin. This information is provided in the pinout diagrams in the beginning of the data sheet. Multiplexed features are sorted by the priority given to a feature, with the highest priority peripheral being listed first.

		Pin Number		I/O		
Function	64-Pin TQFP, QFN	80-Pin TQFP	100-Pin TQFP	I/O	Input Buffer	Description
D+	37	47	57	I/O	—	USB Differential Plus line (internal transceiver).
D-	36	46	56	I/O	_	USB Differential Minus line (internal transceiver).
DMH	46	58	72	0	_	D- External Pull-up Control Output.
DMLN	42	54	68	0	_	D- External Pull-down Control Output.
DPH	50	62	77	0	_	D+ External Pull-up Control Output.
DPLN	43	55	69	0	_	D+ External Pull-down Control Output.
ENVREG	57	71	86	I	ST	Voltage Regulator Enable.
INT0	46	58	72	I	ST	External Interrupt Input.
MCLR	7	9	13	I	ST	Master Clear (device Reset) Input. This line is brought low to cause a Reset.
OSCI	39	49	63	I	ANA	Main Oscillator Input Connection.
OSCO	40	50	64	0	ANA	Main Oscillator Output Connection.
PGEC1	15	19	24	I/O	ST	In-Circuit Debugger/Emulator/ICSP™ Programming Clock.
PGED1	16	20	25	I/O	ST	In-Circuit Debugger/Emulator/ICSP Programming Data.
PGEC2	17	21	26	I/O	ST	In-Circuit Debugger/Emulator/ICSP Programming Clock.
PGED2	18	22	27	I/O	ST	In-Circuit Debugger/Emulator/ICSP Programming Data.
PGEC3	11	15	20	I/O	ST	In-Circuit Debugger/Emulator/ICSP Programming Clock.
PGED3	12	16	21	I/O	ST	In-Circuit Debugger/Emulator/ICSP Programming Data.
PMA0	30	36	44	I/O	ST	Parallel Master Port Address Bit 0 Input (Buffered Slave modes) and Output (Master modes).
PMA1	29	35	43	I/O	ST	Parallel Master Port Address Bit 1 Input (Buffered Slave modes) and Output (Master modes).
PMA2	8	10	14	0	—	Parallel Master Port Address (Demultiplexed Master
PMA3	6	8	12	0	—	modes).
PMA4	5	7	11	0	—	
PMA5	4	6	10	0	—	
PMA6	16	24	29	0	—	
PMA7	22	23	28	0	—	
PMA8	32	40	50	0	—	
PMA9	31	39	49	0	—	
PMA10	28	34	42	0	—	
PMA11	27	33	41	0	—	
PMA12	24	30	35	0	—	
PMA13	23	29	34	0	- 1	
PMCS1	45	57	71	I/O	ST/TTL	Parallel Master Port Chip Select 1 Strobe/Address Bit 15.
PMCS2	44	56	70	0	ST	Parallel Master Port Chip Select 2 Strobe/Address Bit 14.
PMBE	51	63	78	0	—	Parallel Master Port Byte Enable Strobe.
Leaend:	TTL = TTL in	and handfam				Schmitt Trigger input buffer

TABLE 1-4: PIC24FJ256GB110 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

Legend: TTL = TTL input buffer ANA = Analog level input/output ST = Schmitt Trigger input buffer $I^2C^{TM} = I^2C/SMBus$ input buffer

NOTES:

TABLE 4-20: ADC REGISTER MAP

	-0.								1									r
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADC1BUF0	0300								ADC Dat	a Buffer 0								xxxx
ADC1BUF1	0302								ADC Dat	a Buffer 1								xxxx
ADC1BUF2	0304								ADC Dat	a Buffer 2								xxxx
ADC1BUF3	0306								ADC Dat	a Buffer 3								xxxx
ADC1BUF4	0308								ADC Dat	a Buffer 4								xxxx
ADC1BUF5	030A								ADC Dat	a Buffer 5								xxxx
ADC1BUF6	030C														xxxx			
ADC1BUF7	030E		ADC Data Buffer 7 xx												xxxx			
ADC1BUF8	0310		ADC Data Buffer 8 x											xxxx				
ADC1BUF9	0312		ADC Data Buffer 9											xxxx				
ADC1BUFA	0314		ADC Data Buffer 10											xxxx				
ADC1BUFB	0316								ADC Data	Buffer 11								xxxx
ADC1BUFC	0318								ADC Data	Buffer 12								xxxx
ADC1BUFD	031A								ADC Data	Buffer 13								xxxx
ADC1BUFE	031C								ADC Data	Buffer 14								xxxx
ADC1BUFF	031E								ADC Data	Buffer 15								xxxx
AD1CON1	0320	ADON	_	ADSIDL	_	—	_	FORM1	FORM0	SSRC2	SSRC1	SSRC0	—	—	ASAM	SAMP	DONE	0000
AD1CON2	0322	VCFG2	VCFG1	VCFG0	r	—	CSCNA	—	—	BUFS	_	SMPI3	SMPI2	SMPI1	SMPI0	BUFM	ALTS	0000
AD1CON3	0324	ADRC	r	r	SAMC4	SAMC3	SAMC2	SAMC1	SAMC0	ADCS7	ADCS6	ADCS5	ADCS4	ADCS3	ADCS2	ADCS1	ADCS0	0000
AD1CHS	0328	CH0NB	_	—	CH0SB4	CH0SB3	CH0SB2	CH0SB1	CH0SB0	CH0NA	_	_	CH0SA4	CH0SA3	CH0SA2	CH0SA1	CH0SA0	0000
AD1PCFGH	032A	—	_	—	—	—	—	—	—	—	_	_	—	—	—	PCFG17	PCFG16	0000
AD1PCFGL	032C	PCFG15	PCFG14	PCFG13	PCFG12	PCFG11	PCFG10	PCFG9	PCFG8	PCFG7	PCFG6	PCFG5	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0	0000
AD1CSSL	0330	CSSL15	CSSL14	CSSL13	CSSL12	CSSL11	CSSL10	CSSL9	CSSL8	CSSL7	CSSL6	CSSL5	CSSL4	CSSL3	CSSL2	CSSL1	CSSL0	0000
Legend:	— = unii	mplemented	l, read as 'o)', r = reserv	ved, maintai	in as '0'. Re	eset values	are shown	in hexadec	mal.								

TABLE 4-21: CTMU REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CTMUCON	033C	CTMUEN	_	CTMUSIDL	TGEN	EDGEN	EDGSEQEN	IDISSEN	CTTRIG	EDG2POL	EDG2SEL1	EDG2SEL0	EDG1POL	EDG1SEL1	EDG1SEL0	EDG2STAT	EDG1STAT	0000
CTMUICON	033E	ITRIM5	ITRIM4	ITRIM3	ITRIM2	ITRIM1	ITRIM0	IRNG1	IRNG0		-	_	-			—	_	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

EXAMPLE 5-2: ERASING A PROGRAM MEMORY BLOCK (C LANGUAGE CODE)

<pre>// C example using MPLAB C30 unsigned long progAddr = 0xXXXXXX; unsigned int offset;</pre>	// Address of row to write
<pre>//Set up pointer to the first memory locati TBLPAG = progAddr>>16; offset = progAddr & 0xFFFF;</pre>	on to be written // Initialize PM Page Boundary SFR // Initialize lower word of address
builtin_tblwtl(offset, 0x0000);	<pre>// Set base address of erase block // with dummy latch write</pre>
NVMCON = 0×4042 ;	// Initialize NVMCON
asm("DISI #5");	<pre>// Block all interrupts with priority <7 // for next 5 instructions</pre>
builtin_write_NVM();	// C30 function to perform unlock // sequence and set WR

EXAMPLE 5-3: LOADING THE WRITE BUFFERS (ASSEMBLY LANGUAGE CODE)

<pre>MOV #0x4001, W0 ; MOV W0, NVMCON ; Initialize NVMCON ; Set up a pointer to the first program memory location to be written ; program memory selected, and writes enabled MOV #0x0000, W0 ; MOV W0, TBLPAG ; Initialize PM Page Boundary SFR MOV #0x6000, W0 ; An example program memory address ; Perform the TBLWT instructions to write the latches ; Oth_program_word MOV #LOW_WORD_0, W2 ; MOV #HIGH_BYTE_0, W3 ; TELWTL W2, [W0] ; Write PM low word into program latch TBLWTH W3, [W0+1] ; Write PM high byte into program latch ; Ist_program_word MOV #LOW_WORD_1, W2 ; MOV #HIGH_BYTE_1, W3 ; TELWTL W2, [W0] ; Write PM low word into program latch TBLWTH W3, [W0++] ; Write PM high byte into program latch ; 2nd_program_word MOV #LOW_WORD_2, W2 ; MOV #HIGH_BYTE_2, W3 ; TBLWTL W2, [W0] ; Write PM low word into program latch TBLWTH W3, [W0++] ; Write PM low word into program latch ; 2nd_program_word MOV #LOW_WORD_2, W2 ; MOV #HIGH_BYTE_2, W3 ; TBLWTL W2, [W0] ; Write PM low word into program latch TBLWTH W3, [W0++] ; Write PM low word into program latch TBLWTH W3, [W0++] ; Write PM low word into program latch TBLWTH W3, [W0++] ; Write PM high byte into program latch TBLWTH W3, [W0++] ; Write PM low word into program latch ; 63rd_program_word MOV #LOW_WORD_31, W2 ; MOV #HIGH_BYTE_31, W3 ; TBLWTL W2, [W0] ; Write PM low word into program latch TBLWTH W3, [W0] ; Write PM low word into program latch TBLWTH W3, [W0] ; Write PM low word into program latch the the top top the program latch top top top the program latch top top the program latch top top top the top top top the program latch top top top the program latch top top top the program latch top top the top top top the program latch top top the program latch top top top top the program latch top top top top the program latch top top top top top the program latch top top top top top top top top top top</pre>	; Set up NVMCC	ON for row programming operatio	ons
<pre>; Set up a pointer to the first program memory location to be written ; program memory selected, and writes enabled MOV #0x0000, W0 ; MOV #0x6000, W0 ; Initialize PM Page Boundary SFR MOV #0x6000, W0 ; An example program memory address ; Perform the TBLWT instructions to write the latches ; Oth_program_word MOV #LOW_WORD_0, W2 ; MOV #HIGH_BYTE_0, W3 ; TBLWTL W2, [W0] ; Write PM low word into program latch TBLWTL W2, [W0] ; Write PM high byte into program latch TBLWTL W2, [W0] ; Write PM high byte into program latch TBLWTL W2, [W0] ; Write PM high byte into program latch TBLWTL W2, [W0] ; Write PM high byte into program latch TBLWTL W3, [W0++] ; Write PM high byte into program latch TBLWTL W2, [W0] ; Write PM high byte into program latch TBLWTL W2, [W0] ; Write PM high byte into program latch TBLWTL W2, [W0] ; Write PM high byte into program latch TBLWTL W3, [W0++] ; Write PM high byte into program latch TBLWTL W3, [W0++] ; Write PM high byte into program latch TBLWTH W3, [W0++] ; Write PM high byte into program latch TBLWTH W3, [W0++] ; Write PM high byte into program latch TBLWTH W3, [W0++] ; Write PM high byte into program latch</pre>	MOV	#0x4001, W0	;
<pre>; program memory selected, and writes enabled MOV #0x0000, W0 ; MOV W0, TBLPAG ; Initialize PM Page Boundary SFR MOV #0x6000, W0 ; An example program memory address ; Perform the TBLWT instructions to write the latches ; Oth_program_word MOV #LOW_WORD_0, W2 ; MOV #HIGH_BYTE_0, W3 ; TBLWTL W2, [W0] ; Write PM low word into program latch TBLWTH W3, [W0++] ; Write PM high byte into program latch TBLWTL W2, [W0] ; Write PM high byte into program latch TBLWTL W2, [W0] ; Write PM low word into program latch TBLWTH W3, [W0++] ; Write PM high byte into program latch TBLWTH W3, [W0++] ; Write PM high byte into program latch ; 2nd_program_word MOV #LOW_WORD_2, W2 ; MOV #LOW_WORD_2, W2 ; MOV #LOW_WORD_2, W2 ; MOV #LOW_WORD_1 ; Write PM high byte into program latch TBLWTH W3, [W0++] ; Write PM high byte into program latch TBLWTL W2, [W0] ; Write PM high byte into program latch TBLWTH W3, [W0++] ; Write PM high byte into program latch TBLWTT W2, [W0] ; Write PM high byte into program latch TBLWTH W3, [W0++] ; Write PM high byte into program latch TBLWTL W2, [W0] ; Write PM high byte into program latch</pre>	MOV	W0, NVMCON	; Initialize NVMCON
<pre>MOV #0x0000, W0 ; MOV W0, TELPAG ; Initialize PM Page Boundary SFR MOV #0x6000, W0 ; An example program memory address Perform the TBLWT instructions to write the latches 0th_program_word MOV #LOW_WORD_0, W2 ; MOV #HIGH_BYTE_0, W3 ; TBLWTL W2, [W0] ; Write PM low word into program latch TBLWTL W3, [W0++] ; Write PM high byte into program latch TBLWTL W3, [W0++] ; Write PM high byte into program latch ist_program_word MOV #LOW_WORD_1, W2 ; MOV #HIGH_BYTE_1, W3 ; TBLWTL W2, [W0] ; Write PM low word into program latch TBLWTH W3, [W0++] ; Write PM high byte into program latch TBLWTH W3, [W0++] ; Write PM high byte into program latch TBLWTL W2, [W0] ; Write PM high byte into program latch TBLWTL W2, [W0] ; Write PM low word into program latch ist_program_word MOV #LOW_WORD_2, W2 ; MOV #HIGH_BYTE_2, W3 ; TBLWTL W2, [W0] ; Write PM low word into program latch TBLWTL W3, [W0++] ; Write PM high byte into program latch ist_ist_ist_ist_ist_ist_ist_ist_ist_ist_</pre>	; Set up a poi	nter to the first program memo	ory location to be written
<pre>MOV W0, TELPAG ; Initialize PM Page Boundary SFR MOV #0x6000, W0 ; An example program memory address ; Perform the TBLWT instructions to write the latches ; Oth_program_word MOV #LOW_WORD_0, W2 ; MOV #HIGH_BYTE_0, W3 ; TELWTL W2, [W0] ; Write PM low word into program latch TBLWTH W3, [W0++] ; Write PM high byte into program latch ; lst_program_word MOV #LOW_WORD_1, W2 ; MOV #HIGH_BYTE_1, W3 ; TELWTL W2, [W0] ; Write PM low word into program latch TBLWTL W2, [W0] ; Write PM high byte into program latch TBLWTL W3, [W0++] ; Write PM high byte into program latch ; 2nd_program_word MOV #HIGH_BYTE_2, W3 ; TELWTL W2, [W0] ; Write PM low word into program latch ; 2nd_program_word MOV #HIGH_BYTE_2, W3 ; TELWTL W2, [W0] ; Write PM low word into program latch ; 63rd_program_word MOV #LOW_WORD_31, W2 ; MOV #HIGH_BYTE_31, W3 ; TELWTL W2, [W0] ; Write PM low word into program latch</pre>	; program memo	ory selected, and writes enable	ed
<pre>MOV #0x6000, W0 ; An example program memory address ; Perform the TBLWT instructions to write the latches ; Oth_program_word MOV #LOW_WORD_0, W2 ; MOV #LIGH_BYTE_0, W3 ; TBLWTL W2, [W0] ; Write PM low word into program latch TBLWTH W3, [W0++] ; Write PM high byte into program latch TBLWTL W2, [W0] ; Write PM low word into program latch TBLWTL W2, [W0] ; Write PM low word into program latch TBLWTL W2, [W0] ; Write PM low word into program latch TBLWTL W2, [W0] ; Write PM low word into program latch TBLWTL W2, [W0] ; Write PM high byte into program latch ; 2nd_program_word MOV #LIGH_BYTE_2, W3 ; TBLWTL W2, [W0] ; Write PM low word into program latch TBLWTL W2, [W0] ; Write PM high byte into program latch i i for a state of the program_word MOV #LOW_WORD_31, W2 ; MOV #LIGH_BYTE_31, W3 ; TBLWTL W2, [W0] ; Write PM low word into program latch i to y = TBLWTL W2, [W0] ; Write PM low word into program latch i to y = TBLWTL W2, [W0] ; Write PM low word into program latch to y = TBLWTL W2, [W0] ; Write PM low word into program latch to y = TBLWTL W2, [W0] ; Write PM low word into program latch to y = TBLWTL W2, [W0] ; Write PM low word into program latch to y = TBLWTL W2, [W0] ; Write PM low word into program latch to y = TBLWTL W2, [W0] ; Write PM low word into program latch to y = TBLWTL W2, [W0] ; Write PM low word into program latch to y = TBLWTL W2, [W0] ; Write PM low word into program latch to y = TBLWTL W2, [W0] ; Write PM low word into program latch to y = TBLWTL W2, [W0] ; Write PM low word into program latch to y = TBLWTL W2, [W0] ; Write PM low word into program latch to y = TBLWTL W2, [W0] ; Write PM low word into program latch to y = TBLWTL W2, [W0] ; Write PM low word into program latch to y = TBLWTL W2, [W0] ; Write PM low word into program latch to y = TBLWTL W2, [W0] ; Write PM low word into program latch to y = TBLWTL W2, [W0] ; Write PM low word into</pre>	MOV	#0x0000, W0	;
<pre>; Perform the TBLWT instructions to write the latches ; Oth_program_word</pre>	MOV	W0, TBLPAG	; Initialize PM Page Boundary SFR
<pre>; Oth_program_word MOV #LOW_WORD_0, W2 ; MOV #HIGH_BYTE_0, W3 ; TBLWTL W2, [W0] ; Write PM low word into program latch TBLWTH W3, [W0++] ; Write PM high byte into program latch ; lst_program_word MOV #LOW_WORD_1, W2 ; MOV #LOW_WORD_1, W2 ; MOV #HIGH_BYTE_1, W3 ; TBLWTL W3, [W0++] ; Write PM low word into program latch TBLWTH W3, [W0++] ; Write PM high byte into program latch ; 2nd_program_word MOV #LOW_WORD_2, W2 ; MOV #HIGH_BYTE_2, W3 ; TBLWTL W2, [W0] ; Write PM low word into program latch TBLWTH W3, [W0++] ; Write PM high byte into program latch ; 63rd_program_word MOV #LOW_MORD_31, W2 ; MOV #HIGH_BYTE_31, W3 ; TBLWTL W2, [W0] ; Write PM low word into program latch</pre>	MOV	#0x6000, W0	; An example program memory address
<pre>MOV #LOW_WORD_0, W2 ; MOV #HIGH_BYTE_0, W3 ; TBLWTL W2, [W0] ; Write PM low word into program latch TBLWTH W3, [W0++] ; Write PM high byte into program latch ; lst_program_word MOV #LOW_WORD_1, W2 ; MOV #HIGH_BYTE_1, W3 ; TBLWTL W2, [W0] ; Write PM low word into program latch TBLWTH W3, [W0++] ; Write PM high byte into program latch ; 2nd_program_word MOV #LOW_WORD_2, W2 ; MOV #HIGH_BYTE_2, W3 ; TBLWTL W2, [W0] ; Write PM low word into program latch TBLWTH W3, [W0++] ; Write PM high byte into program latch ; 63rd_program_word MOV #LOW_WORD_31, W2 ; MOV #HIGH_BYTE_31, W3 ; TBLWTL W2, [W0] ; Write PM low word into program latch</pre>	; Perform the	TBLWT instructions to write th	ne latches
<pre>MOV #HIGH_BYTE_0, W3 ; TBLWTL W2, [W0] ; Write PM low word into program latch TBLWTH W3, [W0++] ; Write PM high byte into program latch ; lst_program_word MOV #LOW_WORD_1, W2 ; MOV #HIGH_BYTE_1, W3 ; TBLWTL W2, [W0] ; Write PM low word into program latch TBLWTH W3, [W0++] ; Write PM high byte into program latch ; 2nd_program_word MOV #HIGH_BYTE_2, W2 ; MOV #HIGH_BYTE_2, W3 ; TBLWTL W2, [W0] ; Write PM low word into program latch TBLWTH W3, [W0++] ; Write PM high byte into program latch ; 63rd_program_word MOV #LOW_WORD_31, W2 ; MOV #HIGH_BYTE_31, W3 ; TBLWTL W2, [W0] ; Write PM low word into program latch</pre>	; 0th_program_	-	
<pre>TBLWTL W2, [W0] ; Write PM low word into program latch TBLWTH W3, [W0++] ; Write PM high byte into program latch ist_program_word MOV #LOW_WORD_1, W2 ; MOV #HIGH_BYTE_1, W3 ; TBLWTL W2, [W0] ; Write PM low word into program latch TBLWTH W3, [W0++] ; Write PM high byte into program latch ; 2nd_program_word MOV #HIGH_BYTE_2, W3 ; TBLWTL W2, [W0] ; Write PM low word into program latch TBLWTH W3, [W0++] ; Write PM low word into program latch • • • • • • • • • • • • • • • • • • •</pre>	MOV		;
<pre>TBLWTH W3, [W0++] ; Write PM high byte into program latch ; lst_program_word MOV #LOW_WORD_1, W2 ; MOV #HIGH_BYTE_1, W3 ; TBLWTL W2, [W0] ; Write PM low word into program latch TBLWTH W3, [W0++] ; Write PM high byte into program latch ; 2nd_program_word MOV #LOW_WORD_2, W2 ; MOV #HIGH_BYTE_2, W3 ; TBLWTL W2, [W0] ; Write PM low word into program latch TBLWTH W3, [W0++] ; Write PM high byte into program latch • • • • ; 63rd_program_word MOV #LOW_WORD_31, W2 ; MOV #HIGH_BYTE_31, W3 ; TBLWTL W2, [W0] ; Write PM low word into program latch</pre>			;
<pre>; lst_program_word MOV #LOW_WORD_1, W2 ; MOV #HIGH_BYTE_1, W3 ; TBLWTL W2, [W0] ; Write PM low word into program latch TBLWTH W3, [W0++] ; Write PM high byte into program latch ; 2nd_program_word MOV #LOW_WORD_2, W2 ; MOV #HIGH_BYTE_2, W3 ; TBLWTL W2, [W0] ; Write PM low word into program latch TBLWTH W3, [W0++] ; Write PM high byte into program latch • • • • ; 63rd_program_word MOV #LOW_WORD_31, W2 ; MOV #HIGH_BYTE_31, W3 ; TBLWTL W2, [W0] ; Write PM low word into program latch</pre>		,	
<pre>MOV #LOW_WORD_1, W2 ; MOV #HIGH_BYTE_1, W3 ; TBLWTL W2, [W0] ; Write PM low word into program latch TBLWTH W3, [W0++] ; Write PM high byte into program latch ? 2nd_program_word MOV #LOW_WORD_2, W2 ; MOV #HIGH_BYTE_2, W3 ; TBLWTL W2, [W0] ; Write PM low word into program latch TBLWTH W3, [W0++] ; Write PM high byte into program latch</pre>			; Write PM high byte into program latch
<pre>MOV #HIGH_BYTE_1, W3 ; TBLWTL W2, [W0] ; Write PM low word into program latch TBLWTH W3, [W0++] ; Write PM high byte into program latch ? 2nd_program_word MOV #LOW_WORD_2, W2 ; MOV #HIGH_BYTE_2, W3 ; TBLWTL W2, [W0] ; Write PM low word into program latch TBLWTH W3, [W0++] ; Write PM high byte into program latch • • • ; 63rd_program_word MOV #LOW_WORD_31, W2 ; MOV #HIGH_BYTE_31, W3 ; TBLWTL W2, [W0] ; Write PM low word into program latch</pre>			
<pre>TBLWTL W2, [W0] ; Write PM low word into program latch TBLWTH W3, [W0++] ; Write PM high byte into program latch ; 2nd_program_word MOV #LOW_WORD_2, W2 ; MOV #HIGH_BYTE_2, W3 ; TBLWTL W2, [W0] ; Write PM low word into program latch TBLWTH W3, [W0++] ; Write PM high byte into program latch • • • ; 63rd_program_word MOV #LOW_WORD_31, W2 ; MOV #HIGH_BYTE_31, W3 ; TBLWTL W2, [W0] ; Write PM low word into program latch</pre>			;
<pre>TBLWTH W3, [W0++] ; Write PM high byte into program latch ; 2nd_program_word MOV #LOW_WORD_2, W2 ; MOV #HIGH_BYTE_2, W3 ; TBLWTL W2, [W0] ; Write PM low word into program latch TBLWTH W3, [W0++] ; Write PM high byte into program latch ; 63rd_program_word MOV #LOW_WORD_31, W2 ; MOV #HIGH_BYTE_31, W3 ; TBLWTL W2, [W0] ; Write PM low word into program latch</pre>			1
<pre>; 2nd_program_word MOV #LOW_WORD_2, W2 ; MOV #HIGH_BYTE_2, W3 ; TBLWTL W2, [W0] ; Write PM low word into program latch TBLWTH W3, [W0++] ; Write PM high byte into program latch • • • ; 63rd_program_word MOV #LOW_WORD_31, W2 ; MOV #HIGH_BYTE_31, W3 ; TBLWTL W2, [W0] ; Write PM low word into program latch</pre>		,	
<pre>MOV #LOW_WORD_2, W2 ; MOV #HIGH_BYTE_2, W3 ; TBLWTL W2, [W0] ; Write PM low word into program latch TBLWTH W3, [W0++] ; Write PM high byte into program latch • • • ; 63rd_program_word MOV #LOW_WORD_31, W2 ; MOV #HIGH_BYTE_31, W3 ; TBLWTL W2, [W0] ; Write PM low word into program latch</pre>		,	; Write PM high byte into program latch
<pre>MOV #HIGH_BYTE_2, W3 ; TBLWTL W2, [W0] ; Write PM low word into program latch TBLWTH W3, [W0++] ; Write PM high byte into program latch ; 63rd_program_word MOV #LOW_WORD_31, W2 ; MOV #HIGH_BYTE_31, W3 ; TBLWTL W2, [W0] ; Write PM low word into program latch</pre>		—	
TBLWTL W2, [W0] ; Write PM low word into program latch TBLWTH W3, [W0++] ; Write PM high byte into program latch ; 63rd_program_word MOV #LOW_WORD_31, W2 ; MOV #HIGH_BYTE_31, W3 ; TBLWTL W2, [W0] ; Write PM low word into program latch			;
TBLWTH W3, [W0++] ; Write PM high byte into program latch ; 63rd_program_word MOV #LOW_WORD_31, W2 ; MOV #HIGH_BYTE_31, W3 ; TBLWTL W2, [W0] ; Write PM low word into program latch			
• • • ; 63rd_program_word MOV #LOW_WORD_31, W2 ; MOV #HIGH_BYTE_31, W3 ; TBLWTL W2, [W0] ; Write PM low word into program latch			
MOV#LOW_WORD_31, W2;MOV#HIGH_BYTE_31, W3;TBLWTLW2, [W0];WritePM low word into program latch	TBLWTH	W3, [W0++]	; Write PM high byte into program latch
MOV#LOW_WORD_31, W2;MOV#HIGH_BYTE_31, W3;TBLWTLW2, [W0];WritePM low word into program latch	•		
MOV#LOW_WORD_31, W2;MOV#HIGH_BYTE_31, W3;TBLWTLW2, [W0];WritePM low word into program latch	•		
MOV#LOW_WORD_31, W2;MOV#HIGH_BYTE_31, W3;TBLWTLW2, [W0];WritePM low word into program latch	· 62md pmo	word	
MOV #HIGH_BYTE_31, W3 ; TBLWTL W2, [W0] ; Write PM low word into program latch		—	
TBLWTL W2, [W0] ; Write PM low word into program latch			:
			'
		,	1 5
	101111		, mile in high byce inco program racen

TABLE 6-3: RESET DELAY TIMES FOR VARIOUS DEVICE RESETS

Reset Type	Clock Source	SYSRST Delay	System Clock Delay	Notes
POR ⁽⁶⁾	EC	TPOR + TPWRT	_	1, 2
	FRC, FRCDIV	TPOR + TPWRT	TFRC	1, 2, 3, 6
	LPRC	TPOR + TPWRT	TLPRC	1, 2, 3
	ECPLL	TPOR + TPWRT	Тьоск	1, 2, 4
	FRCPLL	TPOR + TPWRT	TFRC + TLOCK	1, 2, 3, 4
	XT, HS, SOSC	TPOR+ TPWRT	Тоѕт	1, 2, 5
	XTPLL, HSPLL	TPOR + TPWRT	Tost + Tlock	1, 2, 4, 5
BOR	EC	TPWRT	_	2
	FRC, FRCDIV	TPWRT	TFRC	2, 3, 6
	LPRC	TPWRT	TLPRC	2, 3
	ECPLL	TPWRT	Тьоск	2, 4
	FRCPLL	TPWRT	TFRC + TLOCK	2, 3, 4
	XT, HS, SOSC	TPWRT	Tost	2, 5
	XTPLL, HSPLL	TPWRT	TFRC + TLOCK	2, 3, 4
All Others	Any Clock	_	_	—

Note 1: TPOR = Power-on Reset delay.

- 2: TPWRT = 64 ms nominal if regulator is disabled (ENVREG tied to Vss).
- 3: TFRC and TLPRC = RC Oscillator start-up times.
- **4:** TLOCK = PLL lock time.

5: TOST = Oscillator Start-up Timer (OST). A 10-bit counter waits 1024 oscillator periods before releasing oscillator clock to the system.

6: If Two-Speed Start-up is enabled, regardless of the Primary Oscillator selected, the device starts with FRC, and in such cases, FRC start-up time is valid.

Note: For detailed operating frequency and timing specifications, see Section 29.0 "Electrical Characteristics".

REGISTER	7-5: IFS0:	INTERRUP	FLAG STAT	US REGISTE	R 0		
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPF1IF	T3IF
bit 15							bit 8
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
T2IF	OC2IF	IC2IF	_	T1IF	OC1IF	IC1IF	INTOIF
bit 7							bit C
Logondy							
Legend: R = Readab	le bit	W = Writable	bit	U = Unimpler	nented bit, read	1 as '0'	
-n = Value at		'1' = Bit is se		'0' = Bit is clea		x = Bit is unkn	own
bit 15-14	-	ted: Read as					
bit 13				t Flag Status bit	t		
		request has oc request has no					
bit 12	-	-	r Interrupt Flag	Status bit			
		request has oc		Status bit			
		request has no					
bit 11	-	-	nterrupt Flag S	tatus bit			
	1 = Interrupt r	request has oc	curred				
	0 = Interrupt r	request has no	t occurred				
bit 10			t Flag Status b	it			
		request has oc					
hit O	-	request has no		:4			
bit 9		request has oc	t Flag Status b	IL			
		request has oc					
bit 8	•	Interrupt Flag					
		request has oc					
	0 = Interrupt r	request has no	t occurred				
bit 7		Interrupt Flag					
		request has oc					
	•	request has no					
bit 6		•		ipt Flag Status b	Dit		
		request has oc request has no					
bit 5	-	-	el 2 Interrupt F	lag Status bit			
		request has oc	•				
	0 = Interrupt r	request has no	t occurred				
bit 4	Unimplemen	ted: Read as	0'				
bit 3		Interrupt Flag					
		request has oc					
1.1.0	-	request has no					
bit 2	•	•		ipt Flag Status b	DIT		
		request has oc request has no					
bit 1	-	-	el 1 Interrupt F	lag Status bit			
		request has oc	-	lag clatac sit			
		request has no					
bit 0	INT0IF: Exter	nal Interrupt 0	Flag Status bit				
		request has oc					
	0 = Interrupt r	request has no	t occurred				

REGISTER 7-5: IFS0: INTERRUPT FLAG STATUS REGISTER 0

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
	IC5IP2	IC5IP1	IC5IP0	_	IC4IP2	IC4IP1	IC4IP0
bit 15							bit
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
_	IC3IP2	IC3IP1	IC3IP0	—		—	
bit 7							bit
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	iown
bit 15	-	nted: Read as '			_		
bit 14-12		input Capture C ipt is priority 7 (rrupt Priority bits	S		
	•		ingricor priority	(interrupt)			
	•						
	• 001 = Interru	pt is priority 1					
		ipt source is dis	abled				
bit 11	Unimplemer	nted: Read as '	0'				
bit 10-8				rrupt Priority bit	S		
	111 = Interru	pt is priority 7 (highest priority	/ interrupt)			
	•						
	•						
		ipt is priority 1 ipt source is dis	ahled				
bit 7		nted: Read as '					
	-			rrupt Priority bit	S		
bit 6-4				1 2			
bit 6-4	111 = Interru	.pt is priority 7 (highest priority	/ interrupt)			
bit 6-4	111 = Interru •	• •	highest priority	interrupt)			
bit 6-4	111 = Interru • •	• •	highest priority	v interrupt)			
bit 6-4	• • 001 = Interru	ipt is priority 7 (ipt is priority 1		v interrupt)			
bit 6-4 bit 3-0	• • 001 = Interru 000 = Interru	ipt is priority 7 (abled	/ interrupt)			

REGISTER 7-26: IPC9: INTERRUPT PRIORITY CONTROL REGISTER 9

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_	U4ERIP2	U4ERIP1	U4ERIP0	—	USB1IP2	USB1IP1	USB1IP0
bit 15							bit 8

REGISTER 7-36: IPC21: INTERRUPT PRIORITY CONTROL REGISTER 21

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—	MI2C3P2	MI2C3P1	MI2C3P0	—	SI2C3P2	SI2C3P1	SI2C3P0
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15	Unimplemented: Read as '0'
bit 14-12	U4ERIP<2:0>: UART4 Error Interrupt Priority bits
	111 = Interrupt is priority 7 (highest priority interrupt)
	•
	•
	• 001 = Interrupt is priority 1
	000 = Interrupt source is disabled
bit 11	Unimplemented: Read as '0'
bit 10-8	USB1IP<2:0>: USB1 (USB OTG) Interrupt Priority bits
	111 = Interrupt is priority 7 (highest priority interrupt)
	•
	•
	•
	001 = Interrupt is priority 1
	000 = Interrupt source is disabled
bit 7	Unimplemented: Read as '0'
bit 6-4	MI2C3P<2:0>: Master I2C3 Event Interrupt Priority bits
	 111 = Interrupt is priority 7 (highest priority interrupt)
	•
	001 = Interrupt is priority 1
	000 = Interrupt source is disabled
bit 3	Unimplemented: Read as '0'
bit 2-0	SI2C3P<2:0>: Slave I2C3 Event Interrupt Priority bits
	111 = Interrupt is priority 7 (highest priority interrupt)
	•
	•
	• 001 = Interrupt is priority 1
	000 = Interrupt source is disabled

	REGISTER 8-2:	CLKDIV: CLOCK DIVIDER REGISTER
--	---------------	--------------------------------

REGISTER	8-2: CLKD	DIV: CLOCK [GISTER				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	
ROI	DOZE2	DOZE1	DOZE0	DOZEN ⁽¹⁾	RCDIV2	RCDIV1	RCDIV0	
bit 15							bit 8	
R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	
CPDIV1	CPDIV0	_		_				
bit 7					1		bit (
Legend:								
R = Readabl	e bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown	
bit 15 bit 14-12	1 = Interrupts 0 = Interrupts	on Interrupt bi clear the DOZ have no effect CPU Periphera	EN bit and rest t on the DOZE		ripheral clock ra	atio to 1:1		
	111 = 1:128 $110 = 1:64$ $101 = 1:32$ $100 = 1:16$ $011 = 1:8$ $010 = 1:4$ $001 = 1:2$ $000 = 1:1$							
bit 11	1 = DOZE<2		the CPU peri	oheral clock rati I	0			
bit 10-8	<pre>0 = CPU peripheral clock ratio is set to 1:1 RCDIV<2:0>: FRC Postscaler Select bits 111 = 31.25 kHz (divide-by-256) 110 = 125 kHz (divide-by-64) 101 = 250 kHz (divide-by-32) 100 = 500 kHz (divide-by-32) 101 = 1 MHz (divide-by-16) 011 = 1 MHz (divide-by-8) 010 = 2 MHz (divide-by-4) 001 = 4 MHz (divide-by-2) 000 = 8 MHz (divide-by-1)</pre>							
bit 7-6		USB System (divide-by-8) ⁽²⁾ divide-by-4) ⁽²⁾ (divide-by-2)	Clock Select b	its (postscaler s	elect from 32 N	/IHz clock bran	ch)	
bit 5-0	Unimplemen	ted: Read as ')'					
Note 1: Th	his bit is automa	tically cleared	when the ROI	bit is set and ar	n interrupt occu	ırs.		

Note 1: This bit is automatically cleared when the ROI bit is set and an interrupt occurs.

2: This setting is not allowed while the USB module is enabled.

REGISTER 10-15: RPINR20: PERIPHERAL PIN SELECT INPUT REGISTER 20

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—		SCK1R5	SCK1R4	SCK1R3	SCK1R2	SCK1R1	SCK1R0
bit 15							bit 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	SDI1R5	SDI1R4	SDI1R3	SDI1R2	SDI1R1	SDI1R0
bit 7							bit 0

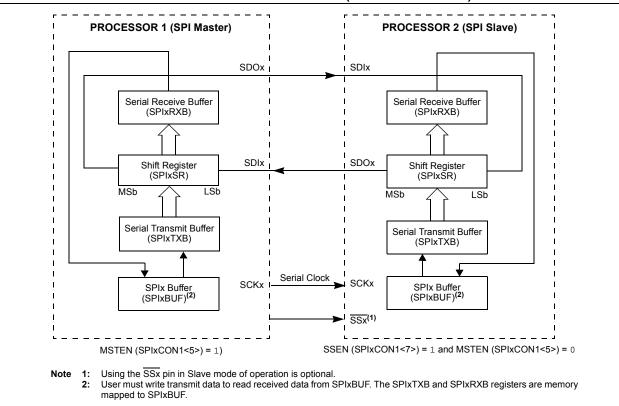
Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	SCK1R<5:0>: Assign SPI1 Clock Input (SCK1IN) to Corresponding RPn or RPIn Pin bits
bit 7-6	Unimplemented: Read as '0'
bit 5-0	SDI1R<5:0>: Assign SPI1 Data Input (SDI1) to Corresponding RPn or RPIn Pin bits

REGISTER 10-16: RPINR21: PERIPHERAL PIN SELECT INPUT REGISTER 21

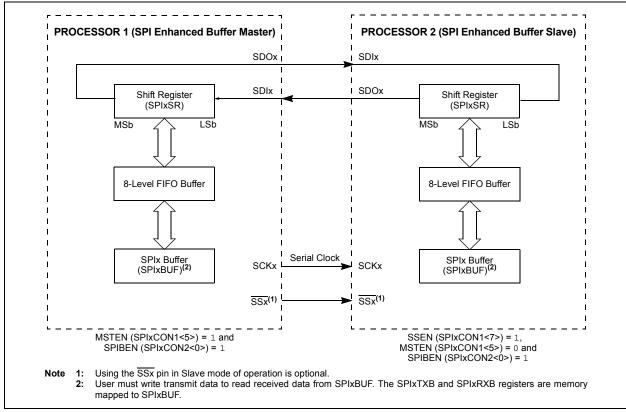
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	U3CTSR5	U3CTSR4	U3CTSR3	U3CTSR2	U3CTSR1	U3CTSR0
bit 15							bit 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	SS1R5	SS1R4	SS1R3	SS1R2	SS1R1	SS1R0
bit 7							bit 0


Legend:				
R = Readable bit	W = Writable bit	le bit U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-14 Unimplemented: Read as '0'

bit 13-8 U3CTSR<5:0>: Assign UART3 Clear to Send (U3CTS) to Corresponding RPn or RPIn Pin bits


bit 7-6 Unimplemented: Read as '0'

bit 5-0 SS1R<5:0>: Assign SPI1 Slave Select Input (SS1IN) to Corresponding RPn or RPIn Pin bits

FIGURE 15-3: SPI MASTER/SLAVE CONNECTION (STANDARD MODE)

FIGURE 15-4: SPI MASTER/SLAVE CONNECTION (ENHANCED BUFFER MODES)

EQUATION 15-1: RELATIONSHIP BETWEEN DEVICE AND SPI CLOCK SPEED⁽¹⁾

FCY

FSCK = Primary Prescaler * Secondary Prescaler

Note 1: Based on FCY = FOSC/2, Doze mode and PLL are disabled.

TABLE 15-1: SAMPLE SCK FREQUENCIES^(1,2)

Fcy = 16 MHz		Secondary Prescaler Settings					
		1:1	2:1	4:1	6:1	8:1	
Primary Prescaler Settings	1:1	Invalid	8000	4000	2667	2000	
	4:1	4000	2000	1000	667	500	
	16:1	1000	500	250	167	125	
	64:1	250	125	63	42	31	
Fcy = 5 MHz							
Primary Prescaler Settings	1:1	5000	2500	1250	833	625	
	4:1	1250	625	313	208	156	
	16:1	313	156	78	52	39	
	64:1	78	39	20	13	10	

Note 1: Based on FCY = FOSC/2, Doze mode and PLL are disabled.

2: SCKx frequencies shown in kHz.

R/W-0	U-0	R/W-0	R/W-1, HC	R/W-0	R/W-0	R/W-0	R/W-0			
I2CEN		I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN			
bit 15		·			•		bit 8			
R/W-0	R/W-0	R/W-0	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC			
GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN			
bit 7	OTTLEN	/ GILD I	AGREN	ROEN		ROEN	bit 0			
Legend:		HC - Hardwa	are Clearable bi	+						
-	o hit				nonted hit read	d oo 'O'				
R = Readable bit -n = Value at POR		'1' = Bit is set	W = Writable bitU = Unimplemented bit, read as '0''1' = Bit is set'0' = Bit is clearedx = Bit is unknown							
-n = value at	PUR	I = BILIS SE		0 = Bit is cle	ared	x = Bit is unkn	own			
bit 15	12CEN: 12C×	Enable bit								
		1 = Enables the I2Cx module and configures the SDAx and SCLx pins as serial port pins								
	0 = Disables	I2Cx module.	All I ² C pins are	controlled by p	ort functions.					
bit 14	Unimpleme	nted: Read as '	0'							
bit 13	I2CSIDL: St	op in Idle Mode	bit							
		nues module op es module opera			n Idle mode					
bit 12		•			² C Slave)					
	SCLREL: SCLx Release Control bit (when operating as I ² C Slave) 1 = Releases SCLx clock									
	0 = Holds SCLx clock low (clock stretch)									
		<u>If STREN = 1:</u>								
	Bit is R/\overline{W} (i.e., software may write '0' to initiate stretch and write '1' to release clock).									
	Hardware clear at beginning of slave transmission. Hardware clear at end of slave reception.									
	If STREN = 0:									
	Bit is R/S (i.e., software may only write '1' to release clock).									
		ear at beginning								
bit 11	IPMIEN: Intelligent Platform Management Interface (IPMI) Enable bit									
	 1 = IPMI Support mode is enabled; all addresses Acknowledged 0 = IPMI mode disabled 									
bit 10	A10M: 10-Bit Slave Addressing bit									
	1 = I2CxADD is a 10-bit slave address 0 = I2CxADD is a 7-bit slave address									
bit 9										
	DISSLW: DE	sable Slew Rate	e Control bit							
bit 5	1 = Slew rate	e control disable	ed							
	1 = Slew rate 0 = Slew rate	e control disable e control enable	ed ed							
bit 8	1 = Slew rate 0 = Slew rate SMEN: SME	e control disable e control enable Bus Input Levels	ed ed bit		<i></i>					
	1 = Slew rate 0 = Slew rate SMEN: SME 1 = Enables	e control disable e control enable	ed ed bit ds compliant w	ith SMBus spe	cification					
	1 = Slew rate 0 = Slew rate SMEN: SME 1 = Enables 0 = Disables	e control disable e control enable Bus Input Levels I/O pin threshol	ed bd bit ds compliant w nresholds							
bit 8	1 = Slew rate 0 = Slew rate SMEN: SME 1 = Enables 0 = Disables GCEN: Gene 1 = Enables	e control disable e control enable Bus Input Levels I/O pin threshol s SMBus input the eral Call Enable interrupt when	ed bit ds compliant w nresholds bit (when oper a general call a	ating as I ² C sl	ave)	ĸRSR				
bit 8	1 = Slew rate 0 = Slew rate SMEN: SME 1 = Enables 0 = Disables GCEN: Gen 1 = Enables (module	e control disable e control enable Bus Input Levels I/O pin threshol s SMBus input the eral Call Enable interrupt when is enabled for re-	ed bit ds compliant w nresholds bit (when oper a general call a eception)	ating as I ² C sl	ave)	RSR				
bit 8 bit 7	1 = Slew rate 0 = Slew rate SMEN: SME 1 = Enables 0 = Disables GCEN: General 1 = Enables (module 0 = General	e control disable e control enable Bus Input Levels I/O pin threshol SMBus input the eral Call Enable interrupt when is enabled for re call address dis	ed bit ds compliant w nresholds bit (when oper a general call a eception) tabled	ating as I ² C sl ddress is recei	ave) ved in the I2C>	RSR				
bit 8	1 = Slew rate 0 = Slew rate SMEN: SME 1 = Enables 0 = Disables GCEN: General 1 = Enables (module 0 = General STREN: SC	e control disable e control enable Bus Input Levels I/O pin threshol s SMBus input the eral Call Enable interrupt when is enabled for re call address dis Lx Clock Stretch	ed bit ds compliant w resholds bit (when oper a general call a eception) abled n Enable bit (wh	ating as I ² C sl ddress is recei	ave) ved in the I2C>	RSR				
bit 8 bit 7	1 = Slew rate 0 = Slew rate SMEN: SME 1 = Enables 0 = Disables GCEN: General 1 = Enables (module 0 = General STREN: SC Used in conj	e control disable e control enable Bus Input Levels I/O pin threshol SMBus input the eral Call Enable interrupt when is enabled for re call address dis	ed bit ds compliant w mesholds bit (when oper a general call a eception) abled n Enable bit (wh LREL bit.	ating as I ² C sl ddress is recei nen operating a	ave) ved in the I2C>	ĸRSR				

BDs have a fixed relationship to a particular endpoint, depending on the buffering configuration. Table 18-2 provides the mapping of BDs to endpoints. This relationship also means that gaps may occur in the BDT if endpoints are not enabled contiguously. This theoretically means that the BDs for disabled endpoints could be used as buffer space. In practice, users should avoid using such spaces in the BDT unless a method of validating BD addresses is implemented.

18.2.1 BUFFER OWNERSHIP

Because the buffers and their BDs are shared between the CPU and the USB module, a simple semaphore mechanism is used to distinguish which is allowed to update the BD and associated buffers in memory. This is done by using the UOWN bit as a semaphore to distinguish which is allowed to update the BD and associated buffers in memory. UOWN is the only bit that is shared between the two configurations of BDnSTAT.

When UOWN is clear, the BD entry is "owned" by the microcontroller core. When the UOWN bit is set, the BD entry and the buffer memory are "owned" by the USB peripheral. The core should not modify the BD or its corresponding data buffer during this time. Note that the microcontroller core can still read BDnSTAT while the SIE owns the buffer and vice versa.

The buffer descriptors have a different meaning based on the source of the register update. Register 18-1 and Register 18-2 show the differences in BDnSTAT depending on its current "ownership".

When UOWN is set, the user can no longer depend on the values that were written to the BDs. From this point, the USB module updates the BDs as necessary, overwriting the original BD values. The BDnSTAT register is updated by the SIE with the token PID and the transfer count is updated.

18.2.2 DMA INTERFACE

The USB OTG module uses a dedicated DMA to access both the BDT and the endpoint data buffers. Since part of the address space of the DMA is dedicated to the Buffer Descriptors, a portion of the memory connected to the DMA must comprise a contiguous address space properly mapped for the access by the module.

TABLE 18-2 :	ASSIGNMENT OF BUFFER DESCRIPTORS FOR THE DIFFERENT
	BUFFERING MODES

	BDs Assigned to Endpoint							
Endpoint	Mode 0 (No Ping-Pong)		Mode 1 (Ping-Pong on EP0 Out)		Mode 2 (Ping-Pong on all EPs)		Mode 3 (Ping-Pong on all other EPs, except EP0)	
	Out	In	Out	In	Out	In	Out	In
0	0	1	0 (E), 1 (O)	2	0 (E), 1 (O)	2 (E), 3 (O)	0	1
1	2	3	3	4	4 (E), 5 (O)	6 (E), 7 (O)	2 (E), 3 (O)	4 (E), 5 (O)
2	4	5	5	6	8 (E), 9 (O)	10 (E), 11 (O)	6 (E), 7 (O)	8 (E), 9 (O)
3	6	7	7	8	12 (E), 13 (O)	14 (E), 15 (O)	10 (E), 11 (O)	12 (E), 13 (O)
4	8	9	9	10	16 (E), 17 (O)	18 (E), 19 (O)	14 (E), 15 (O)	16 (E), 17 (O)
5	10	11	11	12	20 (E), 21 (O)	22 (E), 23 (O)	18 (E), 19 (O)	20 (E), 21 (O)
6	12	13	13	14	24 (E), 25 (O)	26 (E), 27 (O)	22 (E), 23 (O)	24 (E), 25 (O)
7	14	15	15	16	28 (E), 29 (O)	30 (E), 31 (O)	26 (E), 27 (O)	28 (E), 29 (O)
8	16	17	17	18	32 (E), 33 (O)	34 (E), 35 (O)	30 (E), 31 (O)	32 (E), 33 (O)
9	18	19	19	20	36 (E), 37 (O)	38 (E), 39 (O)	34 (E), 35 (O)	36 (E), 37 (O)
10	20	21	21	22	40 (E), 41 (O)	42 (E), 43 (O)	38 (E), 39 (O)	40 (E), 41 (O)
11	22	23	23	24	44 (E), 45 (O)	46 (E), 47 (O)	42 (E), 43 (O)	44 (E), 45 (O)
12	24	25	25	26	48 (E), 49 (O)	50 (E), 51 (O)	46 (E), 47 (O)	48 (E), 49 (O)
13	26	27	27	28	52 (E), 53 (O)	54 (E), 55 (O)	50 (E), 51 (O)	52 (E), 53 (O)
14	28	29	29	30	56 (E), 57 (O)	58 (E), 59 (O)	54 (E), 55 (O)	56 (E), 57 (O)
15	30	31	31	32	60 (E), 61 (O)	62 (E), 63 (O)	58 (E), 59 (O)	60 (E), 61 (O)

Legend: (E) = Even transaction buffer, (O) = Odd transaction buffer

18.5.3 SEND A FULL-SPEED BULK DATA TRANSFER TO A TARGET DEVICE

- Follow the procedure described in Section 18.5.1 "Enable Host Mode and Discover a Connected Device" and Section 18.5.2 "Complete a Control Transaction to a Connected Device" to discover and configure a device.
- To enable transmit and receive transfers with handshaking enabled, write 1Dh to U1EP0. If the target device is a low-speed device, also set the LSPD bit (U1EP0<7>). If you want the hardware to automatically retry indefinitely if the target device asserts a NAK on the transfer, clear the Retry Disable bit, RETRYDIS (U1EP0<6>).
- 3. Set up the BD for the current (EVEN or ODD) Tx EP0 to transfer up to 64 bytes.
- 4. Set the USB device address of the target device in the address register (U1ADDR<6:0>).
- 5. Write an OUT token to the desired endpoint to U1TOK. This triggers the module's transmit state machines to begin transmitting the token and the data.
- 6. Wait for the Transfer Done Interrupt Flag, TRNIF. This indicates that the BD has been released back to the microprocessor, and the transfer has completed. If the retry disable bit is set, the handshake (ACK, NAK, STALL or ERROR (0Fh)) is returned in the BD PID field. If a STALL interrupt occurs, the pending packet must be dequeued and the error condition in the target device cleared. If a detach interrupt occurs (SE0 for more than 2.5 µs), then the target has detached (U1IR<0> is set).
- 7. Once the transfer done interrupt occurs (TRNIF is set), the BD can be examined and the next data packet queued by returning to step 2.
- **Note:** USB speed, transceiver and pull-ups should only be configured during the module setup phase. It is not recommended to change these settings while the module is enabled.

18.6 OTG Operation

18.6.1 SESSION REQUEST PROTOCOL (SRP)

An OTG A-device may decide to power down the VBUS supply when it is not using the USB link through the Session Request Protocol (SRP). Software may do this by clearing VBUSON (U10TGCON<3>). When the VBUS supply is powered down, the A-device is said to have ended a USB session.

An OTG A-device or Embedded Host may repower the VBUS supply at any time (initiate a new session). An OTG B-device may also request that the OTG A-device repower the VBUS supply (initiate a new session). This is accomplished via Session Request Protocol (SRP).

Prior to requesting a new session, the B-device must first check that the previous session has definitely ended. To do this, the B-device must check for two conditions:

1. VBUS supply is below the Session Valid voltage and

2. Both D+ and D- have been low for at least 2 ms.

The B-device will be notified of condition 1 by the SESENDIF (U1OTGIR<2>) interrupt. Software will have to manually check for condition 2.

Note:	When the A-device powers down the VBUS				
	supply, the B-device must disconnect its				
	pull-up resistor from power. If the device is				
	self-powered, it can do this by clearing				
	DPPULUP (U1OTGCON<7>) and				
	DMPULUP (U1OTGCON<6>).				

The B-device may aid in achieving condition 1 by discharging the VBUS supply through a resistor. Software may do this by setting VBUSDIS (U10TGCON<0>).

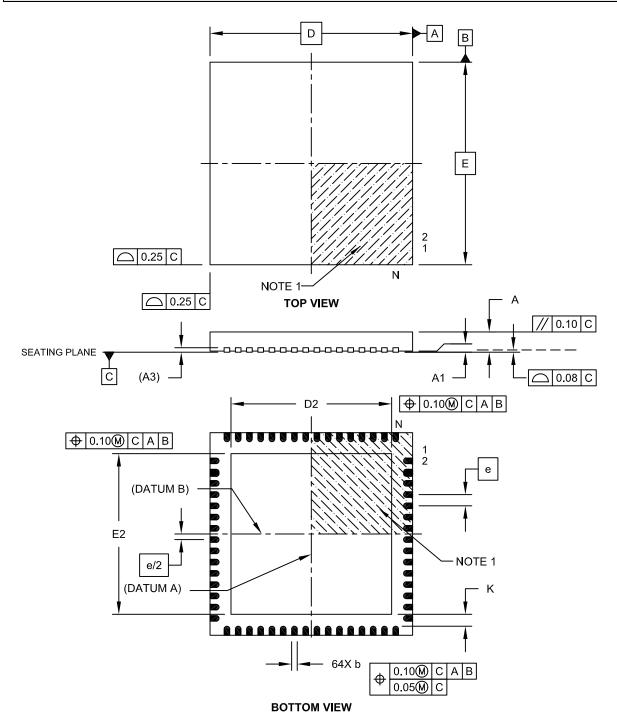
After these initial conditions are met, the B-device may begin requesting the new session. The B-device begins by pulsing the D+ data line. Software should do this by setting DPPULUP (U10TGCON<7>). The data line should be held high for 5 to 10 ms.

The B-device then proceeds by pulsing the VBUS supply. Software should do this by setting PUVBUS (U1CNFG2<4>). When an A-device detects SRP signaling (either via the ATTACHIF (U1IR<6>) interrupt or via the SESVDIF (U1OTGIR<3>) interrupt), the A-device must restore the VBUS supply by either setting VBUSON (U1OTGCON<3>), or by setting the I/O port controlling the external power source.

The B-device should not monitor the state of the VBUS supply while performing VBUS supply pulsing. When the B-device does detect that the VBUS supply has been restored (via the SESVDIF (U1OTGIR<3>) interrupt), the B-device must re-connect to the USB link by pulling up D+ or D- (via the DPPULUP or DMPULUP).

The A-device must complete the SRP by driving USB Reset signaling.

100-Lead TQFP (14x14x1 mm)



Legend	: XXX Y YY WW NNN @3 *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator (e3) can be found on the outer packaging for this package.
Note:	be carrie	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available s for customer-specific information.

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-149B Sheet 1 of 2

Peripheral Pin Select (PPS)135
Available Peripherals and Pins
Configuration Control 139
Considerations for Use140
Input Mapping136
Mapping Exceptions
Output Mapping
Peripheral Priority136
Registers
Pinout Descriptions
PMSLP Bit
and Wake-up Time
POR
and On-Chip Voltage Regulator
Power-Saving Features
Clock Frequency and Clock Switching
Instruction-Based Modes
Idle
Sleep
Power-up Requirements
Product Identification System
Program Memory
Access Using Table Instructions
Address Construction
Address Space
Flash Configuration Words
Memory Maps
Organization
Program Space Visibility
Program Space Visibility (PSV)
Pulse-Width Modulation (PWM) Mode
Pulse-Width Modulation, See PWM.
PWM
Duty Cycle and Period176

R

Reader Response	
Reference Clock Output	129
Register Maps	
A/D Converter	53
Comparators	56
CPU Core	43
CRC	56
CTMU	
I ² C	49
ICN	
Input Capture	47
Interrupt Controller	45
NVM	58
Output Compare	
Pad Configuration	52
Parallel Master/Slave Port	55
Peripheral Pin Select	57
PMD	58
PORTA	51
PORTB	51
PORTC	51
PORTD	51
PORTE	
PORTF	
PORTG	
RTCC	
SPI	50
System	58
Timers	
UART	50
USB OTG	54

Registers	
AD1CHS (A/D Input Select)	
AD1CON1 (A/D Control 1)	
AD1CON2 (A/D Control 2)	
AD1CON3 (A/D Control 3)	
AD1CSSL (A/D Input Scan Select, Low)	
AD1PCFGH (A/D Port Configuration, High)	
AD1PCFGL (A/D Port Configuration, Low)	
ALCFGRPT (Alarm Configuration)	
ALMINSEC (Alarm Minutes and Seconds Value)	
ALMTHDY (Alarm Month and Day Value)	
ALWDHR (Alarm Weekday and Hours Value)	259
BDnSTAT Prototype (Buffer Descriptor n	
Status, CPU Mode)	215
BDnSTAT Prototype (Buffer Descriptor n	
Status, USB Mode)	214
CLKDIV (Clock Divider)	
CMSTAT (Comparator Status)	280
CMxCON (Comparator x Control)	
CORCON (CPU Control)	
CORCON (CPU Core Control)	
CRCCON (CRC Control)	265
CRCXOR (CRC XOR Polynomial)	266
CTMUCON (CTMU Control)	285
CTMUICON (CTMU Current Control)	
CVRCON (Comparator Voltage	
Reference Control)	282
CW1 (Flash Configuration Word 1)	
CW2 (Flash Configuration Word 2)	
CW3 (Flash Configuration Word 3)	
DEVID (Device ID)	
DEVREV (Device Revision)	
I2CxCON (I2Cx Control)	
I2CxMSK (I2Cx Slave Mode Address Mask)	
I2CxSTAT (I2Cx Status)	
ICxCON1 (Input Capture x Control 1)	
ICxCON2 (Input Capture x Control 2)	
IEC0 (Interrupt Enable Control 0)	
IEC1 (Interrupt Enable Control 1)	
IEC2 (Interrupt Enable Control 2)	
IEC3 (Interrupt Enable Control 3)	
IEC4 (Interrupt Enable Control 4)	
IEC5 (Interrupt Enable Control 5)	
IFS0 (Interrupt Flag Status 0)	
IFS1 (Interrupt Flag Status 1)	
IFS2 (Interrupt Flag Status 2)	
IFS3 (Interrupt Flag Status 3)	
IFS4 (Interrupt Flag Status 4)	
IFS5 (Interrupt Flag Status 5)	
INTCON1 (Interrupt Control 1)	
INTCON2 (Interrupt Control 2)	
INTTREG (Interrupt Control and Status)	
IPC0 (Interrupt Priority Control 0)	
IPC1 (Interrupt Priority Control 1)	
IPC10 (Interrupt Priority Control 10)	
· · · ·	
IPC11 (Interrupt Priority Control 11) IPC12 (Interrupt Priority Control 12)	100
· · · ·	
	109
IPC13 (Interrupt Priority Control 13)	109 110
IPC15 (Interrupt Priority Control 15)	109 110 111
IPC15 (Interrupt Priority Control 15) IPC16 (Interrupt Priority Control 16)	109 110 111 112
IPC15 (Interrupt Priority Control 15) IPC16 (Interrupt Priority Control 16) IPC18 (Interrupt Priority Control 18)	109 110 111 112 113
IPC15 (Interrupt Priority Control 15) IPC16 (Interrupt Priority Control 16) IPC18 (Interrupt Priority Control 18) IPC19 (Interrupt Priority Control 19)	109 110 111 112 113 113
IPC15 (Interrupt Priority Control 15) IPC16 (Interrupt Priority Control 16) IPC18 (Interrupt Priority Control 18) IPC19 (Interrupt Priority Control 19) IPC2 (Interrupt Priority Control 2)	109 110 111 112 113 113 99
IPC15 (Interrupt Priority Control 15) IPC16 (Interrupt Priority Control 16) IPC18 (Interrupt Priority Control 18) IPC19 (Interrupt Priority Control 19) IPC2 (Interrupt Priority Control 2) IPC20 (Interrupt Priority Control 20)	109 110 111 112 113 113 99 114
IPC15 (Interrupt Priority Control 15) IPC16 (Interrupt Priority Control 16) IPC18 (Interrupt Priority Control 18) IPC19 (Interrupt Priority Control 19) IPC2 (Interrupt Priority Control 2) IPC20 (Interrupt Priority Control 20) IPC21 (Interrupt Priority Control 21)	109 110 111 112 113 113 99 114 115
IPC15 (Interrupt Priority Control 15) IPC16 (Interrupt Priority Control 16) IPC18 (Interrupt Priority Control 18) IPC19 (Interrupt Priority Control 19) IPC2 (Interrupt Priority Control 2) IPC20 (Interrupt Priority Control 20)	109 110 111 112 113 113 99 114 115 116

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://support.microchip.com Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Kokomo Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8528-2100 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Hong Kong SAR Tel: 852-2401-1200 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460

Fax: 86-25-8473-2470 China - Qingdao

Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4080

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-6578-300 Fax: 886-3-6578-370

Taiwan - Kaohsiung Tel: 886-7-536-4818 Fax: 886-7-536-4803

Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820

03/26/09