

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	65
Program Memory Size	192KB (65.5K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj192gb108-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		Pin Number				
Function	64-Pin TQFP, QFN	80-Pin TQFP	100-Pin TQFP	I/O	Input Buffer	Description
RF0	58	72	87	I/O	ST	PORTF Digital I/O.
RF1	59	73	88	I/O	ST	
RF2	—	42	52	I/O	ST	
RF3	33	41	51	I/O	ST	
RF4	31	39	49	I/O	ST	-
RF5	32	40	50	I/O	ST	
RF8	—	43	53	I/O	ST	
RF12	_		40	I/O	ST	-
RF13	_	_	39	I/O	ST	
RG0	_	75	90	I/O	ST	PORTG Digital I/O.
RG1	_	74	89	I/O	ST	
RG2	37	47	57	I	ST	
RG3	36	46	56	I	ST	-
RG6	4	6	10	I/O	ST	
RG7	5	7	11	I/O	ST	-
RG8	6	8	12	I/O	ST	
RG9	8	10	14	I/O	ST	
RG12	_	_	96	I/O	ST	-
RG13	_		97	I/O	ST	-
RG14	_	_	95	I/O	ST	
RG15	_	_	1	I/O	ST	-
RP0	16	20	25	I/O	ST	Remappable Peripheral (input or output).
RP1	15	19	24	I/O	ST	
RP2	42	54	68	I/O	ST	
RP3	44	56	70	I/O	ST	-
RP4	43	55	69	I/O	ST	-
RP5	_	38	48	I/O	ST	
RP6	17	21	26	I/O	ST	
RP7	18	22	27	I/O	ST	
RP8	21	27	32	I/O	ST	
RP9	22	28	33	I/O	ST	-
RP10	31	39	49	I/O	ST	1
RP11	46	58	72	I/O	ST	1
RP12	45	57	71	I/O	ST	1
RP13	14	18	23	I/O	ST	1
RP14	29	35	43	I/O	ST	1
RP15		43	53	I/O	ST	1
RP16	33	41	51	I/O	ST	1
RP17	32	40	50	I/O	ST	1
RP18	11	15	20	I/O	ST	1
RP19	6	8	12	I/O	ST	1

TABLE 1-4: PIC24FJ256GB110 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

Legend: TTL = TTL input buffer ANA = Analog level input/output ST = Schmitt Trigger input buffer $I^2C^{TM} = I^2C/SMBus$ input buffer

2.2 Power Supply Pins

2.2.1 DECOUPLING CAPACITORS

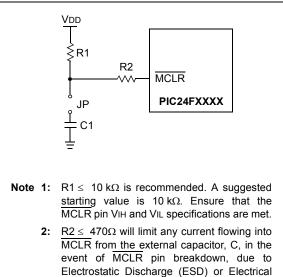
The use of decoupling capacitors on every pair of power supply pins, such as VDD, VSS, AVDD and AVSS is required.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: A 0.1 μ F (100 nF), 10-20V capacitor is recommended. The capacitor should be a low-ESR device with a resonance frequency in the range of 200 MHz and higher. Ceramic capacitors are recommended.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is no greater than 0.25 inch (6 mm).
- Handling high-frequency noise: If the board is experiencing high-frequency noise (upward of tens of MHz), add a second ceramic type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 μ F to 0.001 μ F. Place this second capacitor next to each primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible (e.g., 0.1 μ F in parallel with 0.001 μ F).
- Maximizing performance: On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum, thereby reducing PCB trace inductance.

2.2.2 TANK CAPACITORS

On boards with power traces running longer than six inches in length, it is suggested to use a tank capacitor for integrated circuits including microcontrollers to supply a local power source. The value of the tank capacitor should be determined based on the trace resistance that connects the power supply source to the device, and the maximum current drawn by the device in the application. In other words, select the tank capacitor so that it meets the acceptable voltage sag at the device. Typical values range from 4.7 μ F to 47 μ F.


2.3 Master Clear (MCLR) Pin

The MCLR pin provides two specific device functions: device Reset, and device programming and debugging. If programming and debugging are not required in the end application, a direct connection to VDD may be all that is required. The addition of other components, to help increase the application's resistance to spurious Resets from voltage sags, may be beneficial. A typical configuration is shown in Figure 2-1. Other circuit designs may be implemented, depending on the application's requirements.

During programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the $\overline{\text{MCLR}}$ pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R1 and C1 will need to be adjusted based on the application and PCB requirements. For example, it is recommended that the capacitor, C1, be isolated from the $\overline{\text{MCLR}}$ pin during programming and debugging operations by using a jumper (Figure 2-2). The jumper is replaced for normal run-time operations.

Any components associated with the $\overline{\text{MCLR}}$ pin should be placed within 0.25 inch (6 mm) of the pin.

FIGURE 2-2: EXAMPLE OF MCLR PIN CONNECTIONS

Overstress (EOS). Ensure that the MCLR pin

VIH and VIL specifications are met.

TABLE 4-28: SYSTEM REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RCON	0740	TRAPR	IOPUWR	_	_	_	_	СМ	PMSLP	EXTR	SWR	SWDTEN	WDTO	SLEEP	IDLE	BOR	POR	Note 1
OSCCON	0742	_	COSC2	COSC1	COSC0	_	NOSC2	NOSC1	NOSC0	CLKLOCK	IOLOCK	LOCK	_	CF	POSCEN	SOSCEN	OSWEN	Note 2
CLKDIV	0744	ROI	DOZE2	DOZE1	DOZE0	DOZEN	RCDIV2	RCDIV1	RCDIV0	CPDIV1	CPDIV0	_	_	_	_	—	_	0100
OSCTUN	0748	_	_	_	_		_	_	_	_		TUN5	TUN4	TUN3	TUN2	TUN1	TUN0	0000
REFOCON	074E	ROEN	—	ROSSLP	ROSEL	RODIV3	RODIV2	RODIV1	RODIV0	-		—	—	_	_			0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: The Reset value of the RCON register is dependent on the type of Reset event. See Section 6.0 "Resets" for more information.

2: The Reset value of the OSCCON register is dependent on both the type of Reset event and the device configuration. See Section 8.0 "Oscillator Configuration" for more information.

TABLE 4-29: NVM REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
NVMCON	0760	WR	WREN	WRERR	—	_	_	_	_	-	ERASE	_	—	NVMOP3	NVMOP2	NVMOP1	NVMOP0	0000 (1)
NVMKEY	0766	_	_	—	—	_	_	_	_			١	VMKEY R	egister<7:0	>			0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: Reset value shown is for POR only. Value on other Reset states is dependent on the state of memory write or erase operations at the time of Reset.

TABLE 4-30: PMD REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0770	T5MD	T4MD	T3MD	T2MD	T1MD	-	—	_	I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	—	_	ADC1MD	0000
PMD2	0772	IC8MD	IC7MD	IC6MD	IC5MD	IC4MD	IC3MD	IC2MD	IC1MD	OC8MD	OC7MD	OC6MD	OC5MD	OC4MD	OC3MD	OC2MD	OC1MD	0000
PMD3	0774	_	_	_	_	—	CMPMD	RTCCMD	PMPMD	CRCMD	_	_	_	U3MD	I2C3MD	I2C2MD	_	0000
PMD4	0776	_	_	_	_	_	_	_		_	UPWMMD	U4MD	_	REFOMD	CTMUMD	LVDMD	USB1MD	0000
PMD5	0778	—	_	—	_	_	—	—	IC9MD	_	—	—	—	—	_	_	OC9MD	0000
PMD6	077A	_		_	_			_	_		_	_			—	_	SPI3MD	0000

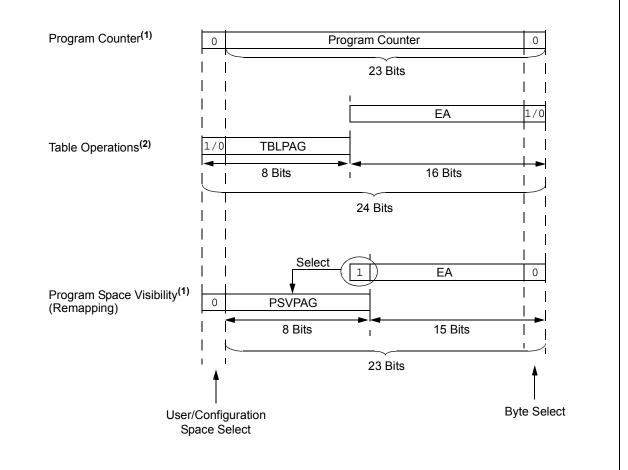

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-31: PROGRAM SPACE ADDRESS CONSTRUCTION

	Access		Prograi	m Space A	Adress				
Access Type	Space	<23>	<22:16>	<15>	<14:1>	<0>			
Instruction Access	User	0			0				
(Code Execution)		0xx xxxx xxxx xxxx xxxx xxx0							
TBLRD/TBLWT	User	TB	LPAG<7:0>		Data EA<15:0>				
(Byte/Word Read/Write)		02	xxx xxxx	XXXX XXXX XXXX XXXX					
	Configuration	TB	LPAG<7:0>	Data EA<15:0>					
		1:	xxx xxxx						
Program Space Visibility	User	0 PSVPAG<7		7:0> Data EA<14		:0> ⁽¹⁾			
(Block Remap/Read)		0	XXXX XXX	κx	x xxx xxxx xxxx				

Note 1: Data EA<15> is always '1' in this case, but is not used in calculating the program space address. Bit 15 of the address is PSVPAG<0>.

FIGURE 4-5: DATA ACCESS FROM PROGRAM SPACE ADDRESS GENERATION

- **Note 1:** The LSb of program space addresses is always fixed as '0' in order to maintain word alignment of data in the program and data spaces.
 - **2:** Table operations are not required to be word-aligned. Table read operations are permitted in the configuration memory space.

5.2 RTSP Operation

The PIC24F Flash program memory array is organized into rows of 64 instructions or 192 bytes. RTSP allows the user to erase blocks of eight rows (512 instructions) at a time and to program one row at a time. It is also possible to program single words.

The 8-row erase blocks and single row write blocks are edge-aligned, from the beginning of program memory, on boundaries of 1536 bytes and 192 bytes, respectively.

When data is written to program memory using TBLWT instructions, the data is not written directly to memory. Instead, data written using table writes is stored in holding latches until the programming sequence is executed.

Any number of TBLWT instructions can be executed and a write will be successfully performed. However, 64 TBLWT instructions are required to write the full row of memory.

To ensure that no data is corrupted during a write, any unused addresses should be programmed with FFFFFFh. This is because the holding latches reset to an unknown state, so if the addresses are left in the Reset state, they may overwrite the locations on rows which were not rewritten.

The basic sequence for RTSP programming is to set up a Table Pointer, then do a series of TBLWT instructions to load the buffers. Programming is performed by setting the control bits in the NVMCON register.

Data can be loaded in any order and the holding registers can be written to multiple times before performing a write operation. Subsequent writes, however, will wipe out any previous writes.

Note: Writing to a location multiple times without erasing is *not* recommended.

All of the table write operations are single-word writes (2 instruction cycles), because only the buffers are written. A programming cycle is required for programming each row.

5.3 JTAG Operation

The PIC24F family supports JTAG boundary scan. Boundary scan can improve the manufacturing process by verifying pin-to-PCB connectivity.

5.4 Enhanced In-Circuit Serial Programming

Enhanced In-Circuit Serial Programming uses an on-board bootloader, known as the program executive, to manage the programming process. Using an SPI data frame format, the program executive can erase, program and verify program memory. For more information on Enhanced ICSP, see the device programming specification.

5.5 Control Registers

There are two SFRs used to read and write the program Flash memory: NVMCON and NVMKEY.

The NVMCON register (Register 5-1) controls which blocks are to be erased, which memory type is to be programmed and when the programming cycle starts.

NVMKEY is a write-only register that is used for write protection. To start a programming or erase sequence, the user must consecutively write 55h and AAh to the NVMKEY register. Refer to **Section 5.6 "Programming Operations"** for further details.

5.6 Programming Operations

A complete programming sequence is necessary for programming or erasing the internal Flash in RTSP mode. During a programming or erase operation, the processor stalls (waits) until the operation is finished. Setting the WR bit (NVMCON<15>) starts the operation and the WR bit is automatically cleared when the operation is finished.

5.6.2 PROGRAMMING A SINGLE WORD OF FLASH PROGRAM MEMORY

If a Flash location has been erased, it can be programmed using table write instructions to write an instruction word (24-bit) into the write latch. The TBLPAG register is loaded with the 8 Most Significant Bytes of the Flash address. The TBLWTL and TBLWTH instructions write the desired data into the write latches and specify the lower 16 bits of the program memory address to write to. To configure the NVMCON register for a word write, set the NVMOP bits (NVMCON<3:0>) to '0011'. The write is performed by executing the unlock sequence and setting the WR bit, as shown in Example 5-7. An equivalent procedure in C, using the MPLAB C30 compiler and built-in hardware functions, is shown in Example 5-8.

EXAMPLE 5-7: PROGRAMMING A SINGLE WORD OF FLASH PROGRAM MEMORY (ASSEMBLY LANGUAGE CODE)

; Setup a p	pointer to data Program Memory	
MOV	<pre>#tblpage(PROG_ADDR), W0</pre>	i
MOV	W0, TBLPAG	;Initialize PM Page Boundary SFR
MOV	<pre>#tbloffset(PROG_ADDR), W0</pre>	;Initialize a register with program memory address
MOV	#LOW_WORD, W2	;
MOV	#HIGH_BYTE, W3	;
TBLWTL	W2, [W0]	; Write PM low word into program latch
TBLWTH	W3, [W0++]	; Write PM high byte into program latch
; Setup NVN	MCON for programming one word t	to data Program Memory
MOV	#0x4003, W0	;
MOV	W0, NVMCON	; Set NVMOP bits to 0011
DISI	#5	; Disable interrupts while the KEY sequence is written
MOV	#0x55, W0	; Write the key sequence
MOV	W0, NVMKEY	
MOV	#0xAA, W0	
MOV	W0, NVMKEY	
BSET	NVMCON, #WR	; Start the write cycle
NOP		; Insert two NOPs after the erase
NOP		; Command is asserted

EXAMPLE 5-8: PROGRAMMING A SINGLE WORD OF FLASH PROGRAM MEMORY (C LANGUAGE CODE)

```
// C example using MPLAB C30
   unsigned int offset;
   unsigned long progAddr = 0xXXXXXX;
                                               // Address of word to program
   unsigned int progDataL = 0xXXXX;
                                                // Data to program lower word
   unsigned char progDataH = 0xXX;
                                                // Data to program upper byte
//Set up NVMCON for word programming
   NVMCON = 0 \times 4003;
                                                // Initialize NVMCON
//Set up pointer to the first memory location to be written
                                               // Initialize PM Page Boundary SFR
   TBLPAG = progAddr>>16;
   offset = progAddr & 0xFFFF;
                                                // Initialize lower word of address
//Perform TBLWT instructions to write latches
                                               // Write to address low word
       __builtin_tblwtl(offset, progDataL);
       __builtin_tblwth(offset, progDataH);
                                               // Write to upper byte
       asm("DISI #5");
                                                // Block interrupts with priority < 7</pre>
                                                // for next 5 instructions
       __builtin_write_NVM();
                                                // C30 function to perform unlock
                                                // sequence and set WR
```

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_	T2IP2	T2IP1	T2IP0	_	OC2IP2	OC2IP1	OC2IP0
bit 15							bit
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
_	IC2IP2	IC2IP1	IC2IP0	—	_	_	_
bit 7							bit
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplei	mented bit, read	l as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 11 bit 10-8	• • 001 = Interru 000 = Interru Unimplemen OC2IP<2:0>:	pt is priority 7 (I pt is priority 1 pt source is dis ated: Read as '(c Output Compa pt is priority 7 (I	abled)' re Channel 2	Interrupt Priorit	ty bits		
bit 7 bit 6-4	Unimplemen IC2IP<2:0>:	pt source is dis ited: Read as '(Input Capture C pt is priority 7 (I)' Shannel 2 Inte		S		
bit 3-0	000 = Interru	pt is priority i pt source is dis ited: Read as '(

REGISTER 7-18: IPC1: INTERRUPT PRIORITY CONTROL REGISTER 1

REGISTER 10-21: RPINR29: PERIPHERAL PIN SELECT INPUT REGISTER 29

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—		—	—	—	—	—
bit 15							bit 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	SS3R5	SS3R4	SS3R3	SS3R2	SS3R1	SS3R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-6 Unimplemented: Read as '0'

bit 5-0 SS3R<5:0>: Assign SPI3 Slave Select Input (SS31IN) to Corresponding RPn or RPIn Pin bits

REGISTER 10-22: RPOR0: PERIPHERAL PIN SELECT OUTPUT REGISTER 0

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
_	_	RP1R5	RP1R4	RP1R3	RP1R2	RP1R1	RP1R0	
bit 15				·		•	bit 8	
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
_	_	RP0R5	RP0R4	RP0R3	RP0R2	RP0R1	RP0R0	
bit 7				·		•	bit 0	
Legend:								
R = Readable	e bit	W = Writable I	oit	U = Unimplem	nented bit, read	l as '0'		
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown				

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP1R<5:0>:** RP1 Output Pin Mapping bits Peripheral output number n is assigned to pin, RP1 (see Table 10-3 for peripheral function numbers)

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP0R<5:0>:** RP0 Output Pin Mapping bits Peripheral output number n is assigned to pin, RP0 (see Table 10-3 for peripheral function numbers)

REGISTER 10-25: RPOR3: PERIPHERAL PIN SELECT OUTPUT REGISTER 3

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP7R5	RP7R4	RP7R3	RP7R2	RP7R1	RP7R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP6R5	RP6R4	RP6R3	RP6R2	RP6R1	RP6R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP7R<5:0>: RP7 Output Pin Mapping bits
	Peripheral output number n is assigned to pin, RP7 (see Table 10-3 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP6R<5:0>: RP6 Output Pin Mapping bits
	Peripheral output number n is assigned to pin, RP6 (see Table 10-3 for peripheral function numbers)

REGISTER 10-26: RPOR4: PERIPHERAL PIN SELECT OUTPUT REGISTER 4

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP9R5	RP9R4	RP9R3	RP9R2	RP9R1	RP9R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_	RP8R5	RP8R4	RP8R3	RP8R2	RP8R1	RP8R0
bit 7	•						bit 0
Legend:							
R = Readable	bit	W = Writable b	oit	U = Unimplem	nented bit, read	as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP9R<5:0>:** RP9 Output Pin Mapping bits Peripheral output number n is assigned to pin, RP9 (see Table 10-3 for peripheral function numbers)

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP8R<5:0>:** RP8 Output Pin Mapping bits Peripheral output number n is assigned to pin, RP8 (see Table 10-3 for peripheral function numbers)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	
bit 15							bit
R-x, HSC	R-x, HSC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
JSTATE	SE0	TOKBUSY	USBRST	HOSTEN	RESUME	PPBRST	SOFEN
bit 7	3EU	TURBUST	USDRST	HUSTEN	RESUME	FFDROI	bit
Legend:		U = Unimplem	ented bit, read	1 as '0'			
R = Readab	le bit	W = Writable t	bit	HSC = Hardw	are Settable/C	learable bit	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown
bit 15-8	-	ited: Read as '0					
bit 7		e Differential Re		•			D
	1 = J state (0 0 = No J stat	differential '0' in te detected	low speed, dif	terential '1' in fi	ull speed) dete	cted on the US	В
oit 6	SE0: Live Sir	ngle-Ended Zero	Flag bit				
		nded zero active		ous			
	•	e-ended zero de					
bit 5		oken Busy Statu			• • •		
		eing executed by being executed		dule in On-The-	Go state		
bit 4		dule Reset bit	•				
		set has been ge	nerated; for so	oftware Reset,	application mu	st set this bit fo	or 50 ms, the
	clear it	Ū	,	,			,
		set terminated					
bit 3		st Mode Enable				·	
		t capability enal t capability disa		is on D+ and D	- are activated	in hardware	
bit 2		esume Signaling					
		signaling activat		ust set bit for 10) ms and then cl	ear to enable re	mote wake-u
	0 = Resume	signaling disabl	ed				
bit 1		ig-Pong Buffers					
		Il Ping-Pong But ng Buffer Pointe		the EVEN BD	banks		
bit 0							
bit 0	SOFEN: Star	t-Of-Frame Ena Frame token se	ble bit	millisecond			

REGISTER 18-11: U1SOF: USB OTG START-OF-TOKEN THRESHOLD REGISTER (HOST MODE ONLY)

bit 15							bit 8
—		_		—	—	_	
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0

				R/W-0	R/W-0	R/W-0	R/W-0
CNT7	CNT6	CNT5	CNT4	CNT3	CNT2	CNT1	CNT0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-0

CNT<7:0>: Start-Of-Frame Size bits;

Value represents 10 + (packet size of n bytes). For example:

0100 1010 = 64-byte packet

0010 1010 = **32-byte packet**

0001 0010 = 8-byte packet

REGISTER 18-12: U1CNFG1: USB CONFIGURATION REGISTER 1

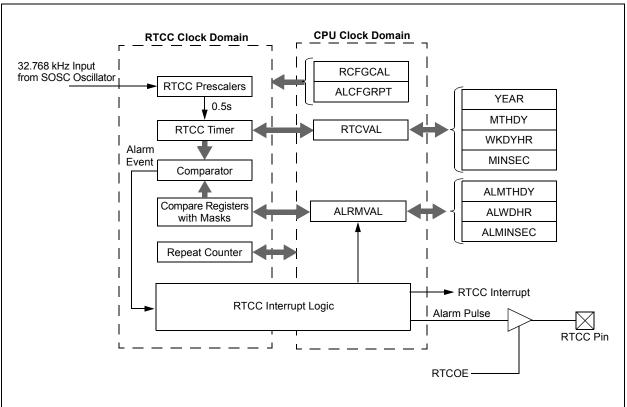
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	—	—
bit 15				•			bit 8
R/W-0	R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0
	$\mu = \mu =$						

	R/W-0	R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0
	UTEYE	UOEMON ⁽¹⁾	_	USBSIDL	—	_	PPB1	PPB0
ł	oit 7							bit 0

Logond				
Legend:				
R = Reada	ble bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 15-8	Unimple	mented: Read as '0'		
bit 7	UTEYE:	USB Eye Pattern Test Enabl	e bit	
	•	pattern test enabled		
		pattern test disabled		
bit 6		1: USB OE Monitor Enable t		
			rvals during which the D+/D- li	nes are driving
	0 = OE s	signal inactive		
bit 5	Unimple	mented: Read as '0'		
bit 4	USBSIDI	.: USB OTG Stop in Idle Mo	de bit	
		ontinue module operation whether the second s		
	0 = Cont	inue module operation in Idl	e mode	
bit 3-2	Unimple	mented: Read as '0'		
bit 1-0	PPB<1:0	>: Ping-Pong Buffers Config	uration bit	
	11 = EVE	N/ODD ping-pong buffers e	nabled for Endpoints 1 to 15	
		EN/ODD ping-pong buffers e	•	
		N/ODD ping-pong buffer en		
	00 = EVE	EN/ODD ping-pong buffers d	isabled	

Note 1: This bit is only active when the UTRDIS bit (U1CNFG2<0>) is set.

NOTES:


20.0 REAL-TIME CLOCK AND CALENDAR (RTCC)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "PIC24F Family Reference Manual", Section 29. "Real-Time Clock and Calendar (RTCC)" (DS39696).

The Real-Time Clock and Calendar (RTCC) provides on-chip, hardware-based clock and calendar functionality with little or no CPU overhead. It is intended for applications where accurate time must be maintained for extended periods with minimal CPU activity and with limited power resources, such as battery-powered applications. Key features include:

- Time data in hours, minutes and seconds, with a granularity of one-half second
- 24-hour format (Military Time) display option
- Calendar data as date, month and year
- Automatic, hardware-based day of the week and leap year calculations for dates from 2000 through 2099
- Time and calendar data in BCD format for _compact firmware
- Highly configurable alarm function
- External output pin with selectable alarm signal or seconds "tick" signal output
- · User calibration feature with auto-adjust

A simplified block diagram of the module is shown in Figure 20-1. The SOSC and RTCC will both remain running while the device is held in Reset with MCLR and will continue running after MCLR is released.

FIGURE 20-1: RTCC BLOCK DIAGRAM

REGISTER 26-1: CW1: FLASH CONFIGURATION WORD 1 (CONTINUED)

bit 3-0 **WDTPS<3:0>:** Watchdog Timer Postscaler Select bits

1111 = 1:32,768 1110 = 1:16,384 1101 = 1:8,192 1100 = 1:4,096 1011 = 1:2,048 1010 = 1:1,024 1001 = 1:512 1000 = 1:256 0111 = 1:128 0110 = 1:64 0101 = 1:32 0100 = 1:16 0011 = 1:8 0010 = 1:4 0001 = 1:2 0000 = 1:1

Note 1: The JTAGEN bit can only be modified using In-Circuit Serial Programming[™] (ICSP[™]). It cannot be modified while programming the device through the JTAG interface.

TABLE 28-2:	INSTRUCTION SET OVERVIEW	(CONTINUED)

Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
PWRSAV	PWRSAV	#lit1	Go into Sleep or Idle mode	1	1	WDTO, Sleep
RCALL	RCALL	Expr	Relative Call	1	2	None
	RCALL	Wn	Computed Call	1	2	None
REPEAT	REPEAT	#lit14	Repeat Next Instruction lit14 + 1 times	1	1	None
	REPEAT	Wn	Repeat Next Instruction (Wn) + 1 times	1	1	None
RESET	RESET		Software Device Reset	1	1	None
RETFIE	RETFIE		Return from Interrupt	1	3 (2)	None
RETLW	RETLW	#lit10,Wn	Return with Literal in Wn	1	3 (2)	None
RETURN	RETURN		Return from Subroutine	1	3 (2)	None
RLC	RLC	f	f = Rotate Left through Carry f	1	1	C, N, Z
	RLC	f,WREG	WREG = Rotate Left through Carry f	1	1	C, N, Z
	RLC	Ws,Wd	Wd = Rotate Left through Carry Ws	1	1	C, N, Z
RLNC	RLNC	f	f = Rotate Left (No Carry) f	1	1	N, Z
	RLNC	f,WREG	WREG = Rotate Left (No Carry) f	1	1	N, Z
	RLNC	Ws,Wd	Wd = Rotate Left (No Carry) Ws	1	1	N, Z
RRC	RRC	f	f = Rotate Right through Carry f	1	1	C, N, Z
	RRC	f,WREG	WREG = Rotate Right through Carry f	1	1	C, N, Z
	RRC	Ws,Wd	Wd = Rotate Right through Carry Ws	1	1	C, N, Z
RRNC	RRNC	f	f = Rotate Right (No Carry) f	1	1	N, Z
	RRNC	f,WREG	WREG = Rotate Right (No Carry) f	1	1	N, Z
	RRNC	Ws,Wd	Wd = Rotate Right (No Carry) Ws	1	1	N, Z
SE	SE	Ws,Wnd	Wnd = Sign-Extended Ws	1	1	C, N, Z
SETM	SETM	f	f = FFFFh	1	1	None
02111	SETM	WREG	WREG = FFFFh	1	1	None
	SETM	Ws	Ws = FFFFh	1	1	None
SL	SL	f	f = Left Shift f	1	1	C, N, OV, Z
02	SL	f,WREG	WREG = Left Shift f	1	1	C, N, OV, Z
	SL	Ws,Wd	Wd = Left Shift Ws	1	1	C, N, OV, Z
	SL	Wb,Wns,Wnd	Wnd = Left Shift Wb by Wns	1	1	N, Z
	SL	Wb,#lit5,Wnd	Wnd = Left Shift Wb by lit5	1	1	N, Z
SUB	SUB	f	f = f - WREG	1	1	C, DC, N, OV, 2
000	SUB	f,WREG	WREG = f – WREG	1	1	C, DC, N, OV, 2
	SUB	#lit10,Wn	Wn = Wn – lit10	1	1	C, DC, N, OV, 2
	SUB	Wb,Ws,Wd	Wd = Wb - Ws	1	1	C, DC, N, OV, 2
	SUB	Wb,#lit5,Wd	Wd = Wb - lit5	1	1	C, DC, N, OV, 2
			$f = f - WREG - (\overline{C})$			
SUBB	SUBB	f		1	1	C, DC, N, OV, 2
	SUBB	f,WREG	WREG = $f - WREG - (C)$	1	1	C, DC, N, OV, 2
	SUBB	#lit10,Wn	$Wn = Wn - lit10 - (\overline{C})$	1	1	C, DC, N, OV, 2
	SUBB	Wb,Ws,Wd	$Wd = Wb - Ws - (\overline{C})$	1	1	C, DC, N, OV, 2
	SUBB	Wb,#lit5,Wd	$Wd = Wb - lit5 - (\overline{C})$	1	1	C, DC, N, OV, 2
SUBR	SUBR	f	f = WREG – f	1	1	C, DC, N, OV, 2
	SUBR	f,WREG	WREG = WREG – f	1	1	C, DC, N, OV, 2
	SUBR	Wb,Ws,Wd	Wd = Ws – Wb	1	1	C, DC, N, OV, 2
	SUBR	Wb,#lit5,Wd	Wd = lit5 – Wb	1	1	C, DC, N, OV, 2
SUBBR	SUBBR	f	$f = WREG - f - (\overline{C})$	1	1	C, DC, N, OV, 2
	SUBBR	f,WREG	WREG = WREG – f – (\overline{C})	1	1	C, DC, N, OV, 2
	SUBBR	Wb,Ws,Wd	$Wd = Ws - Wb - (\overline{C})$	1	1	C, DC, N, OV, 2
	SUBBR	Wb,#lit5,Wd	$Wd = lit5 - Wb - (\overline{C})$	1	1	C, DC, N, OV, 2
SWAP	SUBBR SWAP.b	WD,#1105,Wd Wn	Wn = Nibble Swap Wn	1	1	None
our.	SWAP.D SWAP	Wn	Wn = Byte Swap Wn	1	1	None

NOTES:

DC CH	ARACTER	ISTICS	$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic	Min Typ ⁽¹⁾ Max Units Conc		Conditions			
Operati	ing Voltage	9						
DC10	Supply Voltage							
	Vdd		2.2	_	3.6	V	Regulator enabled	
	Vdd		VDDCORE	_	3.6	V	Regulator disabled	
	VDDCORE		2.0	—	2.75	V	Regulator disabled	
DC12	Vdr	RAM Data Retention Voltage ⁽²⁾	1.5	_	—	V		
DC16	VPOR	VDD Start Voltage To Ensure Internal Power-on Reset Signal	Vss	_	—	V		
DC17	SVDD	Vod Rise Rate to Ensure Internal Power-on Reset Signal	0.05	_	—	V/ms	0-3.3V in 0.1s 0-2.5V in 60 ms	
DC18	VBOR	BOR Voltage on VDD Transition. High-to-Low	_	2.05	—	V	Voltage regulator enabled	

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: This is the limit to which VDD can be lowered without losing RAM data.

DC CHARACTERISTICS			Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated)				
			Operating temp	erature	-40°C ≤ 1	Ā ≤ +85°	C for Industrial
Param No.	Sym	Characteristic	Min	Typ ⁽¹⁾	Мах	Units	Conditions
	VIL	Input Low Voltage ⁽⁴⁾					
DI10		I/O Pins with ST Buffer	Vss	_	0.2 VDD	V	
DI11		I/O Pins with TTL Buffer	Vss	_	0.15 VDD	V	
DI15		MCLR	Vss		0.2 VDD	V	
DI16		OSC1 (XT mode)	Vss		0.2 VDD	V	
DI17		OSC1 (HS mode)	Vss		0.2 VDD	V	
DI18		I/O Pins with I ² C™ Buffer:	Vss	_	0.3 VDD	V	
DI19		I/O Pins with SMBus Buffer:	Vss		0.8	V	SMBus enabled
	VIH	Input High Voltage ⁽⁴⁾					
DI20		I/O Pins with ST Buffer: with Analog Functions, Digital Only	0.8 Vdd 0.8 Vdd	_	VDD 5.5	V V	
DI21		I/O Pins with TTL Buffer: with Analog Functions, Digital Only	0.25 Vdd + 0.8 0.25 Vdd + 0.8	_	VDD 5.5	V V	
DI25		MCLR	0.8 Vdd	_	Vdd	V	
DI26		OSC1 (XT mode)	0.7 Vdd	_	Vdd	V	
DI27		OSC1 (HS mode)	0.7 Vdd	_	Vdd	V	
DI28 DI29		 I/O Pins with I²C Buffer: with Analog Functions, Digital Only I/O Pins with SMBus Buffer: 	0.7 Vdd 0.7 Vdd	_	VDD 5.5	V V	2.5V ≤ VPIN ≤ VDD
DI29		with Analog Functions, Digital Only	2.1 2.1		VDD 5.5	V V	
DI30	ICNPU	CNxx Pull-up Current	50	250	400	μA	VDD = 3.3V, VPIN = VSS
DI30A	ICNPD	CNxx Pull-Down Current	—	80		μA	VDD = 3.3V, VPIN = VDD
	lı∟	Input Leakage Current ^(2,3)					
DI50		I/O Ports	—	—	<u>+</u> 1	μA	$Vss \le VPIN \le VDD,$ Pin at high-impedance
DI51		Analog Input Pins	—	—	<u>+</u> 1	μA	$Vss \le VPIN \le VDD,$ Pin at high-impedance
DI52		USB Differential Pins (D+, D-)	—	—	<u>+</u> 1	μΑ	$V \text{USB} \geq V \text{DD}$
DI55		MCLR	_	_	<u>+</u> 1	μA	$VSS \leq VPIN \leq VDD$
DI56		OSC1	—	_	<u>+</u> 1	μA	$\label{eq:VSS} \begin{split} &V{\sf SS} \leq V{\sf PIN} \leq V{\sf DD}, \\ &X{\sf T} \text{ and } H{\sf S} \text{ modes} \end{split}$

TABLE 29-7: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

4: Refer to Table 1-4 for I/O pins buffer types.

U

UART	
Baud Rate Generator (BRG)200	
Operation of UxCTS and UxRTS Pins	
Receiving	
Transmitting	
8-Bit Data Mode 201	
9-Bit Data Mode201	
Break and Sync Sequence	
Universal Asynchronous Receiver Transmitter. See UART.	
Universal Serial Bus	
Buffer Descriptors	
Assignment in Different Buffering Modes213	
Interrupts	
and USB Transactions	
Universal Serial Bus. See USB OTG.	
USB On-The-Go (OTG)12	
USBOTG	
Buffer Descriptors and BDT212	
Device Mode Operation	
DMA Interface	
Hardware Configuration	
Device Mode	
External Interface211	
Host and OTG Modes210	
Transceiver Power Requirements	
VBUS Voltage Generation	
Host Mode Operation	
Interrupts	
OTG Operation	
Registers	
VBUS Voltage Generation211	

V

VDDCORE/VCAP Pin	. 293
Voltage Regulator (On-Chip)	. 293
and BOR	. 294
Standby Mode	. 294
Tracking Mode	. 293
w	
Watchdog Timer (WDT)	. 294
Control Register	. 295
Windowed Operation	. 295
WWW Address	. 348
WWW, On-Line Support	9

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

To:	Technical Publications Manager	Total Pages Sent
RE:	Reader Response	
Fron	n: Name	
	Address	
	Telephone: ()	FAX: ()
Appl	lication (optional):	
Wou	Id you like a reply?YN	
Devi	ce: PIC24FJ256GB110 Family	Literature Number: DS39897C
Que	stions:	
1. \	What are the best features of this do	cument?
-		
-		
2.	How does this document meet your I	nardware and software development needs?
-		
-		
3. I	Do you find the organization of this d	ocument easy to follow? If not, why?
-		
-		
4.	What additions to the document do y	ou think would enhance the structure and subject?
-		
5.	What deletions from the document c	ould be made without affecting the overall usefulness?
-		
6. I	Is there any incorrect or misleading i	nformation (what and where)?
0. 1		
-		
7. I	How would you improve this docume	nt?
-		
-		